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Nanoparticle-mediated controlled entanglement based on non-Hermitian coupling
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We propose a method to achieve a coherent switch of optomagnonic entanglement in a cavity optomagnonic
system with non-Hermitian coupling. The strength of photon-photon and photon-magnon entanglement can be
controlled by tuning the relative phase angle of two nanoparticles and optimizing the detuning of two optical
modes. We show that the bipartite entanglement is significantly enhanced by selecting a suitable optomagnonics
coupling strength in the presence of the exceptional points (EPs). The relative phase not only enhances the
entanglement strength but also increases the entanglement domain over a wide range of detuning compared to
the Hermitian system. By manipulating the system toward or away from EPs, versatile tunability of the tripartite
entanglement, mean photon, and magnon numbers can be achieved. Additionally, the direction of asymmetric
transmission can also be well tuned in a highly asymmetric way via non-Hermitian coupling. The study of
controlled entanglement may provide the theoretical basis and reference for the research and development of
new tunable quantum devices.
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I. INTRODUCTION

Cavity optomagnonics describes the hybrid interaction
between the optical field and the magnetic field in mi-
croresonators [1–11]. Spin waves are an essential information
carrier in contemporary information technology because they
describe the collective excitation of magnetization in ordered
magnets and can propagate without the directional motion of
electrons. Recent experiments have shown that an yttrium iron
garnet (YIG) sphere has extremely high spin density and long
coherence time, which results in strong and even ultrastrong
coupling with microwave photons and optical photons. The
coupled dynamics of magnons and photons in the optical
regime can lead to coherent manipulation of magnons with
light. The origin of this magnon-photon interaction is the
Faraday effect, in which the angle of polarization of the light
changes as it propagates through a magnetic material [12].
YIG sphere serves as the host of the magnetic excitations and,
via whispering-gallery modes (WGM), as the optical cavity
[13–17]. Very recent experiments in this regime showed that
this is a promising route by demonstrating coupling between
optical modes and magnons, and advances in this field are
expected to develop rapidly.

The study of magneto-optical-effect setups also enables
in-depth examination of quantum phenomena in hybrid op-
tomagnonic systems, allowing for the observation of rich
quantum effects. Quantum entanglement [18,19], one of the
most intrinsic properties of quantum mechanics, corresponds
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to a valuable resource for quantum information processing,
such as performing computation and secure communication.
Beyond bipartite quantum entanglement, multipartite entan-
glement can offer a more fundamental resource for a wide
range of quantum information-processing tasks, and thus,
they can be used for future quantum technologies, such as
the quantum internet and programmable quantum networks
[20]. Recently, with the rapid development of nanotechnol-
ogy, the introduction of nano-objects into microcavities has
spawned prospective new technologies with widespread appli-
cations [21]. More importantly, exceptional points, at which
the eigenvalues and the corresponding eigenvectors of the
system coalesce, have been observed experimentally in such
coupled optical systems, and several counterintuitive phe-
nomena related to exceptional points have been investigated
deeply [22,23].

A previous experiment demonstrated that nanoparticles as
a scatterer in WGM microresonators can induce asymmetric
backscattering of optical-field propagation, and in the vicin-
ity of an exceptional point, the mode exhibits strong chiral
behavior [24–33]. Non-Hermitian theory is one of the most
fascinating properties of asymmetry and has fundamental im-
plications in several branches of modern physics, such as
the quantum Hall effect, the topological magnon Hall effect
[34–38], and chiral p-wave superconductors [39–41]. Re-
cently, relevance theory also suggested that tuning the relative
position of nanoparticles not only can result in frequency
combs and periodic photon-magnon blockade [42,43] but can
also significantly change the transmission spectrum in the
vicinities of exceptional points (EPs) [44–49]. Motivated by
recent experiments, here, we transfer non-Hermitian concepts
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to controlled quantum entanglement in an optomagnonics mi-
croresonator. Natural questions when we consider a system
consisting of a YIG microresonator coupled to two silica
nanoparticles are whether the optomagnonics entanglement
is controlled by the presence of the relative phase angle and
whether this effect can be used to achieve periodic tripar-
tite entanglement and asymmetric transmission. The study
of controlled optomagnonics entanglement may promote the
intersection and merging of various disciplines, such as non-
Hermitian physics, and provide the theoretical basis and
reference for the research and development of new tunable
quantum devices.

In the present work, we propose to achieve nanoparticle-
mediated control of steady light-magnon entanglement in a
non-Hermitian cavity optomagnonics system, and then we
show its robustness against the relative phase angle corre-
sponding to optical backscattering. Specifically, we consider
a cavity optomagnonics system supporting a YIG sphere cou-
pled to two nanoparticles that is coherently driven by an input
field. With careful variation of the relative positions of the
nanoparticles, the coupling of optical modes changes periodi-
cally, and the eigenvalues of the cavity optomagnonics system
coalesce at the EPs. Under the joint effect of the scatterers,
steady-state entanglement and transmission can be signifi-
cantly controlled, which benefits from the modification of the
non-Hermitian character of the system. We find that a co-
herent asymmetric switch of controlled entanglement can be
implemented by properly regulating the relative phase angle.
Particularly, it is shown that controlled entanglement tends to
be enhanced in the vicinity of EPs, implying that nanopar-
ticles are helpful for preserving the coherence of quantum
systems. We can see that, with a suitable optomagnonics
coupling strength, the bipartite entanglement of the cavity op-
tomagnonics system increases dramatically. And the direction
of asymmetric transmission can also be well tuned in a highly
asymmetric way via non-Hermitian coupling. Additionally,
we reveal the versatile tunability of the tripartite optomagnon-
ics entanglement and the mean photon and magnon numbers
by manipulating the system toward or away from EPs.

