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Protecting backaction-evading measurements from parametric instability
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Noiseless measurement of a single quadrature in systems of parametrically coupled oscillators is theoretically
possible by pumping at the sum and difference frequencies of the two oscillators, realizing a backaction-evading
(BAE) scheme. Although this would hold true in the simplest scenario for a system with pure three-wave mixing,
implementations of this scheme are hindered by unwanted higher-order parametric processes that destabilize the
system and add noise. We show analytically that detuning the two pumps from the sum and difference frequencies
can stabilize the system and fully recover the BAE performance, enabling operation at otherwise inaccessible
cooperativities. We also show that the acceleration demonstrated in a weak-signal-detection experiment [Jiang
et al., PRX Quantum 4, 020302 (2023)] was only achievable because of this detuning technique.
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I. INTRODUCTION

Parametric processes such as amplification and frequency
conversion are crucial to the field of quantum information,
with broad applications across quantum computing, quantum
communication, and quantum sensing [1–7]. Processes that
circumvent the quantum noise limit are of particular interest.
A well-studied example uses two parametric pumps to evade
the quantum backaction induced by measurement [8–12]. Re-
grettably, these backaction-evading (BAE) schemes are often
thwarted by higher-order nonlinearities which can add noise
and cause unstable behavior in the system.

Several strategies have been developed to help mitigate
these higher-order effects. For microwave-frequency signals,
three-wave-mixing Josephson circuits can be designed to have
a suppressed fourth-order (Kerr) nonlinearity [13,14] at a
single operating frequency [9] or over a range of frequencies
with the addition of an extra flux bias [15]. For measurements
of the state of a mechanical oscillator, applying the pumps
repeatedly in a pulsed manner allows for the system to relax
in between subsequent measurements even in the presence
of instability [16]. Across both the microwave and the op-
tomechanical platforms, strategies that introduce destructive
interference using additional pump tones have been proposed
but not yet implemented [17,18].

In this article, we present an additional strategy to compen-
sate the dominant fourth-order effect, unwanted single-mode
squeezing (SMS), which diminishes BAE performance and
leads to instability. By operating with the requisite two
parametric pumps detuned from their canonical operation fre-
quencies, we show that BAE performance can be completely
recovered even in the presence of this undesired SMS. Cru-
cially, this technique does not require any additional control
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parameters such as flux biases or pumps, making it simple to
implement in an existing experiment and straightforward to
combine with any of the aforementioned strategies. To focus
our discussion, we describe the detuning technique in the
context of one particular application: the microwave amplifier
operated with gain and conversion (GC) drives [10,19,20].

In Sec. II, we discuss the theoretical basis for the technique
at the Hamiltonian level. In Sec. III, we characterize the
technique for an open quantum system, and we demonstrate
analytically its effectiveness at recovering BAE performance.
Finally, in Sec. IV, we describe how the technique can be
applied to ultrasensitive quantum sensing experiments with a
specific example from a recent BAE search for a microwave-
frequency signal [10].

II. BACKACTION-EVADING HAMILTONIAN
ENGINEERING

The model for the two-tone BAE system, as shown in
Fig. 1(a), consists of a science mode A and a measurement
mode B coupled with a state-swapping interaction and a two-
mode squeezing interaction with matched interaction rates g.
It is useful to consider an example of how this Hamiltonian
may manifest in a physical system such that we may under-
stand how undesired SMS arises.

