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Bell nonlocality is the resource that enables device-independent quantum information processing tasks. It is
revealed through the violation of so-called Bell inequalities, indicating that the observed correlations cannot be
reproduced by any local hidden-variable model. While well explored in few-body settings, the question of which
Bell inequalities are best suited for a given task remains quite open in the many-body scenario. One natural
approach is to assign Bell inequalities to physical Hamiltonians, mapping their interaction graph to two-body,
nearest-neighbor terms. Here, we investigate the effect of boundary conditions in a two-dimensional square
lattice, which can induce different topologies in lattice systems. We find a relation between the induced topology
and the Bell inequality’s effectiveness in revealing nonlocal correlations. By using a combination of tropical
algebra and tensor networks, we quantify their detection capacity for nonlocality. Our work can act as a guide to
certify Bell nonlocality in many-qubit devices by choosing a suitable Hamiltonian and measuring its ground-state
energy, a task that many quantum experiments are purposely built for.
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I. INTRODUCTION

Nonlocality is a fundamental characteristic of Nature in
which the statistics obtained by taking certain local mea-
surements on some composite (quantum) systems cannot
be replicated by any local hidden-variable model [1]. No
local deterministic strategy, even if aided by shared ran-
domness, can replicate these so-called nonlocal correlations
[2]. The violation of a Bell inequality witnesses the pres-
ence of nonlocality [3], and it has recently been proven in
several loophole-free Bell experiments [4—8]. Nonlocal cor-
relations allow one to detect entanglement from a minimal
set of assumptions, under the so-called device-independent
(DI) paradigm. Nonlocality is the resource underpinning
the implementation of DI quantum information protocols
(DIQIPs) such as DI quantum key distribution [9,10], DI
randomness amplification [11,12], or DI self-testing [13].
In the multipartite scenario, however, a thorough under-
standing of the emergence of nonlocal correlations remains
elusive.

Motivated by the advent of DIQIPs, designing opera-
tionally useful Bell inequalities has been a topic of intensive
research in recent years. To distinguish classical from non-
local correlations, it is convenient to study correlations in
terms of local hidden-variable models (LHVMs). The corre-
lations of LHVMs can be characterized by a polytope. The
characterization of the LHVM polytope gives a geometri-
cally complete and minimal description of the LHVM set
in terms of the so-called facets [14], or tight Bell inequal-
ities. However, these quickly lose the properties that make
them appealing for DIQIP tasks, even as the parameters of
the Bell scenario only slightly increase. For instance, the
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Clauser-Horne-Shimony-Holt (CHSH) inequality [15] is tight
and self-tests the maximally entangled state of two qubits,
but its facet generalization to more outcomes, such as the
Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality
[16], loses that property and needs to be tilted [17]. Therefore,
even the computationally prohibitive method of finding all
facet Bell inequalities is no guarantee to yield a useful result.
Roughly speaking, the underlying reason may be that there is
nothing quantum in the definition of a LHV model.

In the multipartite case, the complexity of finding all facets
would scale as O{exp[exp(n)]} for n parties, so radically dif-
ferent techniques are necessary [18]. Restricting the study to
those Bell inequalities that consist of few-body correlators
and inherit the geometry of the problem is a good trade-off
between complexity and representability, further allowing for
the experimental implementation of Bell correlation witnesses
[19-21]. There, one can establish a natural connection to local
Hamiltonians, looking at their ground-state energy to witness
nonlocality. However, this is not a one-to-one correspondence:
a Bell inequality may be associated to many Hamiltonians,
and a Hamiltonian may act as a particular Bell operator of
many inequalities. Here, a Bell operator corresponds to the
quantum operator resulting from a choice of measurements
for a given Bell inequality.

The question of optimal constituents of a good Bell in-
equality for multipartite correlations is rather open-ended,
typically involving multiple optimizations. We know that a
certain degree of frustration must be present among the corre-
lators: e.g., the minus sign in the CHSH inequality (A¢By) +
(AoB1) + (A1Bo) — (A1B1) < B guarantees that the LHVM
(classical) bound, B. = 2, is strictly smaller than the alge-
braic bound, Bis =4 [3]. Otherwise, we get a completely
trivial inequality. As a straightforward generalization, one
might consider a multipartite system on a one-dimensional
lattice. On every site, one might replicate a O(1)-partite
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inequality, such as the CHSH, with, e.g., alternating weights
depending on some coupling parameter, thus creating a multi-
partite inequality [22], which can be seen as a dimer covering
of the one-dimensional (1D) lattice. In contrast, with a ho-
mogeneous choice, one replicates the case of translationally
invariant inequalities with O(1)-nearest-neighbor interactions,
a method that has allowed one to characterize infinite, transla-
tionally invariant inequalities in 1D for some scenarios [23].

In one spatial dimension, the number of possibilities is
rather limited: one can only place dimers in the, e.g., even-odd
links and only has the choice of open vs periodic boundary
conditions and desirable properties due to finite-size effects
that wash out in the thermodynamic limit [24].

In 2D lattices, the number of possibilities vastly increases,
but so does the computational complexity. The number of
dimer coverings increases exponentially with the number
of sites and the possibilities for boundary conditions also
multiply, yielding different underlying topologies, which can
be classified through the fundamental theorem of compact
surfaces. Hence, one should expect that the particular arrange-
ment of the dimer covering may affect the robustness of the
resulting multipartite inequality. We show that this is indeed
the case and identify qualitatively and quantitatively in which
way this happens for 3 x 3, 4 x 4, and 5 x 5 square lattices
and boundary conditions corresponding to a torus and a Klein
bottle.

In this work, we propose a method to gain insights into
the interplay between frustration, boundary conditions, and
finite-size effects for nonlocality detection. We therefore focus
our study on square 2D lattices. Due to the immense number
of free parameters in such a problem, we restrict ourselves
to a CHSH inequality in every link, with mutually unbiased
measurements at every site. We build the multipartite Bell
inequality through a dimerization procedure: By picking a
dimer covering of the lattice, we place a higher weight on the
links with a dimer. The resulting Bell operator can be straight-
forwardly interpreted as a local Hamiltonian. We compute
the classical bound and quantum value of the Bell operator
with a combination of tropical algebra and tensor network
methods [25].

We find that the sole arrangement of dimers has a pro-
nounced effect on the capacity of the Bell inequality to detect
nonlocal correlations. We compute the detection capacity of
individual inequalities by comparing their classical bound and
their quantum value. The detection capacity for small systems
shows clear differences depending on the boundary conditions
of the system. By analyzing the robustness of the inequality to
noise on the coupling parameter, we suggest the most robust
configurations for on-device testing.

The rest of this paper is organized as follows: In Secs. 1I
and III, we give an introduction to Bell inequalities and how
they are connected to Hamiltonians. Section IV explains the
methods to obtain and analyze the two-dimensional models.
The results are presented in Sec. V. Finally, we conclude and
present an outlook in Sec. VI.

