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Comment on “Asymptotic quantum algorithm for the Toeplitz systems”
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In their recent paper [Phys. Rev. A 97, 062322 (2018)], Wan et al. proposed a quantum algorithm to solve
systems of linear equations Ax = b, where A is an n × n Toeplitz matrix generated by the Fourier coefficients of
a continuous, 2π -periodic, and positive function f . For large enough n, they claimed that the algorithm is valid
for all b. In this Comment we prove that, in general, this is not true.
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I. INTRODUCTION

Obtaining the solution of Toeplitz systems of linear equa-
tions is very common in many mathematics and engineering
problems. Resolution of partial differential equations [1] or
signal estimation [2], for instance, are examples of these
problems.

Solving a Toeplitz system can be done efficiently on a
classical computer. However, quantum algorithms are able to
solve some problems faster and more efficiently. Hence, the
obtention of a quantum algorithm to solve Toeplitz systems
that outperforms its classical counterpart is of great interest.

In this context, in their recent paper [3], Wan et al. pro-
posed a quantum algorithm to solve Toeplitz systems of linear
equations of the form

Tn( f )x = bn, (1)

where bn is an n-dimensional column vector, f is a continu-
ous, 2π -periodic, and positive function, and Tn( f ) is the n × n
Toeplitz matrix defined as

Tn( f ) :=

⎛
⎜⎜⎜⎝

t0 t−1 · · · t−(n−1)

t1 t0
. . .

...
...

. . .
. . . t−1

tn−1 · · · t1 t0

⎞
⎟⎟⎟⎠, (2)

with

tk := 1

2π

∫ 2π

0
f (ω)e−ikωdω, k ∈ {−(n − 1), . . . , n − 1}.

The quantum algorithm presented in [3] solves Hermitian
circulant systems of linear equations very efficiently. In order
to take advantage of such algorithm, the strategy of Wan et al.
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is to replace the Toeplitz matrix Tn( f ) in (1) by a Hermitian
circulant matrix Cn( f ) that somehow approaches Tn( f ) as n
grows. It is worth mentioning that the strategy of replacing a
Toeplitz matrix by a circulant one has been widely used in the
literature in a variety of applications (see, e.g., [4–8]).

In their algorithm, Wan et al. claimed that the solution
of the system obtained after replacing Tn( f ) by a particu-
lar circulant matrix converges to the solution of the original
Toeplitz system regardless of the column bn (see Corollary 2
in [3]). In this Comment we prove that, in general, this is not
true.

The remainder of this paper is organized as follows. In
Sec. II we give a counterexample to prove that the solution
of the Toeplitz system obtained with the algorithm proposed
by Wan et al. does not always converge to the correct solution.
In Sec. III we compare the relative error between the solution
obtained with the algorithm proposed by Wan et al. and the
correct solution for two different Toeplitz systems. In Sec. IV
we present some conclusions.

II. COUNTEREXAMPLE

First, we will introduce some notation. Here N, Z, R, and
C denote the set of positive integer numbers, the set of integer
numbers, the set of real numbers, and the set of complex num-
bers, respectively. The dagger stands for conjugate transpose,
‖ · ‖2 is the spectral norm, and ‖ · ‖F denotes the Frobenius
norm. If m, n ∈ N, then Cm×n is the set of all m × n complex
matrices, 0m×n is the m × n zero matrix, In is the n × n identity
matrix, and diag(a1, a2, . . . , an) is the n × n diagonal matrix
with a1, a2, . . . , an the entries in the main diagonal.

Consider the Toeplitz system in (1). Here x = [Tn( f )]−1bn

and we denote by x∗ the solution of the corresponding circu-
lant system, that is, x∗ = [Cn( f )]−1bn.

In their recent work (see p. 062322-4 in [3]), Wan et al.
claimed that if f : R → R is continuous, 2π -periodic, and
positive, then

lim
n→∞

‖x∗ − x‖2

‖x‖2
= lim

n→∞
‖[Cn( f )]−1bn − [Tn( f )]−1bn‖2

‖[Tn( f )]−1bn‖2
= 0

(3)
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for all bn ∈ Cn×1 with ‖bn‖2 = 1. We here prove that (3) is
not true for all bn by giving a counterexample. Specifically,
we show that

‖x∗ − x‖2

‖x‖2
= ‖[Cn( f )]−1bn − [Tn( f )]−1bn‖2

‖[Tn( f )]−1bn‖2

� 1

5
∀ n ∈ N\{1, 2} (4)

when

f (ω) = 3√
10

+ 2√
10

cos(ω) ∀ω ∈ R

and

bn =

⎛
⎜⎜⎝

0n−2×1

1√
10
3√
10

⎞
⎟⎟⎠.