To engineer these interactions between microwave-
frequency modes, a three-wave-mixing Josephson element,
such as the Josephson ring modulator (JRM) [3,19,21], may
be used. The JRM, depicted schematically in Fig. 1(b), con-
sists of four identical Josephson junctions with critical current
I0 arranged in a ring threaded by an external magnetic flux
�ext. According to the symmetry of the circuit, three or-
thogonal normal modes will couple through the JRM: two
differential modes A and B and a common mode C [3,22]. We
note that a fourth electrical mode of the circuit exists which
contributes only to the overall potential of the four nodes
uniformly and will therefore be ignored [3,22]. Following the
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FIG. 1. (a) Simplified mode diagram of a BAE system. (b) Cir-
cuit schematic of the JRM. The JRM provides a trilinear interaction
term between three modes: two differential modes (blue and red)
associated with the north-south and east-west nodes of the bridge,
respectively, and a common mode (green). (c) Frequency diagram
of the modes, pumps, reference frames, and detunings. The pump
tones (black arrows) which are applied to the C mode are detuned
by δ� and δ� with respect to the difference and sum frequencies of
the Kerr-shifted science and measurement mode frequencies ωA,B.
The effective Hamiltonian for the system is written in the frame of
ωA + δd and ωB + δc (dashed purple lines).

conventions in Ref. [3], the phase differences across the three
modes of the JRM can be expressed as combinations of the
fluxes at the four nodes of the circuit �1,2,3,4 scaled by the
reduced flux quantum ϕ0 = h̄/2e as

ϕA = �1 − �2

ϕ0
,

ϕB = �3 − �4

ϕ0
,

ϕC = �1 + �2 − �3 − �4

2ϕ0
. (1)

The Hamiltonian for the ring is the sum of the Josephson
Hamiltonians for each junction [3], the details of which are
given in the Appendix. For ϕA,B,C � 2π , the ring Hamiltonian
can be expanded to third order as

H (0−3)
ring = − 4EJ cos

ϕext

4
+ EJ

2
cos

ϕext

4

(
ϕ2

A + ϕ2
B + 4ϕ2

C

)

− EJ sin
ϕext

4
ϕAϕBϕC, (2)

where EJ = I0ϕ0 is the Josephson energy and ϕext = �ext/ϕ0.
Here, the third-order term is the desired nonlinear coupling
term, while the terms that are quadratic in ϕA,B,C describe only
the inductive energy stored in the corresponding modes [3].

In the idealized conception of the JRM, terms higher than
third order can be neglected as having a minimal effect on the
dynamics of the system. However, we will see that the next-
highest-order terms [of O(ϕ4)] destabilize the system and add
noise. These harmful terms take the form

H (4)
ring = −EJ

4
cos

ϕext

4

(
ϕ2

Aϕ2
C + ϕ2

Bϕ2
C + · · · ), (3)

and mitigating the effects of these terms is precisely the sub-
ject of this work. We note that Eq. (3) is given in its complete
form in the Appendix. We begin, however, by studying the

dynamics of the idealized system, considering only the terms
that are third order and lower.

Capacitors are introduced across the nodes {1,2} and {3,4}
of the JRM such that the coordinates ϕ{A,B,C} resonate at
microwave frequencies. The fields can be quantized by intro-
ducing the creation and annihilation operators a, b, and c [22]
such that ϕA =

√
ZA/2
ϕ0

(a + a†), where ZA is the characteristic
impedance of mode A and the others are defined analogously
[22]. Note that here, we take h̄ = 1.

In the following, we will use the differential A and B modes
as the science and measurement modes, and we will use the
C mode as the pump mode. For the ideal system in which the
only nonlinearity comes from the desired third-order coupling
term, the C mode should be pumped at the sum and differ-
ence of the A and B mode frequencies (ω� = ωA + ωB and
ω� = ωB − ωA) with matched interaction rates g to induce
the simultaneous two-mode squeezing and state-swapping in-
teractions required for the BAE measurement. Because the C
mode is driven strongly off its resonance, it can be treated as a
classical pump field under the stiff-pump approximation [22].
The interaction Hamiltonian for this system, considering only
terms that are third order and lower given in Eq. (2), is then
given by

HINT = g(A†B + e−iφA†B†) + H.c., (4)

where A and B describe the slowly varying envelopes of the
annihilation operators a and b such that a → Ae−iωAt and b →
Be−iωBt . A more detailed derivation of the interaction Hamil-
tonians given in this section can be found in the Appendix.