II. PRELIMINARIES—BELL INEQUALITIES

The traditional scenario to observe nonlocality is
two distant parties, Alice and Bob, who can perform

measurements on a shared physical system. Each of them
chooses among m different measurements and each measure-
ment can yield d possible outcomes. Here, we will directly
start with N parties sharing a physical system since we are
interested in many-body nonlocality. We denote the mea-
surement choices of all parties with x; € [m] = {0, ..., m —
1} and their respective outputs a; € [d] = {0, ...,d — 1} for
ie[N]={0,...,N — 1}, respectively. In general, the cor-
relations between results obtained in the above process are
governed by the conditional probability distribution P(a|x) :=
P(ag, ...,an_1|x0, ..., xn_1) With a:=ag,...,ay_1 and
X := Xg, ..., Xy—i1. This joint probability distribution is fully
described by the (md)" dimensional vector

{P(ay, .. B fol)}a;x- (1

All entries satisfy the m" affine-linear equations,

ZP(a()?"'saN*lle’"'7-xN71)=19 VX! (2)
a

., an—1lxo, . .

to be normalized as well as the inequalities P(a|x) > 0 to be
non-negative.

The nonsignaling principle [26,27] (all parties are spatially
separated and cannot communicate instantaneously) leads to
well-defined marginals, i.e., the marginals observed by any
subset of parties do not depend on the choices of measure-
ments performed by the rest. That is, for all x;, x/,

ZP(ao,...,ai,...,azvqle,...,x,',...,fol)
a

=ZP(CIO,---,%‘,-~-,l11v—1|x0,.-.,Xf,--~,x1v—1)~ (3)
a;

Thus, P(a;,, ..., a;lxi, ..., x;) is well defined on any subset
{it, ..., i} S [N]L

To detect nonlocality, the goal is to find Bell inequalities
separating the polytope £ of local correlations described by
LHVM from the convex set of quantum correlations. LHVM
can be formulated as

N-1
Palx) =Y po) [ ] Plailx, 2), )
A i=0

where A is some hidden variable. Among LHVM correlations,
of special interest are local deterministic strategies (LDSs) [2],
which correspond to the vertices of the LHVM polytope and
factorize as
N-1
P(ag, ..., an1lxo, . xvo) = [ [ Plalx),  (5)
i=0
where P(a;|x;) are deterministic functions.
In contrast, the quantum correlations are given by Born’s
rule:

P(ag, ..., an—1lx0, ..., Xn—1)
= Tr[,ON( g(,)xo ® e ® MHNN:i,xN,])]’ (6)

where py is an N-partite quantum state and M’ > 0 is
the x;th measurement with outcome g; performed’by party
A;, satisfying the normalization condition ) |, M = . The
convex set of such quantum correlations is denoted by O.
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Tight Bell inequalities are facets of the local polytope
L separating local correlations from quantum correlations.
These inequalities take the form Zy ,,.» > Bc, where

Tnma =) _ caxP@lx), (7)

ax

and ay,x€R are some coefficients and fc =
minpax)es Iv,m,a 18 the classical bound of the Bell inequality.
Note that depending on the underlying physical model, a
given set of correlations might or might not be compatible
with it. For instance, if the model is LHVM, Zy, 4 is
lower bounded by B¢. Similarly, if we consider quantum
theory as the underlying physical model, the inequality
Inma = Bo, where Bp = infpajx)e0 IN,m,q, probes the limits
of the quantum set Q. It is often referred to as the quantum
Bell inequality, with B representing the associated quantum
bound or Tsirelson bound [26].

Naturally, it is desirable to have a maximal distance be-
tween B¢ and B, to facilitate the detection of Bell nonlocality
in experiments. We can compute the classical bound of Zy . 4
by minimizing it over all the LDSs of N parties. An LDS of a
single party can be described by a map ¢, : [m] — [d] that
deterministically associates an outcome to every input. We
can enumerate all d™ possible strategies as the set of LDSs,
Sips := [d™]. In the case of the CHSH inequality with m = 2
measurements and d = 2 (binary) outcomes, the set of LDSs
is Sips = {0, ..., 3}. The input-output maps are ¢o(x) = 0,
d1(x) =x, ¢2(x) =1—x, and ¢3(x) = 1. In other words,
the strategies are equivalent to always choosing 0, choos-
ing the input, choosing the opposite of the input, or always
choosing 1, respectively. Now the probability distribution of
a single party associated with the LDS s € Sy ps is given by
the Kronecker delta, P(alx) := 8[a — ¢s(x)]. For an N-partite
strategy vector § € SIIYDS, the joint probability distribution of
LDS can then be written as P(ag, . .., an—11Xo, - .., Xy—1) :=
]_[?:01 P, (ai|x;). Thus, Eq. (7) can be rephrased as

Tnma(s) =Y caxPi(alx), ®)

a,x

where s € SlYq is an N-partite strategy vector, and the classi-
cal bound

min Iy,q = mm INm.a(s). ©)]
P(alx)eL

Bc =
€8] s

We will use this expression to compute the classical bound in
Sec. IVB.

III. THE MODEL

The relationship between Bell inequalities and Hamiltoni-
ans provides a way to test nonlocality and design quantum
systems to demonstrate nonlocal correlations [19,22,23,28—
33]. For a given Bell inequality, one can construct a Hamil-
tonian coinciding with its Bell operator, which provides a
way to optimize the many-body system to exhibit nonlocal
correlations. If the ground-state energy of the Hamiltonian is
smaller than the classical bound given by the Bell inequality,
it certifies that the quantum system exhibits nonlocal correla-
tions. Conversely, we can also associate a Bell inequality to a
given spin Hamiltonian such that its Bell operator coincides

1D systems

0O O OO O0O0 OO OO0 O0O0

2D systems

O 0O O O 0 © o O O

O O © O 0O O o O O

O 0O O 0O o o O O
\_/’

% rotation same class

FIG. 1. Dimer configurations in one and two dimensions with
periodic boundary conditions. In the one-dimensional case, there are
only two distinct dimer coverings (links on even or odd links). In
two spatial dimensions, multiple dimer configurations are possible.
Dimer configurations related by spatial symmetries (see gray box)
yield the quantum and classical bounds.

with it. This correspondence is not one to one; for details, see
Appendix A.

One example for a many-body inequality is the CHSH
Bell expression realized on every link of a 1D system. On a
chain with N qubits (N even), one can construct a 1D Bell
inequality, IV (e) = Y-N! £i(e)ZEHD, where TG+ is the
CHSH inequality between sites i and i + 1, and f;(¢) are real
coefficients of the multipartite inequality. The Hamiltonian

N-1
H— Zﬁ(e)(‘fx(i)"x(m) + 0P ltD

i=0

+ oD+ _ gDg D) (10)

with fi(e) = 1+ (—1)'e is a special case of the multipartite
Bell inequality /®)(¢), which we choose in this work. For
ease of description and fair comparison between different
systems, we choose a version of the CHSH Bell operator with
equal measurements at all sites throughout this work [22], i.e.,
Ayp = By = oy and A| = By = o;. Thus, Eq. (10) is equivalent
to a weighted CHSH expression on each link. To obtain a Bell
violation with identical measurements for both parties, we use
arotated Bell state, |¢p) = f(IOO) + ¢™/4|11)). The structure

of the coefficients f;(¢) follows a dimer pattern: every second
link has a strong coupling, and the others are only weakly
coupled (cf. Fig. 1). This construction has two interesting lim-
iting cases: € = 0 and € = 1. For € = 0, the multipartite Bell
inequality /(€) corresponds to a sum of CHSH inequalities
with the same weights between all the neighboring nodes:
1(0) = ng:gl ZGHD_ The inequality 7(0) cannot be violated
due to the monogamy of Bell correlations [34,35], which
implies that the violation of CHSH inequality between nodes
i and i + 1 prohibits any violation of other CHSH inequalities
involving nodes connected to nodes i and i + 1.