II. SYSTEM AND HAMILTONIAN

As Fig. 1 depicts, we consider a system consisting of a
YIG microresonator coupled to two silica nanoparticles, engi-
neered by wet etching of a tapered fiber. Here, we assume that
optical clockwise (CW) and counterclockwise (CCW) modes
are excited simultaneously in the resonator, in which they are
coupled with the YIG sphere. The corresponding coupling dy-
namics relies on the Faraday effect; when light propagates in a
magnetic material, the polarization direction of the light will
change. The nanoparticles are placed in the evanescent field
of the YIG resonator, and their positions can be adjusted. The
non-Hermitian coupling between the CW and CCW modes
is tuned by controlling the relative size and position of two
nanoparticles or Rayleigh scatterers placed within the mode
volume of the microresonator. The coupling strength can be
approximately treated as J12(21) = ε1 + ε2e±iσβ , where ε1(2)

are given by the complex frequency shifts for positive-parity
and negative-parity modes introduced by only the particles S1

and S2. They can be changed by adjusting the position and
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FIG. 1. Schematic diagram of the cavity optomagnonic system
consisting of a YIG sphere coupled with two nanoparticles. The ho-
mogeneous magnon mode couples to the optical modes with strength
gj . The relative angle between the two nanotips S1,2 is denoted by
β, and the scattering rate of backscattering from the CW (CCW) to
CCW (CW) mode is characterized by J12,21.

size of the nanoparticles. σ is the azimuthal mode number,
and β is the relative phase angle between two nanoparticles.
The first nanoparticle induces a symmetric coupling between
the CW and CCW modes and lifts their frequency degener-
acy, leading to mode splitting. The second nanoparticle then
breaks this symmetry, leading to periodic EPs that emerge as
the relative angle between the nanoparticle along the boundary
of the resonator is varied. Such a model of the hybrid cavity
optomagnonic system can be described by a non-Hermitian
interaction Hamiltonian,

H1 = ω�â†
�â� + ω�â†

�â� + ωmm̂†m̂ + Km̂†m̂m̂†m̂

+ g1â†
�â�(m̂† + m̂) + g2â†

�â�(m̂† + m̂) + J12â†
�â�

+ J21â�â†
� + �(â†

�e−iωl t + â†
�e−iωl t + H.c.), (1)

where â j (â†
j ) is the annihilation (creation) operator for op-

tical modes with frequency ω j ( j =�,�, indexing the CW
and CCW directions, respectively) and m̂ is the annihilation
operator for a magnon mode with fundamental frequency
ωm. Specifically, there is coherent coupling between the CW
(CCW) mode â1 and (â2) and the magnon mode m̂, corre-
sponding to coupling strengths g1 and (g2). The system is
driven by a weak pump field with drive amplitude � and
frequency ωl . Then, in the rotating frame with respect to the
driving laser field V = exp[−iωl t (â†

�â� + â†
�â�)], the total

Hamiltonian of the system can be reduced to

H ′ = ��â†
�â� + ��â†

�â� + ωmm̂†m̂ + Km̂†m̂m̂†m̂

+ g1â†
�â�(m̂† + m̂) + g2â†

�â�(m̂† + m̂) + J12â†
�â�

+ J21â�â†
� + �(â†

� + â†
� + H.c.). (2)

Assuming the frequency of the CW mode is equal to that of the
CCW mode, i.e., ω� = ω� = ω, the detuning of the optical
mode is given by � j = ω j − ωl ( j =�,�, indexing the CW
and CCW directions, respectively).
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FIG. 2. Real parts of the frequency splitting, (a) Re(E+
1 −

E−
1 )/κ1 and (b) Re(E+

2 − E−
2 )/κ1, varying with the angle β. Imag-

inary parts of the frequency splitting, (c) Im(E+
1 − E−

1 )/κ1 and
(d) Im(E+

2 − E−
2 )/κ1, varying with the angle β. The parameters are

set as ε1/κ = 1.5 − i0.1, ε2/κ = 1.485 − i0.14, σ = 1, and χ/κ1 =
5.

III. EIGENENERGY SPECTRUM OF THE CAVITY
OPTOMAGNONIC SYSTEM AND ASYMMETRIC

BACKSCATTERING AT EPs

Consider a polaron transformation U =
exp[g/ωm(â†

�â� + â†
�â�)(m† − m)] the transformed

Hamiltonian Heff = U †H ′U can be rewritten as

Heff = ��â†
�â� + ��â†

�â� + ωmm̂†m̂ + Km̂†m̂m̂†m̂

+ g2
1/ωm[(â†

�â�)2 + (â†
�â�)2 + 2(â†

�â�â†
�â�)]