We can identify the BAE quadratures of interest by ex-
pressing the Hamiltonian in the quadrature basis. Defining
the operator for a general quadrature as XM,θ = 1√

2
(e−iθ M +

eiθ M†) for M ∈ {A, B}, we can rewrite Eq. (4) as

HINT = 2gXA,φ/2XB,φ/2. (5)

We see that the phase difference between the microwave
drives φ determines the angle of the amplified quadrature.
Without loss of generality, we set φ = 0 and define XM = XM,0

and YM = XM,π/2. From Eq. (5), the Heisenberg equations of
motion in the BAE quadratures of interest are given by

dYB/dt = −2gXA, dXA/dt = 0. (6)

These equations indicate that under the ideal BAE interaction,
the information contained in XA appears at YB with noiseless
amplification and that continuous measurement of YB does not
perturb XA. Taken together, this implies that the measurement
is BAE. In this section, we have focused on a particular system
which uses the Josephson nonlinearity to realize a BAE mea-
surement. However, we emphasize that Eq. (5) and the type of
BAE measurement it describes can be realized across a variety
of systems [6,23,24].

Now, we consider how the fourth-order terms given in
Eq. (3) modify the equations of motion of the system. The
specific choice of drive frequencies causes these terms (which
are quadratic in the pump field) to oscillate at ω� + ω� =
2ωB and ω� − ω� = 2ωA, causing parasitic SMS. Written
in the quadrature basis, these terms modify the interaction
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Hamiltonian such that

HINT = 2gXAXB + sA

2

(
X 2

A − Y 2
A

) + sB

2

(
X 2

B − Y 2
B

)
, (7)

where sA and sB are the SMS rates for each mode. Including
the SMS terms modifies the equations of motion as

dYB/dt = − 2gXA − sBXB,

dXA/dt = − sAYA,

dXB/dt = − sBYB,

dYA/dt = − 2gXB − sAXA. (8)

The nonzero time dependence of the signal quadrature XA

signifies that the measurement is not truly BAE when fourth-
order effects are considered.

Fortunately, detuning the applied state swapping and
two-mode-squeezing drives from the difference and sum fre-
quencies of the A and B modes can cancel the SMS effects
on XA and YB, depositing all of the undesired effects into the
unused quadratures XB and YA. We define these intentional
detunings δ� and δ� such that the applied pump frequencies
are given by ω� = ωA + ωB + δ� and ω� = ωB − ωA + δ�,
as depicted by the horizontal arrows in Fig. 1(c).

Accounting for the pump detunings, we can express the
a and b operators with terms that are slowly varying rela-
tive to (ω� − ω�)/2 = ωA + δd for the A mode and (ω� +
ω�)/2 = ωB + δc for the B mode. Here, δd = (δ� − δ�)/2
and δc = (δ� + δ�)/2 represent the differential and common
detunings of the two pumps. Following the steps given in the
Appendix, we arrive at the effective interaction Hamiltonian
in the quadrature basis given by

HINT = 2gXAXB + sA

2

(
X 2

A − Y 2
A

) + sB

2

(
X 2

B − Y 2
B

)

− δd

2

(
X 2

A + Y 2
A

) − δc

2

(
X 2

B + Y 2
B

)
. (9)

We find that by carefully choosing δd = −sA, we can com-
pensate the A-mode squeezing on the BAE quadratures at
the Hamiltonian level. Similarly, choosing δc = sB, we can
compensate the B-mode squeezing. With these compensatory
detunings, the equations of motion for Eq. (9) become

dYB/dt = − 2gXA,

dXA/dt = 0,

dXB/dt = − 2sBYB,

dYA/dt = − 2gXB − 2sAXA, (10)

where the equations for the BAE quadratures of interest XA

and YB have been restored to their ideal forms given in Eq. (6).
Operating at this point deposits all of the undesired effects
induced by SMS into the unmeasured quadratures XB and YA.