In the other limiting case € = 1, the Bell inequality 1(€)
corresponds to a sum of disjoint CHSH inequalities on all
links emanating from an even node. The expression /(1) =
2 )", 20D is maximally violated by the state ), |¢2); 41
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FIG. 2. Possible violation of a Bell inequality. Depending on €,
the classical bound B¢ (gray line) and the quantum value B, (black
line) of the inequality vary. The region where a violation is possible
(in blue) depends on the size of the system, the dimer configuration,
and the boundary conditions. The intersections between the classical
bound and the quantum value are the critical values of the coupling
€ and €;.

where |¢,) = l2(|00) + €"/4|11)), and the index i only iter-
ates over even sites. Moreover, the inequality is maximally
violated with a quantum value of —N \/5

While we know the point of maximal violation at € = 1,
the range of the couplings € with a possible violation is not
known. In one dimension, the classical bound B¢ (€) of I ()
can be obtained by contracting a tropical tensor network; for
details, see Sec. IV B. Finding the quantum value By(€) can
be reduced to finding the ground-state energy of the Hamilto-
nian H in Eq. (10). Here, we are careful to call the ground
state of the Hamiltonian the quantum value since we keep
a fixed set of measurements during the minimization. The
quantum bound is the infimum over all measurements and
states in the quantum set. The nonlocality is detected when
Bo(e) < Bc(e). As discussed in Ref. [22], the dimer model
allows for violations of Bell inequalities in a region around
€ = 1, where € = 1 corresponds to one of the limiting cases
discussed above. Figure 2 shows the behavior in a sketch. A
violation of the Bell inequality can only be detected inside of
the blue-shaded region. The boundaries of the region in terms
of € are given by the intersections of the quantum value and
the classical bound,

Bo(e™)/Bc(€) = 1. Y

We denote these values of the coupling €* on either side of
€ = 1 by ¢/ and ¢}/, respectively.

In a single spatial dimension, the choice of inequalities
is heavily restricted by the limited choice of boundary con-
ditions and dimer configurations. In 1D, there are only two
boundary conditions: open or periodic boundary conditions.
Additionally, the weighted links can either be on the odd or
on the even links, leading to only four possibilities in total.

The variety of inequalities changes dramatically in two
spatial dimensions. Instead of the two possible dimer cov-
erings as in one dimension, the number of allowed dimer
coverings scales exponentially with system size in two dimen-
sions (cf. Fig. 1). Additionally, different boundary conditions
are possible. According to the classification theorem for

compact, connected surfaces, every compact connected sur-
face is homeomorphic to the connected sum of torus, Klein
bottle, and sphere [36]. We limit our study to the topologies
of torus and Klein bottle since the sphere is not well suited for
a square lattice.

The inequality of the 1D case can be readily generalized
to the two-dimensional case. Instead of a fixed link pattern
(stronger weights on the even links) as in the one-dimensional
case, we choose a fixed dimer covering on the square lattice
and place the weighted links on the dimers. Thus one can
construct the multipartite Bell expression for a given dimer
configuration,

I(e) = Zf’?-/' AUl (12)
(i,)
where
- _ |1+e€ if (i, j)in dimer
fij(€) = {1 — € if (i, j) not in dimer, (13)

and (i, j) indicates that nodes i and j are nearest neighbors.
The two limiting cases of this construction are the same as
the limiting cases of the 1D construction. Following the same
strategy as in the one-dimensional case, we construct the
corresponding Hamiltonian,

H = Zﬁ!j(e)(a)g’)ojf-’) + O’;l)O'Z(j) + az(’)a)f’) — GZ(’)GZ(/)),
(i,])
(14)

where f; j(¢) is defined as in Eq. (13).

To detect nonlocality, we are again interested in cases
where the Bell expression has a quantum value By and a
classical bound B¢ such that Bp(e) < Bc(e). The size and
shape of the region with a violation depends on the chosen
dimer configuration, the size of the system, and the boundary
conditions. The larger the distance between € and ¢/, the
higher the capacity of the inequality to detect nonlocality.
The goal is to find a combination of dimer configuration
and boundary condition where the interval with a violation
is maximal. These configurations are prime candidates for
experimental realization to certify nonlocality.

IV. METHODS

To maximize the size of the violating region, we first need
a way to compute the two bounds of the violating region €/
and ;. If it does not matter whether we treat the lower or
upper bound, we will refer to both of them jointly with €*. The
algorithm to estimate the critical values of epsilon proceeds
in two major steps. First, we address the dependence of the
dimer configuration. All dimer coverings can be classified
with regard to the symmetries of the lattice.

A simple example of equivalent dimer coverings is two pat-
terns that are rotated by 90 degrees on a lattice with periodic
boundary conditions. These two coverings will give the same
values for €* and we only have to compute them once. We
explore the symmetries of the lattices in Sec. IV A.

The second step is the search for the actual value of €*.
Since €* is a quotient of a classical bound and a quantum
value, we have to compute both of them. By iteratively com-
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puting the classical (cf. Sec. IV B) and the quantum value(cf.
Sec. IVC), we can find the intersection between the two
bounds in terms of ¢, the critical value €* (cf. Sec. IV D).

A. Classification of dimer coverings

Let us start with the dimer coverings. In one dimension, as
considered in [22], there are only two different dimer cover-
ings. The dimers can be on even or on odd links (cf. Fig. 1).

In two dimensions, the number of possible dimer con-
figurations scales with the size of the lattice. Since we are
interested in maximal violations, we focus on maximal dimer
coverings. A maximal dimer covering distributes as many
dimers on a given lattice as is allowed.

However, not all maximal dimer coverings are indepen-
dent. If two dimer coverings are connected by a symmetry U
that commutes with the Hamiltonian [U, H] = 0, the quantum
value will not be affected. The unitaries U are generated by
lattice symmetries O like rotations or mirroring (cf. Fig. 1).

As an example, we will consider the symmetries of the
torus. In total, the torus has five nondecomposable symmetries
O: right shift, up shift, rotation by 90 degrees, horizontal
mirror, vertical mirror. Details about the symmetry consid-
erations and the symmetries of the Klein bottle are given in
Appendix B. For concreteness, we focus on a specific sym-
metry, the right shift Oy (right shift). The operation right shift
is a bijection O from the set S, 7 to the set S, r, where S, r
is the set of all maximal dimer coverings on a square lattice of
size n x n with periodic boundary conditions. The bijection
O, can be written as follows:

Ors :Sn,T - Sn,T’

Sr:=(ap,ar,...,a,_1) — (a;,...,a,_1,a9), (15)
where ag, ..., a,_; are the n columns with # sites each of the
square lattice.

We can use the symmetry structure of the generators now
to reduce the number of dimer coverings that we have to
consider. The generators of the symmetries form a group.
Their action can be faithfully represented by the action of the
group elements as in Eq. (15). Each unique class of dimer
configurations is given by one of the orbits of the group action
applied to the set of dimer coverings. Since the symmetries
commute with the Hamiltonian, €* is identical in each orbit.
Thus, it is sufficient to compute €* for one representative from
each orbit. In the following, we will call the different orbits a
class of dimer coverings. In Sec. IV D, the equivalence of dif-
ferent dimer coverings in the same class is used to benchmark
the algorithm. Further details on the group structure can be
found in Appendix B.