+J12â†
�â� + J21â�â†

� + �(â†
� + â†

� + H.c.), (3)

with χ = g2
1/ωm; some exponential factors have been approx-

imately omitted under the condition of weak optomechanical
coupling g1/ωm � 1. This Hamiltonian indicates that the
magnon mode has been decoupled from the optical modes;
namely, the evolutions of the optical and magnon parts are in-
dependent of each other. In Hamiltonian (3), the magnon part
can be ignored in that we care about only the optical properties
of the system; then the reduced effective Hamiltonian reads

H ′
eff = ��â†

�â� + ��â†
�â� + J12â†

�â� + J21â�â†
�

+χ [(â†
�â�)2 + (â†

�â�)2 + 2(â†
�â�â†

�â�)]

+�(â†
� + â†

� + H.c.). (4)

To gain more insight into controlled entanglement, we in-
vestigate the eigenenergy of the non-Hermitian Hamiltonian,
as shown in Fig. 2. In the weak-driving regime, the Hilbert
space of this system can be restricted to a subspace with a few
photons spanned by the basis states with the total excitation
number which denotes the Fock state with n1 photons in
the bare CW mode and n2 photons in the CCW mode. In
the single-excitation subspace, we write the eigenenergies of
the non-Hermitian Hamiltonian (4) without the driving term

as

E±
1 = ω + χ + λ±

1 , (5)

with the corresponding non-normalized eigenstates

|ψ±
1 〉 = ±√

J12|0, 1〉 + √
J21|1, 0〉, (6)

where λ±
1 = ±√

J12J21. Moreover, we also obtain the
eigenenergies Es

2 = 2ω + 4χ + λs
2 and corresponding

non-normalized eigenstates |ψ±
2 〉 = √

2J12|0, 2〉 +
λ±

2 |1, 1〉 + √
2J21|2, 0〉 and |ψ0

2 〉 = J12|0, 2〉 + J21|2, 0〉 in the
two-excitation subspace, where s = ±, 0, λ±

2 = ±2
√

J12J21,
and λ0

2 = 0. This shows that the eigenmode structure
depending on the asymmetry of the coupling coefficients
J12 and J21 can be tuned by controlling the relative angular
position β between the nanoparticles. Therefore, the relative
positions of nanoparticles have an important effect on the
non-Hermitian property.

Different from the degeneracy of eigenenergies, EPs cor-
respond to the situation where the two eigenenergies and
their eigenstates coalesce. To find EPs of the non-Hermitian
system, we plot the real and imaginary parts of the frequency
splitting as a function of β, as shown in Fig. 2, which shows
Heff has two EPs with energy E±

1 = ω + χ . In this case, EPs
emerge when E+

1 = E−
1 , which leads to J12 or J21 equaling

zero. For J12 = J21 = 0, i.e., when the two nanoscatterers are
absent, the Hamiltonian H ′ has two orthogonal eigenstates
with the same frequency. For J12 = 0 or J21 = 0, Heff has only
one eigenvalue and one eigenvector, indicating the emergence
of an EP. In this case, when J12 = 0, we have

βEPs = lπ

2σ
± arg(ε1) − arg(ε2)

2σ
, l = ±1,±3, . . . , (7)

where ε1/ε
∗
1 �= ε2/ε

∗
2 can be achieved in experiments by tun-

ing the distance between the resonator and the particles and
± corresponds to J12 = 0 or J21 = 0. The EPs also exhibit a
completely asymmetric coupling between the CW and CCW
modes, meaning that light can only scatter from the CCW
mode to the CW mode when J12 = 0 and J21 �= 0 and from
the CW mode to the CCW mode when J12 �= 0 and J21 = 0.
Since the coupling between optical modes is dependent on the
relative angular position β of the two nanoscatterers, adjust-
ing β allows the system to be placed at EPs. We show that
asymmetric backscattering, or light scattering with a different
strength from the clockwise to the counterclockwise propaga-
tion direction, is generally caused by the evanescent coupling
of two or more nanoparticles. The mode structure can be
significantly affected by asymmetric backscattering, even in
cases where its strength is weak. In non-Hermitian systems,
the eigenfrequency of resonance modes coalesces at the EPs
in the frequency domain, leading to extraordinary parametric
sensitivity.

IV. DISSIPATIVE EQUATIONS
AND COVARIANCE MATRIX

From the Hamiltonian (2), the Heisenberg-Langevin equa-
tions of the systems can be described by including the
dissipation and input noise of each mode; they are given
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by
˙̂a� = −(i�� + κ1)â�−ig1â�(m̂ + m̂†)−iJ1â�

− i� +
√

2κ1âin
�,

˙̂a� = −(i�� + κ2)â� − ig2â�(m̂ + m̂†) − iJ2â�

− i� +
√

2κ2âin
�,

˙̂m = −(iωm + γm)m̂−ig1â�−ig2â�−2iKm̂†m̂m̂

+
√

2γmm̂in, (8)

where κ1, κ2, and γm are the damping rates of the optical
modes and the magnon mode and âin

j and m̂in represent the
input noises of the three modes. The corresponding noise op-
erators âin

�, âin
�, and m̂in satisfy the following time correlations:

〈âin
j (t )âin,†

j (t ′)〉 = (Nj + 1)δ(t − t ′),

〈âin,†
j (t ′)âin

j (t )〉 = Njδ(t − t ′),

〈m̂in(t )m̂†
in(t ′)〉 = (Nm + 1)δ(t − t ′),

〈m̂†
in(t )m̂†

in(t ′)〉 = Nmδ(t − t ′), (9)

where Nj(m) = (e
h̄ω j(m)

kBT − 1)−1 is the equilibrium mean num-
ber of the thermal photon and magnon occupancy under the
environmental temperature T and the Boltzmann constant kB.
Since the optical mode is strongly driven, this leads to a large
amplitude, |〈ô〉| 	 1. This allows us to linearize the system
dynamics around the classical average values by writing the
mode operators as â� = A� + a�, â� = A� + δa�, and m̂ =
M + m, where the displaced operators a�, a�, and m repre-
sent quantum fluctuations of these three modes, respectively,
around their respective classical values A�, A�, and M. The
equations for the classical averages in the steady state are as
follows:

0 = −(i�� + κ1)A� − ig1(M + M∗) − iJ1A� − i�,

0 = −(i�� + κ2)A� − ig2(M + M∗) − iJ2A� − i�,

0 = −(iωm + γm)M − ig1|A�|2 − ig2|A�|2
− 2iK|M|2M. (10)

Supposing |��| 	 κ1 and |��| 	 κ2, we can approximately
find that 〈A�〉, 〈A�〉, and 〈M〉 are all pure real numbers.
It should be noted that the approximation is used only to

demonstrate that 〈A�〉, 〈A�〉, and 〈M〉 are approximately real
numbers, which simplifies the following calculations.

The linearized quantum Langevin equations (QLEs) for the
quantum fluctuations can be written as

da�
dt

= −(i�� + κ1)a� − iG�(m + m†) − iJ1a�

− ig1a�(M + M∗),

da�
dt

= −(i�� + κ2)a� − iG�(m + m†) − iJ2a�

− ig1a�(M + M∗),

dm

dt
= −(i�m + γm)m − iG�(a� + a†

�)

− iG�(a� + a†
�) − 2iK|M|2m†, (11)

where �m = ωm + 4K|M|2, G� = g1A�, and G� = g2A�.
To quantify the entanglement of the system, we intro-
duce the quadrature fluctuation (noise) operators Xo =
(o + o†)/

√
2, Yo = i(o† − o)/

√
2, X in

o = (oin + oin†)/
√

2, and
Y in

o = i(oin† − oin )/
√

2 (o = a�, a�, m). The linearized QLEs
(11) for the quadrature fluctuations can be written as

dXa�

dt
= (�� + G�)Ya� − κ1Xa� + J1Ya� ,

dYa�

dt
= −(�� + G�)Xa� − κ1Ya� − J1Xa� − 2G�Xm,

dXa�

dt
= (�� + G�)Ya� − κ2Xa� + J2Ya� ,

dYa�

dt
= −(�� + G�)Xa� − κ2Ya� + J2Xa� − 2G�Xm,

dXm

dt
= �mYm − γmXm,

dYm

dt
= −�mXm − γmYm − 2G�Xa� − 2G�Xa� . (12)

Then Eq. (12) can be expressed in a more concise form [50]:

du

dt
= Au(t ) + ν(t ), (13)

where the drift matrix A reads

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κ1 �� + G� 0 J1 0 0
−(�� + G�) −κ1 −J1 0 −2G� 0

0 J2 −κ2 �� + G� 0 0
−J2 0 −(�� + G�) −κ2 −2G� 0

0 0 0 0 −γm �m

−2G� 0 −2G� 0 −�m −γm

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

and u=[Xa� ,Ya� , Xa� ,Ya� , Xm,Ym]T and ν=[(2κ1)1/2X in
� ,

(2κ1)1/2Y in
� , (2κ2)1/2X in

� , (2κ2)1/2Y in
� , (2γm)1/2X in

m , (2γm)1/2

Y in
m ]T are the vectors for quantum fluctuations and noises,

respectively. Since the dynamics of the system is governed
by a set of linearized QLEs, the Gaussian nature of the input
states will be preserved during the time evolution. That is,
the steady state of the quantum fluctuations of the system

is a CV three-mode Gaussian state. The state can be fully
characterized by a stationary covariance matrix (CM) V
whose matrix element is defined by [51]

Vi j = 1
2 〈ui(t )u j (t

′) + u j (t
′)ui(t )〉 (i, j = 1, 2, . . . , 6). (15)

The matrix V is obtained by solving the Lyapunov equation
dV

dt
= A(t )V (t ) + V (t )AT (t ) + D, (16)
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where D = diag[κ1(2n� + 1), κ1(2n� + 1), κ2(2n� + 1), κ2

(2n� + 1), γm(2nm + 1), γm(2nm + 1)] is a diffusion matrix
whose matrix element is related to the noise correlations and
defined by

Di j = 〈νi(t )ν j (t ′) + ν j (t ′)νi(t )〉
2δ(t − t ′)

. (17)

V. RESULTS AND DISCUSSION

In this section we study the enhancement of optomagnon-
ics entanglement by adjusting the position of the two nanopar-
ticles. Concretely, we introduce the definition of the logarith-
mic negativity between the cavity mode â j and the magnon
mode m̂ in a Gaussian state. We denote the covariance matrix
of the two-mode system as V ′, which can be expressed as

V ′ =
(
A C
CT B

)
. (18)

Here, A, B, and C are 2 × 2 block forms which are
related to the cavity mode, the magnon mode, and the
two-mode correlation, respectively. For quantifying bipartite
entanglement in a three-mode continuous-variable system,
one can adopt the logarithmic negativity EN as an effective
measure; it is defined as [52,53]

EN = max[0,−ln(2ν−)], (19)

where

ν− = 2−1/2{�(V ′) − [�(V ′)2 − 4detV ′]1/2}1/2, (20)

with �(V ′) = detA + detB − 2detC being the smallest
symplectic eigenvalue of the partial transpose of a reduced
4 × 4 correlation matrix V ′. V ′ preserves the Gaussian nature,
and entanglement emerges in its corresponding subsystem
if and only if ν− < 1/2, which is equivalent to Simon’s
necessary and sufficient entanglement nonpositive partial
transpose criterion (or the related Peres-Horodecki criterion)
for certifying bipartite entanglement in Gaussian states [51].