The compensation technique works if the fourth-order
terms that give rise to SMS are contained in the Hamiltonian
description of the circuit, rather than arising from additional
degrees of freedom. This is the case for Josephson circuits
where the Hamiltonian takes the form of Eq. (A10), uniquely
specifying the terms that result in the desired interactions
as well as the higher-order interactions. In optomechanical
systems, however, the origin of the SMS is less clear [11,25].
It is often attributed to a parasitic thermal effect mediated by

the mechanical oscillator’s temperature-dependent resonance
frequency [26]. Temperature oscillations are caused by the
pump-power oscillations at twice the mechanical frequency
but with a time delay that manifests as a phase shift between
the BAE terms and the SMS terms in Eqs. (A13) and (A15).
When the Hamiltonian is expressed in the quadrature basis as
in Eqs. (7) and (9), the phase shift results in additional terms of
the form XAYA + YAXA and XBYB + YBXB, precluding the SMS
compensation with pump detuning.

III. SQUEEZING COMPENSATION IN AN OPEN
QUANTUM SYSTEM

To understand how squeezing compensation would mani-
fest in the presence of noise and loss, we extend our analysis
to study an open quantum system. We consider the A mode to
be coupled to a signal port at a rate κA and the measurement
mode to be coupled to the readout port at a rate κB, as shown
in Fig. 1(a). We assume for simplicity that both modes have
negligible internal loss. We derive the Heisenberg-Langevin
equations [27] from the full Hamiltonian with generalized
detunings and squeezing rates:

dYB

dt
= − κB

2
YB − 2gXA − (sB − δc)XB + √

κBYB,in,

dXA

dt
= − κA

2
XA − (sA + δd )YA + √

κAXA,in,

dXB

dt
= − κB

2
XB − (sB + δc)YB + √

κBXB,in,

dYA

dt
= − κA

2
YA − 2gXB − (sA − δd )XA + √

κAYA,in. (11)

Solving these equations in the frequency domain together with
the input-output relations [28] yields the scattering parameters
between the A and B ports. We express the scattering parame-
ters in the quadrature basis as a function of ω, the detuning
from the half-pump frame frequency. For example, we use
SYBXA to denote the output field at the Y quadrature of port
B induced by the incoming field at the X quadrature of port A.
These are given by

SYBXA =2g(iω + κA/2)(iω + κB/2)
√

κAκB/β,

SYBYA = − 2g(sA + δd )(iω + κB/2)
√

κAκB/β,

SYBXB =[4g2(sA + δd ) + βA(sB − δc)]κB/β,

SYBYB =1 − βA(iω + κB/2)κB/β, (12)

where the quantities

βA = (iω + κA/2)2 − (
s2

A − δ2
d

)
,

βB = (iω + κB/2)2 − (
s2

B − δ2
c

)
,

β = βAβB − 4g2(sA + δd )(sB + δc) (13)

have been defined for simplicity.
We can see how compensation restores backaction evasion

in the science quadrature of interest, XA, by studying another
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FIG. 2. SMS compensation with pump detunings. (a) Gain of the fluctuations entering from ports A and B as measured at YB, defined
analytically in Eqs. (12)–(16) for a sample set of conditions. We assume that sA = sB = s, κA = κB = κ , and s = g/5 = κ/4. The simulated
behavior is broadly tolerant to these choices, which will be explored in Sec. IV. The response when no compensatory detunings are applied
(δd = δc = 0) is marked with a green double-headed arrow, and the response when optimal detunings are applied (δd = −δc = −s) is marked
with a purple double-headed arrow. (b) RSN(ω) for a single-quadrature measurement of YB, corresponding to a measurement angle of θ = π/2.
RSN is normalized to the peak value of the s = 0 case (gray dashed line). With no detunings, the peak value of RSN is reduced due to reduced
transmission gain and amplified measurement noise from squeezing. With optimal compensatory detunings, RSN of the s = 0 case is completely
recovered, indicating that BAE performance has been restored. (c) RSN(θ ), normalized to its peak value in the s = 0 case, for a single-quadrature
measurement rotated by θ from XB at the half-pump frame frequency ω = 0. With or without compensatory detunings, SMS shifts the optimal
readout angle away from π/2 (away from YB).