In practice, the group orbits are obtained by a graph-
exploration algorithm through a pregenerated list of all
maximal dimer coverings. Here, we pick depth-first search
(DFS) for ease of implementation. This list is obtained with
a backtracking procedure. The idea of the backtracking algo-
rithm is to explore all valid configurations of maximal dimer
coverings in a structured way. The algorithm places the dimers
successively on the lattice while checking for contradictions
with the dimer constraint. If a contradiction is found, all
further attempts are stopped (i.e., this branch of the recursive

FIG. 3. Graph orbits of a 3 x 3 torus. The dimers form three
distinct classes, visible as three connected subgraphs. Each vertex
corresponds to one dimer covering. The labels on the edges represent
the symmetry operations that connect the different coverings. The
shaded region in blue is a zoomed-in version of class 0.

search is discarded) and the algorithm continues from the last
valid configuration with another placement strategy.

Given the list of maximal dimer coverings, we can classify
them. Starting from the first dimer covering, we recursively
apply the generators of the symmetry group. At each level of
the recursion, we first apply a new operation before exploring
other paths (following the depth-first strategy). By tracking
the already visited configurations, we discover a given orbit
of the group action since we cannot leave the starting config-
uration’s orbit by applying only symmetry operations. After
exploring the full orbit, we pick a new dimer covering that
has not been visited before. It must belong to a different orbit
(class). The procedure ends when all dimer coverings in the
list have been visited. For further details on the algorithm, see
Appendix C.

As an example, we consider a square lattice of 3 x 3
sites on the torus. Figure 3 shows the three classes of dimer
coverings as discovered with DFS. Each vertex of the graph
corresponds to one maximal dimer covering. They are con-
nected by directed edges labeled with the operation that
connects the two. Instead of computing €* for all 72 dimer
coverings, we can compute the value for only three classes.

An additional benefit of the DFS is an implicit check of the
backtracking procedure. The backtracking procedure places
dimers on the lattice without any awareness of the symme-
tries. The DFS applies all symmetry generators to all known
dimer coverings. During the DFS, we only find known dimer
coverings during the DFS algorithm, a necessary condition for
the correctness of the backtracking algorithm.

B. Computing the classical bound

After reducing the number of dimer coverings, we turn our
attention to the computation of €*; cf. Eq. (11). We start by
computing the classical bound B¢. Its computation is equiv-
alent to finding the optimal set of LDSs for each party. This
assignment of local strategies minimizes the classical bound
Bc of the Bell inequality.
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S0 S1 S92 S3

fo fi2 f2.3

S0 S92 S3
90,2 f2,3

go,2 = H;in[fm(so, s1) + f1,2(s1,52)]
1

S0 S3
90,3

do,3 = H;izn[g(),ii(s()a s2) + fa,3(52, 53)]

FIG. 4. Example of successive contractions in one dimension. In
each step, one variable is eliminated by minimizing over it.

The number of LDSs in a system of N parties grows ex-
ponentially with N as (md)". Thus, solving the problem by
fully enumerating all possible combinations quickly becomes
prohibitively expensive. For small systems, e.g., nine sites,
the number of LDSs is 4° = 262 144, which is still manage-
able. Already at system sizes of 4 x 4, a more sophisticated
approach is needed.

1. Tropical tensor networks

Tropical tensor networks are a more efficient way to obtain
results for discrete optimization problems, e.g., the ground
state of classical spin systems [37] or classical bounds of Bell
inequalities [25]. As the name suggests, we need two main
ingredients: tropical algebra [38] and tensor networks [39].

Tropical algebra is defined on the tropical semiring (R U
{400}, @, ©), where the tropical addition @ and tropical mul-
tiplication © are defined as

x@y=min{x,y}, xOy=x+y. (16)

This min-plus algebra yields a natural framework to formu-
late optimization problems [40], e.g., the optimization of the
classical bound fc¢. A typical example of a graph optimization
problem is given in Appendix D.

In the framework of tropical tensor networks, it is possible
to interpret functions with a finite number of possible inputs
as tensors. The functions f(s;, s;+1) describing the Bell in-
equality in the classical bound accept only d discrete inputs,
corresponding to the number of local deterministic strategies.
To simplify, let us start by restricting to 1D lattices. In partic-
ular, let us denote the N nodes of a chain as i € [N] and the
strategy of each node is s;.

Then, as defined in Eq. (8), a Bell inequality involving, at
most, nearest-neighbor interactions will be a linear combina-
tion of functions f; ;11 := f(s;, siy+1) (see Fig. 4) such that

N
D fsirsiv1) — e =0, a7

i=0

and the classical bound is

N
Be = min Y f(si,siv1)- (18)
seSNg —o

Notice that we use N = N — 2 for open boundary conditions
or N = N — 1 for periodic boundary conditions, respectively.

The form of Eq. (18) is a formulation amenable to trop-
ical tensor network contractions, significantly increasing the
performance to obtain S¢. The idea here is to optimize one
strategy s; at a time, instead of all strategies s at once. This
can be achieved by introducing a function,

8ii2 1= glin [fiir1GSis Sie1) + firt,iv2(Siv1, six2)], (19)
i+1

which optimizes over the strategy s;,; and effectively removes
it, as illustrated in Fig. 4. By iterating the function g; ;1 for the
remaining nodes, a situation with only two remaining nodes
is reached. At this point, one can efficiently obtain the final
optimal value B¢.

To complete the mapping from function minimization to
tensor networks, we express the functions over discrete sets
as tensors. In the case of CHSH, d = 2 and f can be fully
described by a 4 x 4 matrix F. Thus, the minimization over a
party [cf. Eq. (19)] can be written as

G=FQF, (20)

where the matrix G corresponds to the new function g(s;, si42)
in Eq. (19) and © stands for tropical matrix multiplication.
Adhering to standard tensor network notation, we can write
the full dynamic programming approach including the itera-
tion over all sites as a contraction:

N-1
Bo= min > f(si8i11)
SESIbs i—o
21

S0 s1 So S3
— fou — fi2 foz —

Here, the tensors s; are § distributions which are inserted for
increased similarity with Fig. 4. Leaving them out does not
change the expression. For further details on tropical tensor
networks, we refer to Ref. [25].

2. Grouping by columns

Let us now consider 2D lattices. The procedure to obtain
Bc follows the same guidelines presented in the previous
section, but this time we are going to group the nodes by
columns. The exact contraction of 2D tensor networks scales
exponentially with system size [41]. In contrast to a one-
dimensional lattice, the path during the iteration of g; ;i, is
ambiguous. Thus, we reduce the two-dimensional case to the
one-dimensional case by grouping columns of the lattice. This
procedure exponentially increases the number of strategies
per site. It does not solve the issue of exponential scaling,
but only confines it to one spatial direction. In principle, we
could investigate rectangular systems of limited height and
large width. Since we are considering square systems in this
work to obtain a fair comparison between different sizes, the
algorithm will only work for moderately sized lattices.