Observe that

f (ω) = 3√
10

+ 2√
10

cos(ω)

= 1√
10

e−iω + 3√
10

ei0ω + 1√
10

eiω ∀ω ∈ R.

Here f is a trigonometric polynomial of degree 1, and conse-
quently the sequence of Fourier coefficients of f , {tk}k∈Z, is

given by

tk =

⎧⎪⎪⎨
⎪⎪⎩

3√
10

if k = 0
1√
10

if k ∈ {−1, 1}
0 if k ∈ Z\{−1, 0, 1}.

Therefore, according to (2), the Toeplitz matrix Tn( f ) is sym-
metric for all n ∈ N and

x =
(

0n−1×1

1

)

is the unique solution of the Toeplitz system Tn( f )x = bn.
From p. 728 in [4] or p. 197 in [5],

Cn( f ) = Tn( f ) +

⎛
⎜⎜⎝

0 01×n−2
1√
10

0n−2×1 0n−2×n−2 0n−2×1

1√
10

01×n−2 0

⎞
⎟⎟⎠

∀ n ∈ N\{1, 2}. (5)

Applying p. 5674 in [6] or Lemma 5.4 in [7] yields

Cn( f ) = Fndiag

(
f (0), f

(
2π

n

)
, . . . , f

(
2π (n − 1)

n

))
(Fn)†

∀ n ∈ N\{1, 2},
where Fn is the n × n Fourier unitary matrix given by

[Fn] j,k = 1√
n

e−i2π ( j−1)(k−1)/n, j, k ∈ {1, . . . , n}. (6)

As Tn( f ) is symmetric, according to (5), Cn( f ) is also sym-
metric. Furthermore, from (6), Fn is symmetric too. Thus,

Cn( f ) = [Cn( f )]	 =
[

Fndiag

(
f (0), f

(
2π

n

)
, . . . , f

(
2π (n − 1)

n

))
(Fn)†

]	

= [(Fn)†]	
[

diag

(
f (0), f

(
2π

n

)
, . . . , f

(
2π (n − 1)

n

))]	
(Fn)	

= (Fn)†diag

(
f (0), f

(
2π

n

)
, . . . , f

(
2π (n − 1)

n

))
Fn ∀ n ∈ N\{1, 2},

which is the form in which the matrix Cn( f ) is expressed in [3]. Hence, since f (ω) ∈ [ 1√
10

, 5√
10

]
for all ω ∈ R, we conclude that

‖x∗ − x‖2

‖x‖2
= ‖[Cn( f )]−1bn − [Tn( f )]−1bn‖2

‖[Tn( f )]−1bn‖2

=
∥∥[Cn( f )]−1Tn( f )

(0n−1×1
1

)− (0n−1×1
1

)∥∥∥
2∥∥(0n−1×1

1

)∥∥∥
2

=
∥∥∥∥[Cn( f )]−1Tn( f )

(
0n−1×1

1

)
−
(

0n−1×1

1

)∥∥∥∥
2

=

∥∥∥∥∥∥∥[Cn( f )]−1

⎡
⎢⎣Cn( f ) −

⎛
⎜⎝

0 01×n−2
1√
10

0n−2×1 0n−2×n−2 0n−2×1
1√
10

01×n−2 0

⎞
⎟⎠
⎤
⎥⎦
(

0n−1×1

1

)
−
(

0n−1×1

1

)∥∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥∥−[Cn( f )]−1

⎛
⎜⎝

0 01×n−2
1√
10

0n−2×1 0n−2×n−2 0n−2×1
1√
10

01×n−2 0

⎞
⎟⎠(0n−1×1

1

)∥∥∥∥∥∥∥
2

= 1√
10

∥∥∥∥[Cn( f )]−1

(
1

0n−1×1

)∥∥∥∥
2

= 1√
10

√√√√ n∑
j=1

|{[Cn( f )]−1} j,1|2

� 1√
10

|{[Cn( f )]−1}1,1|

= 1√
10

∣∣∣∣∣∣
[

(Fn)†diag

(
1

f (0)
,

1

f
(

2π
n

) , . . . , 1

f
( 2π (n−1)

n

)
)

Fn

]
1,1

∣∣∣∣∣∣
= 1√

10

∣∣∣∣∣∣
n∑

j=1

[(Fn)†]1, j

[
diag

(
1

f (0)
,

1

f
(

2π
n

) , . . . , 1

f
( 2π (n−1)

n

)
)