set of scattering parameters. They are given by

SXAXA = 1 − βB(iω + κA/2)κA/β,

SXAYA = βB(sA + δd )κA/β,

SXAXB = −2g(sA + δd )(iω + κB/2)
√

κAκB/β,

SXAYB = 2g(sA + δd )(sB + δc)
√

κAκB/β. (14)

We assume that vacuum fluctuations enter at both ports A
and B but that the signal enters only at port A. The fluctuations
entering at port B therefore represent the noise we wish to
evade using the BAE scheme. It is useful to group Eq. (12)
into these categories. We define the gain of the fluctuations
entering at ports A and B as measured at YB as

GA = ∣∣SYBXA

∣∣2 + ∣∣SYBYA

∣∣2
,

GB = ∣∣SYBXB

∣∣2 + ∣∣SYBYB

∣∣2
. (15)

Similarly, the scattering parameters given in Eq. (14) describ-
ing the backaction on XA can be categorized according to

BA = ∣∣SXAXA

∣∣2 + ∣∣SXAYA

∣∣2
,

BB = ∣∣SXAXB

∣∣2 + ∣∣SXAYB

∣∣2
. (16)

In Fig. 2(a), we plot Eqs. (15) and (16) for a sample set
of conditions. We assume for simplicity that the modes have
equal external coupling rates κ and equal squeezing rates
s < κ, g. Note that none of these assumptions are required for
compensation.

Even when the squeezing rates are small compared to
κ , when no compensatory detunings are applied (green

double-headed arrow), the amplifier suffers both reduced sig-
nal transmission GA and amplified measurement noise GB as
a result of the squeezing. The poor amplifier performance is a
symptom of diminished backaction evasion. This assessment
is confirmed by the nonzero transmission of noise BB from the
measurement port to XA, as can be seen in the bottom panel of
Fig. 2(a). In contrast, when optimal compensatory detunings
are applied (purple double-headed arrow), BB(ω) = 0, indi-
cating that BAE performance has been restored. It follows,
therefore, that under these conditions, the measurement will
not suffer amplified measurement noise at YB.

Accounting for the vacuum fluctuations entering at both
ports A and B, the signal-to-noise ratio (RSN) is proportional
to GA/(GA + GB). Figure 2(b) plots RSN for the case of no
compensatory detunings (green line) and optimal detunings
(purple line), normalized to the ideal (s = 0) RSN (gray dashed
line). When BAE performance is restored by optimal detun-
ings, the ideal RSN is completely recovered when measuring
YB.

Crucially, detunings recover BAE readout only along YB.
The effects of the squeezing can still be seen when reading out
other quadratures. The scattering parameters at XB are given
by

SXBXA = − 2g(sB + δc)(iω + κA/2)
√

κAκB/β,

SXBYA =2g(sA + δd )(sB + δc)
√

κAκB/β,

SXBXB =1 − βA(iω + κB/2)κB/β,

SXBYB =βA(sB + δc)κB/β. (17)
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To consider the effects of squeezing on an arbitrary quadra-
ture rotated by θ from the XB quadrature, we here perform a
rotation on the scattering parameters. We define the rotation
matrix

R =
(

cos θ sin θ

− sin θ cos θ

)
(18)

and two input matrices that are subject to rotation

U =
(

SXBXA SXBYA

SYBXA SYBYA

)
, W =

(
SXBXB SXBYB

SYBXB SYBYB

)
. (19)

The scattering parameters as they were first defined are given
by S(θ = 0) = [U, W] using Eqs. (12) and (17), and the ro-
tated scattering parameters S(θ ) are given by

S(θ ) = [(RURT ), (RWRT )]. (20)

In Fig. 2(c) we use the rotated scattering parameters
S(θ ) to plot RSN at the half-pump frequency (ω =
0) as a function of the readout quadrature θ . Here,
we take RSN(θ ) ∝ GA(θ )/[GA(θ ) + GB(θ )], where GA(θ ) =
|SXBXA (θ )|2 + |SXBYA (θ )|2 and GB(θ ) is defined analogously.