To group the columns, we label the nodes (i, j) with
strategy s;; and i, j corresponding to the row and column,
respectively; this time we introduce a function geo jcol j+1 1=
g(s;,sj41), where s; is the tuple of all the variables s; ; in the
jth column. Now, in each contraction step, we are going to
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FIG. 5. The two-dimensional system can be transformed into a
one-dimensional system by blocking the columns to enlarged sites.
The dimension of the variables s; is exponentially bigger than the
original variables s;.

implicitly optimize over all the nodes of one column in the
following manner:

8col jcol j+2 = Isllin[ E SFCsijs i) + (i1, Sijv2)
Jj+1 3
1

Crossed columns interactions

2
YD ik sivr ol (22)
k=0 i

Interactions sharing column

where ;1 =50 j41,...,8ij+1,... are all the strategies of
nodes in the j + 1 column.

Let us take Fig. 5 for an explicit example. In this case,
one step in the contraction, for instance, would carry on the

following optimization:

2

go2=_min Y [f(si0,si1)+ f(si1,5i2)

50,1,51,1,52,1 4
i=0

2
+ ) F(i04ks Siv1040)]:

k=0

(23)

By grouping the sites in column j into one variable s;, the
optimization function go » then can be written as go 2(So, $2) =
ming, g(So, $1) + g(81, $2).

The approach of contracting tropical tensor networks can
also be phrased in terms of dynamic programming [42,43].
The contracting in one spatial dimension is equivalent to the
successive optimization steps in dynamic programming.

C. Computing the quantum value

In addition to the classical bound B¢, we need to compute
Bo, the quantum value of the Bell inequality. Due to the
structure of the Bell operator, the quantum value of the system
corresponds to the ground-state energy of H, the Hamiltonian
associated to the Bell operator (cf. Sec. III). The problem of
finding B is equivalent to finding the ground-state energy
of H. For small systems, we can obtain the ground state by
diagonalization. For larger systems, however, this procedure
becomes prohibitively expensive and we use dedicated many-
body methods.

In contrast to the computation of the classical bound,
we use matrix product states here as a computational tool
with regular algebra. Matrix product states (MPSs) are one-
dimensional tensor networks and we use them as an ansatz
state in a variational optimization. Due to their entanglement
structure, they target directly the ground-state sector of lo-
cal, gapped Hamiltonians in one space dimension [44,45].
Using variational methods such as density matrix renormal-
ization group (DMRG) [46], they led to a deeper analytical
and numerical understanding of many-body systems in one
dimension [39]. We aim to find a good approximation for the
ground-state energy by minimizing,

B — min Y (@)
min = M —————————,
a (Y()y())

where « is a set of matrices parametrizing the MPS.

Here, we apply MPS to two-dimensional systems by apply-
ing a snake pattern [47]. This transforms the two-dimensional
system into a one-dimensional system that we can optimize
with DMRG. This strategy introduces system-sized cou-
plings in the Hamiltonian, limiting this approach to moderate
system sizes. For larger systems, genuine two-dimensional
approaches such as projected entangled pair states (PEPSs)
would be more appropriate. While the Hamiltonian obeys
the boundary conditions demanded by the system, the MPS
keeps open boundary conditions. The boundary conditions are
enforced by adding the couplings between the sides explicitly.
The open boundary conditions for the state are chosen due to
the higher numerical efficiency. Further details about the MPS
simulations are given in Appendix E.

(24)

D. Computing the critical epsilon

In the last sections, we explored different methods to
compute the classical bound B¢ and the quantum value B.
Actually, we would like to compute the critical value of the
coupling such that

Bo(e")/Bc(e*) =1 =0.

Due to the structure of the local polytope, we expect to find
one critical value of epsilon on either side of ¢ = 1.

The root-finding procedure of Eq. (25) is performed by
the iterative Brent-Dekker algorithm, a hybrid root-finding
algorithm combining different root-finding methods [48,49].
Given an initial value of € on either side of 1, the algo-
rithm iteratively evaluates the numerator and denominator of
Eq. (25) to find the critical value of €*. Since the quantum and
the classical value are evaluated repeatedly, the parameters of
both strategies have to be chosen with a time aspect in mind.
For more details on the numerical parameters, we refer to
Appendix E.

(25)

V. RESULTS

In the last section, we explored several methods to find
classical bounds, quantum values, and the critical value of €.
In the first step, we present benchmarks using exact methods
such as diagonalization for the variational simulations with
tensor networks. These benchmarks are presented in Sec. V A.
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FIG. 6. Comparison of exact results (vertical lines) and MPS re-
sults (dots) for €* on a torus of size 3 x 3. The left (right) panel shows
value of €/ (e;) smaller (greater) than 1. Each dot represents one
dimer configuration on the lattice. The vertical axis only enumerates
the different dimer configurations.

Our results for the critical value of € for larger systems are
shown in Sec. V B.

A. Benchmark for small systems

In small systems, both the Hilbert space and the total
number of dimer coverings are still small. Thus, the classical
bound can be computed by enumerating all strategies and the
quantum value can be evaluated by diagonalizing the Hamil-
tonian. The vertical lines in Fig. 6 represent the result of these
exact computations. The illustration is split into two columns,
i.e., one for each value ¢* (below and above € = 1). The dots
represent €* for each dimer covering individually. Here, the
quantum value is calculated with MPSs and the classical value
results from a tropical tensor network (TrTN) contraction. As
expected, all points in Fig. 6 are located on the correspond-
ing lines. Thus, the computations converged to the expected
values. The plot serves as a benchmark for the variational
computation since the values agree with large accuracy.

B. Critical epsilon

After checking the convergence of the algorithm, we
can compute €* for larger systems. The goal is to find
combinations of a dimer configuration, system size, and
boundary condition that allow one to detect nonlocality over
large ranges of the coupling. In the first step, we will explore
the properties of the model and the violation ranges that it
shows. Afterwards, concrete dimer realizations with the max-
imal violation will be showcased.

In total, three different system sizes are investigated, i.e.,
square lattices of size n € {3, 4, 5}. Convergence for the first
two lattice sizes was checked against exact diagonalization
results. Figure 7 shows the minimal ¢ and maximal ¢;/. The
size of the violation region depends on the chosen boundary
conditions. Furthermore, the size of the lattice plays a role.
With increasing lattice size, the difference between both the
toroidal and Klein bottle boundaries decreases. This could be
expected since the bulk of the system grows faster than the
boundary. Since an extensive study of a n = 6 lattice exceeded
our numerical resources, it is not entirely clear whether it is an
effect of the lattice size or the parity of the lattice dimensions.
The main problem is not the evaluation of a single model at
a given coupling €, but rather the large amount of classes and
the repeated evaluation during the root-finding process.

For all system sizes, we observe a tendency to parallel
ordering of the dimers for the lower bound of the violation
interval. On the upper end, perpendicular dimers are favored.
In the case of a system with n = 3 on the Klein bottle, the
same configuration realizes the lower and upper bounds. That
makes this system a prime candidate for an experiment since
the same dimer covering with different couplings will cover
the whole interval.

For the two smaller system sizes, n € {3,4}, all dimer
configurations were evaluated to guarantee convergence of
the root-finding procedure. In the case of the larger lattice
size, n = 5, 10 classes were evaluated for toroidal boundary
conditions (see Fig. 8). Since the number of dimer configu-
rations with Klein bottle boundary conditions exceeds 1000,
we only computed one representative dimer configuration for
each class.