Then, the bona fide quantification of tripartite entangle-
ment is provided by the minimum residual contangle:

Ri| jk
τ = Ci| jk − Ci| j − Ci|k, (21)

with i, j, k = a�, a�, m. In addition, Cu|n = E2
u|n, the square

logarithmic negativity with entanglement monotonicity, is the
contangle of u and n subsystems, where n may involve one or
two modes. The single-mode versus dual-mode logarithmic
negativity is defined as

Ei| jk = max[0,−ln(2ν−
i| jk )], (22)

where ν−
i| jk = min eig| ⊕3

s=1 (iσyṼ )| is the minimum sym-

plectic eigenvalue of the 6 × 6 CM Ṽ = P−
i| jkV P−

i| jk . The
matrices P1|23 = σz ⊕ 1 ⊕ 1, P2|13 = 1 ⊕ σz ⊕ 1, and P3|12 =
1 ⊕ 1 ⊕ σz are used for partial transposition at the level of the
full CM. Here, Ri| jk

τ � 0 implies that the residue contangle Rτ

satisfies the quantum entanglement monogamy. The minimum
residual contangle is defined as

Rmin
τ = [

Ra�|a�m
τ , Ra�|a�m

τ , Rm|a�a�
τ

]
, (23)

which characterizes a bona fide three-party property of the CV
three-mode Gaussian states. To study the bipartite CV entan-

glements, we introduce the logarithmic negativity EN [which
includes E��(E1), the CCW-CW entanglement; E�m(E2), the
CCW-magnon entanglement; and E�m(E3), the CW-magnon
entanglement]. Further, for the tripartite entanglement, we use
the minimum residual contangle given by Rmin

τ .

A. Controlled-entanglement generation via the nanoparticle

The generation of controlled entanglement strongly de-
pends on the optical detuning ��(�)(�1(2)) and the relative
phase angle β. Therefore, the influence of both �1(2) and β on
bipartite entanglement is mainly discussed in the following.
Specifically, in Figs. 3(a)–3(c), the logarithmic negativity EN

is plotted as a function of the scaled optical detuning �1(2) for
different values of the relative phase angle β. As demonstrated
in a recent experiment [33,54], the asymmetric coupling of the
two optical modes can be obtained by adjusting the positions
of the two nanoparticles, and the asymmetric transmission can
be realized by changing the relative phase angle. Figure 3(a)
shows the dependence of entanglement on the phase angle.
It is found that in the presence of the blue sideband with
�1 = −ωm, E1 presents an upward trend with the variation
of β, which implies that a coherent asymmetric switch of
controlled entanglement could be implemented by properly
regulating the phase difference. More importantly, it is also
found that the maximum value of E1 can be enhanced 0.06 or
2 times in comparison with β/π = 0.

Furthermore, in terms of applying asymmetric coupling,
i.e., J12 �= 0 and J21 = 0, EN demonstrates a complementary
distribution with the variation of phase angle β. Particularly,
it is shown that controlled entanglement tends to be enhanced
as β approaches the EPs, implying that the nanoparticle is
helpful for a quantum system to preserve its coherence. As
shown in Figs. 3(d)–3(f), this result implies that, when two
nanoparticles with a relative phase angle are applied to this
optomagnonics system, one can entangle the optical mode
and magnon mode through non-Hermitian coupling, whereas
no entanglement occurs under the same parameter conditions
for non-EPs cases. However, it is also seen that the degree of
controlled entanglement is enhanced in comparison with the
symmetric coupling. The generation of period entanglement
strongly depends on the relative phase angle β and may be
influenced by the imperfections of the practical materials, i.e.,
the optical detuning �1 = −ωm. Therefore, the influence of
both �1 and β on bipartite entanglement is mainly discussed
in the following. First, we investigate the quantum behavior of
the system without considering the relative phase angle of the
nanotips β and the detuning �1. In Fig. 3(d), we find maximal
entanglement (CW-CCW mode) when the optical mode is
resonant with the blue sideband �1 = −ωm. As demonstrated
in Fig. 3, a controlled completely asymmetric coupling of the
phase angle β of two nanotips and, simultaneously, a coherent
asymmetric switch of entanglement can be implemented by
properly regulating the phase.