Uncompensated SMS (green line) causes a reduced RSN in
almost all quadratures relative to the s = 0 case (gray dashed
line), and we see that reading out at θ = π/2 (YB) is no longer
optimal in this case. Instead, RSN is maximized along the
quadrature marked by the green point. RSN is maximal here
not because the signal has been amplified, but rather because
the noise entering at the B port has been squeezed. Notably,
the benefit of squeezing requires precise tuning of the phase θ

in contrast to the insensitivity seen in the absence of SMS.
In comparison, when compensatory detunings are applied

(purple line), we see that the optimal readout quadrature is
largely insensitive to small changes in θ . Additionally, there
is actually a modest increase in the peak RSN compared to the
s = 0 case. This improvement comes from sacrificing some
signal amplification in exchange for squeezed measurement
noise along a quadrature marked by the purple dot. In fact,
if it were possible to measure along a different quadrature
at each frequency ω, the inadvertent squeezing effects could
be leveraged to enhance RSN over the whole measurement
range. This could potentially be implemented by applying
a frequency-dependent phase shift to the fields exiting the
measurement port such that the readout angle is optimized
separately for each Fourier component [29].

It should be noted that detuning compensation restores the
BAE performance in quadratures defined in the half-pump
frame rather than in the mode frame. The measurement’s
sensitivity will therefore peak for forces driving the A mode
at the half-pump frequency ωA + δd marked by the purple
dashed line in Fig. 1(c) instead of at ωA. Fortunately, because
the peak sensitivity is fully recovered, as long as the experi-
mentalist is aware of this shift, it can easily be accounted for
in experiment.

In fact, these optimally detuned BAE operating points
can be found naturally in experiments. Mode frequencies are
often not known precisely in systems when strong pumps
and parametric processes are involved. Tuning up amplifiers
therefore usually involves parameter optimization of the pump
frequency and power. An optimization procedure designed
to search for unit reflections of GB and transmission gain

of GA, as indicated in Fig. 2, would naturally identify the
proper pump frequencies to compensate the undesired effects.
However, the performance of the amplifier will only appear
to be ideally BAE in a single quadrature. If a two-quadrature
measurement is used to tune up the amplifier, the optimal
operating point will not appear to be BAE. The squeezing
effects should be identifiable by reading out the unprotected
quadrature, manifesting as amplified noise. A measurement of
this quadrature could therefore give insight into the amplifier’s
rates of SMS.

IV. IMPLEMENTATION FOR QUANTUM SENSING

In Sec. III, we made the simplifying assumptions that inter-
nal loss is negligible compared to the external coupling rates
(κ � κA, κB) and that the coupling rates are equal (κA = κB).
While these assumptions generally hold true for amplifiers
used in quantum signal-processing applications [21], that is
not usually the case for ultrasensitive quantum sensing ap-
plications where the signal is weakly coupled to the science
mode [11,30]. In this section, we extend our analysis to con-
sider this quantum sensing application. We treat the system
under the assumptions that the internal loss κ of the science
mode dominates over its weak coupling to the signal κA and
that both of these rates are small compared to the measure-
ment port coupling rate (κA � κ � κB). We maintain the
assumption that the internal loss of the measurement mode
is negligible.

In order to focus discussion, we consider one particular
sensing application: the search for a weak microwave signal
at an unknown frequency, a problem of particular interest for
axion dark-matter searches [30]. Recently, the two-tone BAE
measurement technique was applied to an experiment de-
signed to mimic a real axion search, and a sixfold acceleration
of the spectral scan rate was demonstrated [10]. This acceler-
ation was only possible by successfully canceling undesired
SMS using the compensatory detuning scheme described in
this paper.