L=3x3 L=4x4 L=5x5
0 3 6 o
o o—o o— lo—o
o0—2 ° -— ) ) oIIIo— oIoIo—
™t ° - ° o~
o 0 o— e o o— I
o o o— 'I > o0 o—0 o QIIIO—
0 © 0—o0 o o o— o o L4 o0 0 0 o o 60 6 o—
| | |
B Torus
: : : . T . : — € . . . - € . . . . . . . € )
08 09 10 11 12 13 14 15 0.8 10 12 14 16 18 20 08 09 10 11 12 13 14 Klein Bottle

stbesa 1111
o A 1111

®
o—

1
!

*—o

!
1t

!

"o o 00
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i

FIG. 7. Ranges of critical values for different boundary conditions and system sizes. From left to right, the three figures indicate the results
for3 x 3,4 x 4, and 5 x 5 systems. The blue (orange) regions shows the ranges of €* for a system on a torus (Klein bottle). The bars close to
the axis connect the value of the minimal and the maximal critical epsilon for a given system. The bars span across multiple classes. Insets: A

dimer covering of the class with maximal (minimal) €*.
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FIG. 8. Computation of ¢* for a 5 x 5 lattice with periodic
boundary conditions. The points are the median of 10 representative
dimer configurations from each class. The asymmetric error bars
show the minimal and maximal deviations among all considered
realizations.

For systems of size n = 5 and larger, the number of dimers
exceeds the number of simulations that can be performed in
a reasonable time. Instead of simulating all dimers, we will
actively use the dimer classification described in Sec. IV A.
Since the convergence of the MPS simulation becomes more
challenging for larger systems, we simulate 10 representatives
from each class. The results of the simulation are shown in
Fig. 8. Note that the vertical axis in Fig. 8 does not display
all dimer realizations as in Fig. 6, but the different classes.
The points in the figure are the median values of the 10 sim-
ulations with different dimer coverings belonging to the same
class. The asymmetric error bars represent the minimal and
maximal values for the critical coupling among all runs for
each class. This error measure is more pessimistic than other
error measures such as the standard deviation. We choose it
here to take the highly asymmetric character of the error into
account. The main source of error is convergence accuracy
in the MPS simulation. Since this is a variational computa-
tion, the computation always overestimates By (€). Depending
on the slope of B¢ (¢€), this leads to either an over- or underes-
timation of €*.

Finally, we can compare the ranges for the largest consid-
ered system size of 5 x 5 (cf. right panel of Fig. 7). In contrast
to the smaller lattices, the difference between the torus and
Klein bottle in terms becomes smaller with increasing lattice
size. One possible explanation is that the boundary effects
should become less pronounced as the system grows. The
bulk of the system scales quicker than the boundary. Due to
run time considerations, the data for the Klein bottle are not
averaged over 10 independent runs. It represents the analysis
of a randomly chosen dimer for each class. Due to the large
number of 1096 different dimer classes, we aimed to limit the
computational time.

In an experimental setting, a configuration with as little
fine-tuning of € is desirable. Dimer coverings with the largest
violation range are most interesting, instead of the extremal
cases for a given model. In the considered systems, the con-
figurations with maximal violation always coincide with the
configuration on the upper bound of the €* range (cf. Fig. 7).

These configurations are potential candidates for experimental
realization. Due to the large violation range, it is unnecessary
to fine-tune the coupling. The large gap between the classical
and quantum values allows for an on-device energy minimiza-
tion with variational methods, such as variational quantum
eigensolvers [50,51].

VI. CONCLUSIONS AND OUTLOOK

Despite the immense complexity of studying Bell non-
locality in many-body systems, the exploration of Bell
nonlocality in terms of nearest-neighbor dimer Hamiltonians
is an accessible avenue.

We find the violation regions for a host of two-dimensional
CHSH inequalities by optimizing the coupling of a dimer
Hamiltonian. The intersections of the classical bound and the
quantum value signify the boundaries of the violation interval.
The larger the interval, the larger the Bell inequality’s capacity
to indicate nonlocality. Both the classical bound and the quan-
tum value are evaluated numerically with tensor methods. For
the classical bound, we use tropical tensor networks, while the
quantum value is evaluated as the ground state of a DMRG
computation.

Dimer coverings with maximal violation region are in-
teresting candidates for experimental realizations. The con-
sidered system sizes are well within reach and the coupling
scheme in terms of dimers is practically realizable. Further-
more, the inequalities could be tailored to the quality of
individual links of, for instance, a superconducting device.
Links with coupling problems could be given a low weight,
while the rest of the lattice is still optimized for the best
dimer covering. The optimization of boundary conditions and
coupling configuration (in terms of dimer covering) gives a
practical approach, with the same resources, to better certify
the nonlocality generation capabilities of existing quantum
processors.

Looking ahead, there are several possible improvements
to our approach. The used numerical methods could be
optimized by incorporating further symmetries of the Hamil-
tonian. This is possible for both exact diagonalization and
MPS computations. Since the system is two dimensional,
projected entangled pair states (PEPSs) is another option to
compute at least a variationally constrained quantum value
[52,53]. Due to the iterative procedure when finding the
boundaries of the violating interval, it will be important to
choose the algorithms for computing the quantum value and
classical bound with their runtime in mind.

The investigation of the square lattice is a choice. Since
superconducting devices are often based on heavy-hexagon
[54] or honeycomb [55] lattices, our approach could be nat-
urally extended to nonsquare lattices, possibly with trimer
interactions [56].

The code to generate the data used in this paper is available
online; see Ref. [57]. The actual data used in this manuscript
are available in Ref. [58].
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APPENDIX A: CONNECTION FROM HAMILTONIANS
TO BELL INEQUALITIES

Here we show how to construct the multipartite Bell in-
equality with m inputs and two outcomes on a square n x n 2D
dimer coverings. Then, conversely, for a given quantum spin
Hamiltonian, we explain how to find the Bell inequality such
that its Bell operator coincides with this Hamiltonian.

To construct the multipartite Bell inequality of m inputs
and two outcomes on square n X n 2D lattices, we pick a
dimer covering of the lattice first, then place a higher weight
on the links within the dimer. Then, given a dimer cov-
ering, one can construct its corresponding multipartite Bell
inequality,

Ie):=)_ fij(e)- T},
(i)
where f; ;(€) is as defined in Eq. (13) and Ig}}?z denotes the
bipartite Bell expression between nodes i and j. One can see
that for each link between node i and j of the dimer, we
assign a Z,"”, with higher weight (1 + €)Z(/) associated to
it. Similarly, we assign (1 — €)Z¢ for the two adjacent nodes
i and j that are not linked.
Now, we illustrate the procedure for deriving Bell expres-
sions corresponding to a given Hamiltonian of the form

H=Y"fij©H,
(i)

(AL)

(A2)

where

b4
H, = (cos —oPo) + cos — sin —cr(’) )
2m 2m  2m

X
4sin 2= cos o oWe) — cos? LD
M om 2m e % % %)

and f; ;(¢) is defined as in Eq. (13). Note that this Hamiltonian
H is a particular case of the Bell inequality /(¢) in (A1) when

1z 0y )2 is the chained Bell inequality [22,59]. Our goal is to find
a Bell operator B that corresponds to the given Hamiltonian
H in Eq. (A2) such that B = H. If we restrict to the local
part of the Hamiltonian, then the structure of H, requires a
specific Bell scenario: the number of parties in local parts
is two because of the tensor form of H,, and the number of
outcomes, d = 2, is due to the local dimension of the Pauli
matrices. Thus, for the local part H,, we only need to consider
the Bell scenario (2, m, 2). To have nontrivial correlations,
we set m > 2. According to the general form of the Bell
expression in (2, m, 2), the associated Bell operator can be
written as

m—1 1
— (ki,ka) A (k) p (k2)
- Z Z am sz Al )lclAZ §C7

X1 ,XQZO k] ,k2=0

(A3)

where Aka/) = Z;i:o(_l)aikini,af is the discrete Fourier
transform of a positive operator-valued measure (POVM)
{Fxha,.}('l‘_:() representing the measurement on the ith party
in the basis x;. Note that [Agk;),Agkfcz] =0 for xy, x, € [m],
ki, ky € {0, 1}.