We present the results of our numerical simulations and
show the bipartite entanglement as a function of the relative
phase angle β and the coupling strength G�(�)(G1(2)). All
results are in the steady state guaranteed by the negative
eigenvalues (real parts) of the drift matrix A. They show
that a parameter regime exists around �1 = −ωm (E1) and
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FIG. 3. Enhance of controlled entanglement between two mode (optical mode or magnon mode) due to nanoparticle mediated. Coherent
asymmetric control of bipartite entanglement through tuning relative phase angle. (a)–(c) The logarithmic negativity EN versus the optical
detuning � for difference values of relative phase angle β. (d)–(f) The bipartite entanglement EN changes with the optical detuning � j . The
parameters are set as κ1 = κ2 = γm, G1 = G2 = 0.7κ1, and � = 0.1κ1.

�1(2) = −5ωm (E2(3)) where all bipartite entanglements are
present. In Figs. 4(a)–4(c), we plot EN versus the relative
phase angle β. We can see that, at a finite value of the opto-

magnonics coupling strength G1(2), EN reach their maximum
values near the EPs. In addition, both bipartite entanglements
completely vanish, i.e., EN = 0 at β = nπ , corresponding to

FIG. 4. By selectively adding two nanoparticles and properly adjusting their relative phase angle, the entanglement between the optical
modes and magnon mode becomes periodic. (a)–(c) The logarithmic negativity EN versus the relative phase angle β for difference values of
optomagnonics coupling strength. (d)–(f) The bipartite entanglement changes with the optomagnonics coupling strength G1(2) and the relative
phase angle β. The parameters are set as κ1 = κ2 = γm, �1(1) = −ωm(E1), �1(2) = −5ωm(E2(3) ), and � = 0.1κ1.
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the two nanoparticles being absent. In Fig. 4, we demonstrate
how to achieve coherent periodic control of entanglement
by using the non-Hermitian coupling. In the following, our
aim is to obtain controlled bipartite entanglement with strong
optomagnonics coupling. To demonstrate the idea, we plot
in Figs. 4(d)–4(e) the entanglement changes with the op-
tomagnonics coupling strength G1(2) and the relative phase
angle β. By setting the threshold conditions �1 = −ωm and
�1(2) = −5ωm, we can obtain the optomagnonics strength
G1(2) varying with β, which reveals the quantum behavior
of the system at EPs at β/π = 0.4. From Fig. 4(d), we can
see that photon-photon entanglement E1 first increases and
then slowly decreases with an increase of G1. It reaches its
maximum value when G1/κ1 = 1.5. The photon-magnon en-
tanglement between the CW or CCW mode and the magnon
mode has a property similar to E1. From Figs. 4(e) and 4(f),
when G1/κ1 = 2 and G2/κ1 = 2, we have entanglement E2 =
max[E2] and E3 = max[E3]. Therefore, photon-photon and
photon-magnon entanglement can be significantly improved
by selecting a suitable optomagnonics coupling strength.

B. Periodic tripartite entanglement and excitation numbers
of the optomagnonics system

In the previous section, we derived the minimum residual
contangle and analyzed how to control the bipartite entangle-
ment in the optomagnonics system. Now we study in detail
the tripartite optomagnonics entanglement by controlling the
nanoparticles. Besides bipartite entanglement, the application
of the nanoparticles can lead to controlled tripartite entan-
glement, as demonstrated by the nonzero minimum residual
contangle in Eq. (23). In Fig. 5(a), we plot the tripartite
entanglement, quantified by the minimum residual contangle
Rmin

τ , versus the relative phase angle β. We find that in the
non-Hermitian coupling regime, the tripartite entanglement is
nearly twice as large as that in the non-EP regime (β = π ).
Moreover, we find from Fig. 5(b) that, when we turn off
the nanoparticles (i.e., β = nπ ), the tripartite optomagnonics
entanglement is strongly suppressed by the asymmetric cou-
pling, corresponding to the emergence of the dip [dark green
area in in Fig. 5(b)].

To demonstrate the conversion process, we introduce the
final mean photon and magnon numbers, which can be calcu-
lated by the relation

No = 1
2

(〈
X 2

o

〉 + 〈
Y 2

o

〉 − 1
)
, (24)

where o = a�, a�, m correspond to the excitation numbers
of the CW mode, the CCW mode, and the magnon mode,
respectively. Figure 6(a) presents the excitation numbers N1,
N2, and Nm as a function of the two detunings of �1 and
�2, where two nanotip effects are considered. The numerical
results are carried out in a zero-temperature environment and
a weak-coupling regime, where the dissipation rate for each
mode is chosen from experimentally feasible parameters. The
populations of modes is caused by the interference between
the energy exchange channels are shown in Figs. 3(b)–3(d),
we can observe that the population of the photon modes and
magnon mode completely occurs when the optical frequency
detuning is negative. Because of the selection of frequency de-
tuning and the increase of the magnon frequency, the magnon

FIG. 5. (a) The tripartite entanglement Rmin
τ is plotted as a func-

tion of the relative phase angle β. (b) The tripartite entanglement
changes with the optical detuning �1 and the relative phase angle β.
The parameters are set as κ1 = κ2 = κm, �2/ωm = −1, G1 = G2 =
0.7κ1, and � = 0.1κ1.

and photon modes exchange energy acutely, almost all of the
particles converge on one of the modes, so only one mode has
significant amount population.