Beyond just destroying the BAE performance, undesired
SMS causes these measurement schemes to become unsta-
ble, placing a hard limit on the achievable cooperativity. The
poles of the scattering parameters [the roots of β in Eq. (13)]
give the criteria for stability. The existence of a root with a
negative imaginary component signifies that the system is
unstable. While squeezing destabilizes the system, compen-
satory detunings counteract the destabilization such that the
point of optimal compensation δd = −sA and δc = sB is al-
ways stable for any combination of the squeezing rates.

In this section, we analytically predict the scan-rate en-
hancement (SRE) using the system parameters from the
axion-search demonstration experiment [10]. We take g/2π =
7.3 MHz, κ/2π = 960 kHz, and κB/2π = 20.6 MHz. The
squeezing rates sA and sB are estimated to be around 7% and
14% of the GC interaction rates g, respectively. Following
the procedure outlined in Sec. III, we calculate the scatter-
ing parameters and RSN for this system. The spectral scan
rate scales as

∫
R2

SNdω. The SRE can then be calculated by
comparing the scan rate to that of a quantum-limited search.
A more detailed discussion of this calculation can be found in
Ref. [10].
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FIG. 3. Scan-rate enhancement in the GC-enhanced search for a weak microwave signal at unknown frequency in the presence of unwanted
SMS. (a) SRE as a function of pump detunings which are varied about their optimal values (−sA and sB). Operating points with zero and
optimal detunings are marked by the green triangle and purple star. The gray shaded region marks the unstable regime. The condition for
canceling the SMS of the science mode satisfies δd = −sA and is marked by a purple line. The SRE along this line is plotted in the top panel.
(b) Robustness of the compensation procedure to increased cooperativity C. Top: SRE increases with cooperativity, but uncompensated SMS
causes the SRE to turn over (green dashed line) due to amplified measurement noise. The squeezing additionally causes the system to become
unstable where the green dashed line ends. Detuning compensation protects the system from these effects, enabling a sixfold acceleration to be
achieved and preserving stability as the cooperativity is increased (purple line). Bottom: SRE normalized to its optimally compensated value at
a given cooperativity. With increased cooperativity, the narrowing of the yellow band reveals an increase in sensitivity to the detuning control
parameters. The unstable regime approaches the line of compensation asymptotically with increased cooperativity (bottom panel), making
further SRE beyond C = 10.4 (purple star) difficult to achieve.

The SRE for various combinations of pump detunings is
given in Fig. 3(a), where the unstable regime is represented
by the gray shaded area. Because sB � κB for this system, the
squeezing of the B mode has a negligible effect on the system,
and it is mainly the A-mode squeezing that matters for per-
formance and stability. When no pump detunings are applied
(δc = δd = 0), the system is already unstable. At the optimal
cancellation point, ideal (s = 0) amplifier performance is re-
covered, and the system is stabilized.

Further SRE can theoretically be achieved by pumping
harder, corresponding to increased interaction rates g and
cooperativity C = 4g2

κB (κ+κA ) . However, the squeezing terms
are quadratic in the pump field ϕC , whereas the BAE
interaction is linear in the pump field. This means that pump-
ing harder increases the squeezing rates relative to both
g and the damping rates. We must now consider the ro-
bustness of the compensation scheme to increased levels of
cooperativity.

In Fig. 3(b), the interaction rate g and the squeezing rates
sA and sB are increased according to their dependence on the
pump strength. In the top panel, we plot the SRE for optimal
detunings (purple line, δc = −sA, δd = sB) and zero detun-
ings (green dashed line, δc = δd = 0). The zero detunings
line ends where the system would become unstable. In this
case, the maximum SRE that could have been achieved was
SRE = 3.1, and the system would have become unstable at
cooperativity C = 5.3. But in the experimental demonstration,
it was possible to achieve C = 10.4, resulting in a scan-rate
enhancement of 5.6 [10], slightly below the expected value of

6.1. As discussed in [10], the achieved SRE may have been
diminished by drifts in the operating point.

Although BAE performance and system stability should
be achievable to arbitrarily high cooperativity, the require-
ments for tuning precision become increasingly stringent. In
the bottom panel of Fig. 3(b), δc is chosen to be optimal
(δc = sB) while δd is varied about its optimal value. We see
that when sA becomes large enough, the region of stability
vanishes asymptotically with increased cooperativity. In the
demonstration experiment, the cooperativity was limited to
C = 10.4 for this reason.