Our goal is to find operators A
(kl

ki) gk)

x> “%2,x,
%) that give rise to a nontrivial Bell inequality. Due to the
express1on of the Hamiltonian H in Eq. (A2), we assume that

and coefficients

A(k‘) = cos G(k‘)ox + sin Q(k')az,
(ko) _ (k2) (k2) (Aad
A cos ¢, oy +sin¢, > o,

2X2

where x1, x, € [m], k1, k, € {0, 1}. As we will see in the ex-
ample below in (A9), by choosing A(k‘) and A(kzz in this way,
the matrix 7 will have a desirable form Then, the general
form of the Bell operator can be written as

(k1,k2)
-5y e

x1,0=0 ky k=0

® (cos qﬁ("”ax + sin ¢(k2) 2)-

(cos Q(k‘)ax + sin 9("‘) 2)

(A5)

Next, to find the coefficients a1;%) of the Bell expression,
we write the above Bell operator as a system of linear
equations by projecting into the basis {0, ® oy, 0y ® 0,, 0, ®
0y, 0, @ 0;}. And the projection of H, is given by Tr[(o; ®
oj)H,], i, j € {x, z}. In this way, we have

T-a=bh, (A6)
where
cos 6 cos ¢ cos 61 cos p*»)
| cos 9(()0) sin qb(()o) cos 6V sin k)
sin 6" cos ¢ sin (%) cos p k)
sin 960) sin ¢(0) sin 651 sin p*»)
is a 4 x 4m?* matrix, @ = (aOO, ...,a)(cll“x’?), ... fnl ll)m DT

and
b ={Tr[(0, ® 6.)H,], Tr[(0, ® 0.)H,], Tr[(o, ® o,)Ha],
Tr[(Uz ® UZ)HZ]}T»

, T . W T ) T T
=2m| 2cos” —, sin —, sin —, —2cos” — | . (A7)
2m m m 2m
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Assume that we fix 6%, ¢*2) for x1, x, € [m], ki, ky € {0, 1};
then we can write the matrix 7. Note that in our case, we need
to consider the boundary conditions of the dimer coverings, so
we assume A; = B;, which implies 61 = ¢*»). This ensures
that the measurements of the site on the boundary are con-
sistent. Since rank(7') < min{4, 4m?}, we have the following
two cases: If T is invertible [m = 2 and rank(7T) = 4], there
is a unique solution for & = T-'5. Thus there is a unique
Bell expression corresponding to H with operators given by
Eq. (AS). If T is not invertible, there exists a family of so-
lutions for &@. It means there are multiple Bell expressions
corresponding to H with operators given by Eq. (AS).

After obtaining the Bell expression 7, ,,» corresponding
to the Bell operator in Eq. (AS), one can construct the Bell
expression corresponding to H in Eq. (A2) as follows:

)= fij T (A8)
(i, ))

where f; j(¢) is defined as in Eq. (13) and i, j label the parties.

Finally, as an illustrative example, we show how to find the
associated operator of the CHSH inequality from the Hamil-
tonian in Eq. (A2) when m = 2. First, we assume that 6y =
¢o = 0, 0; = ¢ = 7 /2; then the operators are Ay = By = oy,
A| = B; = o;. The Bell operator of the (2,2,2) scenario with-
out local operators is ) | _ | &xyABy, which can be written
as a system of linear equations by projecting into the basis
{o; ® 0}, and the projection of H, = (00, + 0,0, + 0,0, —
0.0;) is given by Tr[(0; ® 0;)H,], i, j € {x, z}. Then we have

T.G=h, (A9)
where
1 0 0 0
01 0 0
=10 o 1 ol
0 0 0 1

and @ = (g0, ot0,1, 1.0, &1.1)", b = (4,4, 4, —4)T . Then one
canobtain@ = T~ - b= (4,4, 4, —4)T. The associated Bell
expression is ZU/) = 4(A¢By + AgB; + A 1By — A\B,). Fi-
nally, since A;, B; € {—1, 1}, i, j € {0, 1}, one obtains /) >
—8, which is the (scaled) CHSH inequality. In this case,
the Bell inequality associated with the Hamiltonian H in
Eq. (14) is

Ie) =4 fi,; 707, (A10)

(i.J)

where TG0 — (Ag)Aéj) +A(()i)A(lj) +A(li)Agj) _A(li)A(lj))’
fi,j(€) is defined as in Eq. (13), and i, j label the parties.

APPENDIX B: MATHEMATICAL BACKGROUND FOR
THE CLASSIFICATION OF DIMER CONFIGURATIONS

In two spatial dimensions, the amount of possible dimer
configurations increases dramatically with the number of
sites. However, some dimer configurations on the two-
dimensional square lattice with fixed boundary conditions are
related by symmetries. This allows us to group them into
a single class. Subsequently, we only need to investigate a

representative 2D square dimer covering from each class,
which allows us to reduce computational time.

Let S, = {S®, 8@, ..., 8® ...} be a finite set of 2D
square dimer coverings (n x n nodes) with boundary condi-
tions, and let G be a group with identity element e. Then, a
left action on S, is amap G x S, — S,,, written (g, S©Y
g- S® _ such that

g1 (82-8") = (81-82)-5© (B1)
and e - S® = §® forall g, g» € Gand S® € S,,.

Let S, r = {S(Tl), S(Tz), ...,S(Tk), ...} be a finite set of 2D
square lattice (n x n nodes) of torus (the boundary aba'b71).
For S(Tk ) e S,.r, we can obtain its equivalent dimer coverings

with the same boundary conditions, S(Tk)/, if some of the fol-
lowing operations are applied:

(1) Right shift Oy. The operation right shift is a bijection
Oy from the set S,, 7 to the set S, 1 as follows:

Ors : Sn.T - Sn,Tv
@ (B2)
Sy’ = 1(ag,a,...,8,.1) — (ar, ..., 8,1, a),

where a; is the ith column with n nodes of S(Tk), and [ =
0,....n—1.

(2) Up shift Oys. The operation up shift Oy is defined as

Ous : Sn,T — Sn,Ts

bO bn—l
so| o™ (B3)
b,,,z :
bn—l bn—2

where b; is the jth row with n nodes of S(Tk)
0,....,n—1.

(3) Vertically mirrored O,,. The operation vertical mirror
is a bijection Oy, from the set S, 7 to the set S, 7 as follows:

and j =

Ovm : Sn,T - Sn.,Ty
@ (B4)
Sy’ = (ag,ay, ..

~aan—1)’_) (an—h --.,al,ao),

where a; is the ith column with n nodes of S(Tk ), and [ =
0,....n—1.