FIG. 6. (a) The excitation numbers N1, N2, and Nm as a function
of the relative phase angle β. (b)–(d) The excitation numbers N1, N2,
and Nm as a function of the optical detunings �1 and the magnon
frequency ωm. The parameters are set as κ1 = κ2 = γm, G1 = G2 =
0.7κ1, and � = 0.1κ1.
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FIG. 7. Asymmetric transmission through tuning relative phase
angle. (a) The asymmetric transmission T21(12) versus the relative
phase angle β. (b) The tunable transmission T21 versus the optical
detuning �1 for different values of the relative phase angle β. (c)–
(d) The asymmetric transmission T21(12) changes with the optical
detuning �1 and the relative phase angle β. The parameters are set
as κ1 = κ2 = γm, G1 = G2 = 0.7κ1, and � = 0.1κ1.

C. Asymmetric transmission mediated by nanoparticles

According to the input-output relation [55], we have âin
� =

�/
√

κ1 and âout
� = √

κ2â� for photons transmitted from op-
tical mode â� to optical mode â� and âin

� = �/
√

κ2 and
âout
� = √

κ1â� for photons transmitted from optical mode â�
to optical mode â�. Then the transmission coefficient from
optical mode â� to optical mode â� can be defined by

Ta�→a� ≡ a†out
� aout

�
a†in
� ain

�
= κ1κ2

�2
〈a†

�a�〉,

Ta�→a� ≡ a†out
� aout

�
a†in
� ain

�
= κ1κ2

�2
〈a†

�a�〉. (25)

To demonstrate tunable transmission in the hybrid cavity
optomagnonics system, the transmission coefficients T12 and
T21 are plotted as a function of the relative phase β in Fig. 7(a).
The system shows asymmetric transmission T21 � T12 when
EPs are at β = π

2 . More interestingly, Fig. 7(a) shows the
β-dependent transmission rate with two nanoparticles. For
β = π

2 or β = 3π
2 , a transparency window emerges around

the optical detuning �1 = 0, corresponding to the frequency
shifts induced by the nanoparticles. However, by tuning the
system close to the EPs (with β = π

2 ), strong transmission
can be achieved. Hence, the relative phase angle between two
nanoparticles can be steered to achieve not only the chiral EPs
but also the optical switching. In Fig. 7(b), we plot the tun-
able transmission versus the effective optical detuning �1/ωm

when β/π = 0 (see the red solid line), β/π = 0.4 (see the
blue solid line), and β/π = 0.5 (see the green solid line).
More interestingly, Fig. 7(b) shows the β-dependent trans-
mission rate with two nanoparticles due to the interference
between the probe and the scattered control field. For β/π =

0.4 or β/π = 0.5, a transparency window emerges around
�1/ωm = 0.13, corresponding to the frequency shifts induced
by the particles. However, by tuning the system close to the
EP (with β/π = 0.4), strong absorption of the probe can be
achieved. Hence, the relative angle between two nanoparticles
can be steered to achieve not only the EPs but also the optical
switching. This could be of practical use in making a passive
EP device for optical engineering and communications.

Moreover, we also study the effect of the parameter func-
tion on the transmission coefficient and show those results
in Figs. 7(c) and 7(d). To further clarify whether asymmet-
ric transmission can be achieved periodically by tuning the
relative angle of nanoparticles, we plot the transmission coef-
ficient as a function of the optical detuning �1 and the phase
angle β. The asymmetric transmission T21 � T12 occurs at
β = π

2 and β = 3π
2 . This result indicates that by carefully ad-

justing the relative phase angle of such nanoparticles, one can
create nearly ideal asymmetric transmission between two opti-
cal modes. More importantly, the photons are transported one
by one with high-transmission coefficients in one direction but
are transported in pairs with low-transmission coefficients in
the reverse direction.

VI. DISCUSSION OF THE EXPERIMENTAL
IMPLEMENTATION

Recent innovative studies showed that whispering-gallery
modes (WGMs) and magnon resonances can be provided
simultaneously via a hybrid optomagnonic system [12]. A
system providing a platform for such an interaction is a ferro-
magnetic sphere, supporting both optical WGMs for photons
and magnetostatic (Kittel) modes for magnons. Moreover,
when the nanoparticles approach the mode volume of the
YIG microresonator, they perturb the evanescent fields of the
counterpropagating modes and induce asymmetric coupling
between them. The nanoparticles can be created experimen-
tally by wet etching the tapered fiber, and they can be used to
change the effective size and relative position of the nanopar-
ticles [46]. With the support of the current experimental
technology, the YIG sphere can be highly polished with a
diameter as small as 250 µm [56], and the quality factor of
the WGM optical mode is as high as 3 × 106 [16]. However,
the single-crystal spherical YIG resonators can typically be
manufactured with a diameter in the range of 200−1000 µm.
These dimensions determine the corresponding resonant fre-
quencies of electromagnetic modes in the sphere above 100
GHz. And the coupling constant can reach g j/2π = 2–5 GHz.
The unique properties of the cavity allow us to better utilize
the high spin density of the YIG crystal for cavity QED
experiments. In addition, the perturbations induced by the
nanoparticles are chosen to be ε1/κ = 1.5 − 0.1i and ε2/κ =
1.485 − 0.14i, which have been achieved experimentally [24].
Therefore, our scheme can be implemented under feasible
experimental conditions.