Fn

]
j,1

∣∣∣∣∣∣
= 1√

10

∣∣∣∣∣∣
n∑

j=1

[(Fn)†]1, j

n∑
k=1

[
diag

(
1

f (0)
,

1

f
(

2π
n

) , . . . , 1

f
( 2π (n−1)

n

)
)]

j,k

[Fn]k,1

∣∣∣∣∣∣
= 1√

10

∣∣∣∣∣∣
n∑

j=1

[(Fn)†]1, j
1

f
( 2π ( j−1)

n

) [Fn] j,1

∣∣∣∣∣∣ =
1√
10

∣∣∣∣∣∣
n∑

j=1

1

f
( 2π ( j−1)

n

) [Fn] j,1[Fn] j,1

∣∣∣∣∣∣
= 1√

10

∣∣∣∣∣∣
n∑

j=1

1

f
( 2π ( j−1)

n

) ∣∣[Fn] j,1

∣∣2
∣∣∣∣∣∣ =

1√
10

n∑
j=1

1

f
( 2π ( j−1)

n

) ∣∣[Fn] j,1

∣∣2

= 1√
10

1

n

n∑
j=1

1

f
( 2π ( j−1)

n

) � 1√
10

1

n

n∑
j=1

1
5√
10

= 1

5
∀ n ∈ N\{1, 2}.

Equation (4) proves that Corollary 2 in [3] is not true. Therefore, the proof of Corollary 2 in [3] presented by Wan et al. is not
correct. The error is in Eq. (11) in [3]. They claimed that Eq. (11) in [3] is obtained by using the inequality given in Sec. 5.8 in
[9],

‖B−1b − A−1b‖2

‖A−1b‖2
�

κ (A) ‖B−A‖F

‖A‖F

1 − κ (A) ‖B−A‖F

‖A‖F

if ‖A−1‖F ‖B − A‖F < 1,

where κ (A) is the condition number of A. However, they did
not realize that, in general, A = Tn( f ) and B = Cn( f ) do not
satisfy the assumption ‖A−1‖F ‖B − A‖F < 1 (see Eq. (5.8.5)
in [9]).

Although Corollary 2 in [3] is not true, the quantum al-
gorithm presented by Wan et al. can be applied to solve the
Toeplitz systems considered in Corollary 3 in [3] and to solve
any Hermitian circulant system.

III. NUMERICAL SIMULATION
OF TWO TOEPLITZ SYSTEMS

In this section we perform a numerical simulation to study
the relative error between the solution obtained with the al-
gorithm proposed in [3] and the correct solution for two
Toeplitz systems. First, we consider the Toeplitz system of the

counterexample presented in Sec. II. Second, we analyze a
Toeplitz system for which this algorithm is valid.

First, we consider the Toeplitz system in (1), with

Tn( f ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√
10

1√
10

0 · · · 0

1√
10

3√
10

1√
10

. . .
...

0 1√
10

3√
10

. . . 0
...

. . .
. . .

. . . 1√
10

0 · · · 0 1√
10

3√
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

and

bn =

⎛
⎜⎜⎝

0n−2×1
1√
10
3√
10

⎞
⎟⎟⎠.
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FIG. 1. Relative error between x∗ and x for the Toeplitz system
of the counterexample.

Figure 1 shows the relative error between the solution ob-
tained with the algorithm proposed by Wan et al., denoted by
x∗, and the actual solution of the Toeplitz system, denoted by
x, for different values of n. It can be observed that the relative
error does not vanish and

‖x∗ − x‖2

‖x‖2
� 1

5

when n grows, as expected according to (4). Consequently, x∗
does not converge to x.

Second, we consider the Toeplitz system in (1) with Tn( f )
the one given in (7) and

bn =

⎛
⎜⎝

0
(n−1)/2�×1

1

0�(n−1)/2×1

⎞
⎟⎠,

where 
·� and �· denote the floor and ceiling functions, re-
spectively. This system is an example of the Toeplitz systems

FIG. 2. Relative error between x∗ and x for a Toeplitz system of
the type considered in Corollary 3 in [3].

considered in Corollary 3 in [3]. Figure 2 shows the relative
error between the solution obtained with the algorithm pro-
posed by Wan et al., x∗, and the actual solution of the Toeplitz
system, x, for different values of n. It can be observed that the
relative error vanishes as n grows. Therefore, x∗ converges to
x.

IV. CONCLUSIONS

In this Comment we have shown that Corollary 2 in [3]
is not correct and consequently the algorithm proposed in
[3] is not valid for solving the Toeplitz systems considered
therein. However, there are some particular Toeplitz systems
for which this algorithm is valid, for instance, the Toeplitz
systems considered in Corollary 3 in [3] and any Hermitian
circulant system.
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