(4) Horizontally mirrored Oyy,. The operation horizontal
mirror Oy, 18

Ohm : Sn,T - Sn,Tv
bo by
: b, (BS)
st |0 Lo [,
b, :
by bo
where b; is the jth row with n nodes of S(Tk) and j =

0,....,n—1.
(5) Rotation O;. The operation rotation can be written as

Or : Sn,T — Sn,Tv (B6)
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FIG. 9. Sketch of the topology of a torus (top) and a Klein bottle
(bottom). The arrows, from left to right, indicate the successive
merging of boundaries.

SO = (ag,ay,...,a,1) : (B7)

n—1

where a; is the ith column with n nodes of S(Tk), a is the
transpose after reversing the order of the elements along the
length of the vector a;, and i =0, ..., n — 1. For example, if
ap = (2,1,0)7, thenap = (0, 1,2)" and a] = (0, 1, 2).

One can check that for the nonempty set of 2D dimer
coverings S, 7 of torus (the boundary aba~'h~") depicted in

Fig. 9, the group acting on S,, 7 is
Gr =(Oys, Oys, Oy, O, O
(0r)" = (04s)" = (Oym)* = (Opm)* = (0,)* =,
OunOys = (0r) "' Oum, OjnOus = (Ous) ™' O,

OunOr = (0,)™ Ovms OOy = (0,) ™' Op).
(B3)
Similarly, let S, x5 = {S\3, SCp, ..., SE) ...} be a finite
set of 2D dimer coverings (n x n nodes) of Klein bottle (the
boundary aba~'b) as shown in Fig. 9. For Sg‘g € Sp.xB, Wecan
obtain its equivalent dimer coverings with the same bound-
ary conditions, S}?g, if some of the following operations are
applied:
(1) Right shift O,,. The operation right shift is a bijection
O, from the set S, gp to the set S, xp as follows:

O : Spxg = Snks,
(B9)

S}g = (ap,ay,...,a,_1)— (a;,...,a,_1,ay),
where a; is the ith column with n nodes of S;fl;, a; reverses
the order of the elements along the length of the vector a;, and
i=0,....,n—1.

(2) Vertically mirrored O,,,. The operation vertical mirror
is a bijection O, from the set S, gp to the set S, xp as

TABLE I. Number of group orbits, i.e., different classes of dimer
configurations. In parentheses are given the minimal and the maximal
number of dimer configurations in a class, respectively.

Size/Boundary Torus Klein bottle
3x3 3 (18,36) 11 (3,12)
4 x4 13 (4,64) 36 (1,16)
5x5 113 (50,200) 1096 (5,20)
follows:

0</m : Sn,KB — Sn,KBa

©® B (B10)

Sgp = (ap,ar,...,a,_1) > (A, a1, ...,a;),
where a; is the ith column of S;fl); and a; reverses the order of
the elements along the length of the vector a;,i =0, ...,n —

1.
Then we can obtain that for the set S, gp, the group acting
on itis

Gk = ( O, Oy, 1 (0;)™(0,,)" = e,

OO = (0[)7'04). (B11)

APPENDIX C: DIMER CLASSIFICATION

Given the symmetries describe in Appendix B, multiple
dimer configurations lead to the same classical bounds and
quantum values. By considering only a single representative
of each class, the amount of dimer configurations drops from
19 600 individual dimers to 113 representatives.

As a classification procedure, we choose a depth-first
search. Each dimer configuration is considered as a vertex of
a graph. Two vertices of the graph are connected by an edge if
there exists a symmetry operation of the lattice transforming
one dimer covering into the other. To classify the dimers,
we do not need to construct this graph explicitly, we only
have to explore its connected components. Each connected
component corresponds to one distinct group orbit, i.e., a class
of dimer coverings. We start the classification procedure by
choosing an arbitrary dimer configuration, i.e., an arbitrary
vertex in the graph. Following the spirit of a depth-first search,
we apply a symmetry operation of the lattice recursively to
reach new vertices. If a vertex has not been visited before, we
mark it and apply a symmetry operation to the new vertex. If
it has been marked before, we perform no operation to exit the
recursion.

Once the recursion terminates, all marked vertices belong
to the same class. We repeat the procedure until all vertices
have been marked with a class label.

The number of classes varies depending on the different
system sizes. An overview of the amount of dimer classes as
well as the minimal and maximal number of representatives
in each class is given Table I.

Figure 10 shows the distribution of the dimer coverings
over the different classes in more detail for periodic and Klein
bottle boundary conditions in a system of size 4 x 4. Since
the numbering of the classes is arbitrary, the labels on the
horizontal axis are left blank. Here, the classes are ordered
by number of dimer coverings for readability.
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60 - L=4x4, torus
50 A
40 A

30 A

No. dimers

20 A

10 1

Classes

20
L=4x4, Klein bottle

15 4

10 A

Classes

No. dimers

5

FIG. 10. Statistics of the dimer configurations. Top: Statistics for
a system on a torus of size 4 x 4. Bottom: Statistics for a system on
a Klein bottle of the same size.

APPENDIX D: EXAMPLE TROPICAL OPTIMIZATION

An example for an optimization problem is to find the
shortest path in a directed graph in k steps. The directed graph
G = (V,E) is a tuple consisting of a set of vertices V and a
set of weighted, directed edges £ = (u, v, w), where u, v € V
and w € R U {400} is the weight of the edge from vertex u to
v. If there exists no edge from u to v, we set w = +00.

The graph can be equivalently represented by a [V| x |V|
adjacency matrix W. Each entry W,,,, of the matrix corresponds
to the weight of the directed edge (u, v). This adjacency
matrix is the input to the tropical optimization procedure.

The goal of the optimization is to find the shortest path in
the graph from vertex u to vertex v in k steps. Here, “shortest”

means the minimal amount of accumulated weight. While this
problem is a classical application for Dijkstra’s algorithm,
it can be formulated as tropical matrix multiplication. The
(u, v) entry of the matrix W®* is the length of the shortest
path in k steps from vertex u to v in the directed graph G.
Here, W©* is the tropical matrix power, i.e., applying tropical
matrix multiplication k times. More concretely, we compute
the tropical matrix product as

(A B);; = @Ail O Byj

! (DD
= Inlin(Ail + Bij).

In the third line, the relation to a minimization task becomes

evident. The tropical matrix multiplication selects the mini-

mum weight from all possible edges connecting the vertices i

and j.

As an example, let us consider the adjacency matrix

1 2 4o
W=|+oc0 3 4 (D2)
5 6 1
To obtain the shortest path in two steps, we compute
2 3 6
w?=|[9 6 5 (D3)
6 7 2

The shortest path from the vertex 1 to 2 in two steps on graph
G is 3, which corresponds to the entry W%

Additionally, the shortest closed patﬁ in k steps can be
obtained with the tropical trace, tropTrace(W ©¥). The tropical
trace corresponds to taking the minimal diagonal entry of a
matrix. In our example, the minimum closed path in two steps
is 2, which is tropTrace(W ©2).

APPENDIX E: PARAMETERS FOR NUMERICAL
SIMULATIONS

The MPS simulations for the quantum were performed
with the TeNPy Library (version 0.10.0) [60]. The MPS sim-
ulations are performed with a virtual bond dimension of D =
300. Since the ground-state search is called repeatedly during
the optimization, this bond dimension is a good compromise
between accuracy and solution time. The ground state is con-
sidered to be converged if the energy does not change more
than 10~* or the entropy does not change more than 1073,

In the Brent-Dekker algorithm, the root is considered to be
converged if it does not change more than 1073,
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