VII. CONCLUSION

In summary, we studied the enhancement of entangle-
ment and the manipulation of transmission between the
optical photon and magnon in a nanoparticle-mediated cavity
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optomagnonics system. Due to the introduction of two
nanoparticles, the asymmetric backscattering of the optical-
field propagation was modulated, and the optical mode
exhibited strong chiral behavior in the vicinity of exceptional
points. The strength of photon-photon and photon-magnon
entanglement can be controlled by tuning the system to-
ward or away from an EP and enhancing the strength of
the optomagnonics coupling. We showed that the bipartite
entanglement is significantly enhanced in the presence of ex-
ceptional points, which implies that a coherent asymmetric
switch of controlled entanglement could be implemented by
properly regulating the phase difference. By manipulating the
system toward or away from EPs, versatile tunability of the
tripartite entanglement, mean photon, and magnon numbers
can be achieved. Additionally, the direction of asymmetric
transmission can also be well tuned in a highly asymmet-
ric way via non-Hermitian coupling. In a broader view, the
ability to coherently manipulate the non-Hermitian coupling
by controlling the relative phase angle of two nanoparticles
could also open up a promising way to engineer various other
quantum effects, such as quantum sensing, photon blockade,
and slow light control. The study of controlled optomagnonics
entanglement may promote the intersection and merging of
various disciplines, such as non-Hermitian physics, and pro-
vide the theoretical basis and reference for the research and
development of new tunable quantum devices.
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APPENDIX

The free Hamiltonian of the optical WGM is [12]

Ho = 1

2

∫ (
εoE2

i + B2
j

μ0

)
dτ, (A1)

where E i(B j ) is the electric (magnetic) component of the
electromagnetic field inside the cavity and εo (μ0) is the
vacuum permittivity (permeability). By ignoring the constant
term, the single-mode electromagnetic field can be quantized
as Ho = h̄ω j â

†
�â�, where â� (â†

�) represents the annihilation
(creation) operator of the jth optical mode with frequency
ω j . The free Hamiltonian of the magnon mode, including the
Zeeman energy and the magnetocrystalline anisotropy energy,
can be written as [11]

Hm = −
∫

Mb · B0dτ − μ0

2

∫
Mb · Han

b dτ, (A2)

where B0 = B0ez is the static magnetic field in the z direc-
tion for magnetizing the YIG sphere, with ei=x,y,z being the
orthogonal unit vectors, and Mb is the magnetization of the

Kittel mode in the YIG sphere. The anisotropic field

Han
b =

[(
2h̄γgSb

z Kan
)

(
μ0M2VYIG

)]
ez, (A3)

where Kan is the dominant first-order anisotropy coeficient,
M is the saturation magnetization, γg is the gyromagnetic
ratio, VYIG is the volume of the YIG sphere, and Sb ≡
(Sb

x, Sb
y, Sb

z ) is the collective spin operator of the Kittel mode.
The Holstein-Primakoff transformations of the two modes
are given by Sz = Sz − m†m, S† = m

√
2S − m†m, and S− =

m†
√

2S − m†m, with S±
o ≡ Sx

o ± Sy
o [57]. Here, the macro-

scopic spin operator can be connected to the creation operator
m† and annihilation operator m of the magnon.

We consider the coupling of the optical fields to spin-wave
excitations on top of a nonuniform static ground state M0(r),
δM(r, t ) = M(r, t ) − M0(r). For small deviations |δM| � 1
we can express it in terms of harmonic oscillators (magnon
modes). Quantizing δM(r, t ) → 1

2

∑
γ [δMγ (r)m̂γ e−iωγ t +

δM∗
γ (r)m̂†

γ eiωγ t ] and E i(r, t ) → ∑
i E i(r)ai(t ), we obtain the

coupling Hamiltonian [12,15]

Hmo = h̄
∑
i jγ

Sγ Gγ
i ja

†
i a j + H.c., (A4)

where

Gγ
i j = − i

4
εo f

Ms

2
δm̂γ · [E∗

j (r) × E i(r)] (A5)

is the local optomagnonic coupling. The Greek subindices
indicate the respective magnon and photon modes that are
coupled. For two degenerate modes at frequency ω j , using
Eq. (A5), we observe that the frequency dependence can-
cels out, resulting in a simplified form for the optomagnonic
Hamiltonian [12]:

Hmo = h̄GŜx(â†
�â� + â†

�â�), (A6)

with G = 1
S

cθF

4
√

ε
, where θF depends on the frequency ω, the

vacuum speed of light c, and the constant f , which is re-
lated to the Faraday rotation coefficient in the material [17].
Here, ε represents the relative permittivity. We can represent
the spin as a harmonic oscillator in the usual manner, with
Ŝx ≈ √

S/2(m + m†). Using Eq. (A6), we evaluate the cou-
pling between optical WGMs and magnon modes in a YIG
sphere containing a magnetic vortex, specifically focusing on
magnonic modes localized at the vortex.

In the rotating frame at the driving frequency ωl , the
Hamiltonian for the whole system can be written as

H1 = ω�â†
�â� + ω�â†

�â� + ωmm̂†m̂ + Km̂†m̂m̂†m̂

+g1â†
�â�(m̂† + m̂) + g2â†

�â�(m̂† + m̂) + J12â†
�â�

+ J21â�â†
� + �(â†

�e−iωl t + â†
�e−iωl t + H.c.). (A7)

The angular frequency of the magnon mode is ωm = γmB0,
and the Kerr-nonlinear strength of the magnon mode is K =
−h̄μ0γ

2
mKan/M2VYIG.
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