V. CONCLUSION AND OUTLOOK

The detuning-based technique presented in this article
provides a simple strategy for compensating the effects of
undesired SMS in two-tone BAE measurements. The compen-
sation scheme could benefit systems both with and without
intentional Kerr suppression while adding very little com-
plexity. This ultimately would allow for BAE operation at
cooperativities beyond the threshold where destabilizing ef-
fects from SMS would have otherwise ruined performance.

The detuning-compensation solution also introduces op-
portunities to improve on the traditional BAE scheme by
further increasing RSN. By measuring along a slightly differ-
ent quadrature from the one that is amplified, experiments
could implement variational readout [29,31–33], leveraging
the effects of the undesired SMS to achieve both signal am-
plification and squeezed measurement noise.
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APPENDIX: INTERACTION HAMILTONIAN DERIVATION

In this Appendix, we provide a detailed derivation of the
interaction Hamiltonian given in Eqs. (5), (7), and (9), starting
from the full JRM Hamiltonian. We begin by recalling that the
three modes can be expressed as linear combinations of the
fluxes [3] as

ϕA = �1 − �2

ϕ0
,

ϕB = �3 − �4

ϕ0
,

ϕC = �1 + �2 − �3 − �4

2ϕ0
. (A1)

The Hamiltonian for the ring is the sum of the Josephson
Hamiltonians for each junction and can be rewritten as a
function of the three modes as [3]

Hring = − 4EJ

(
cos

ϕA

2
cos

ϕB

2
cos ϕC cos

ϕext

4

+ sin
ϕA

2
sin

ϕB

2
sin ϕC sin

ϕext

4

)
, (A2)

where EJ = I0ϕ0 is the Josephson energy and ϕext = �ext/ϕ0.
For ϕA,B,C � 2π , Eq. (A2) can be expanded to third order

as

H (0−3)
ring = − 4EJ cos

ϕext

4

+ EJ

2
cos

ϕext

4

(
ϕ2

A + ϕ2
B + 4ϕ2

C

)

− EJ sin
ϕext

4
ϕAϕBϕC, (A3)

as given in Sec. II. Expanding to one more order [O(�4)],
we can identify the terms that are most harmful to the BAE
Hamiltonian, and we will see how they produce squeezing
and instability. For completeness, here, we include all of the
fourth-order terms, including the self-Kerr terms. Expanding
Eq. (A3), these fourth-order terms are given by

H (4)
ring = − EJ cos

ϕext

4

[
ϕ2

A

4

(
ϕ2

A

24
+ ϕ2

B

2
+ ϕ2

C

)

+ϕ2
B

4

(
ϕ2

B

24
+ ϕ2

A

2
+ ϕ2

C

)
+ ϕ4

C

6

]
. (A4)

We will see later that the effect of these fourth-order terms is
to shift the resonant frequencies of the modes and that when
the C mode is driven at ω� and ω� , they additionally induce
undesired SMS. But we begin first by considering only the
ideal terms which appear at third order and lower.

As discussed in Sec. II, the coordinates ϕ{A,B,C} resonate
at microwave frequencies, and we quantize them using the
creation and annihilation operators a, b, and c [22] such that
ϕA =

√
h̄ZA/2
ϕ0

(a + a†) [22]. The bosonic operators of the three
different modes (a, b, and c) commute with each other, and
the operators associated with the same mode satisfy the usual
commutation relation [a, a†] = 1.

After quantizing, we can write the system Hamiltonian
with its linear and interaction terms as

H = ωA
(
a†a + 1

2

) + ωB
(
b†b + 1

2

) + ωC
(
c†c + 1

2

)
+ g3(a + a†)(b + b†)(c + c†) + O(�4), (A5)

where we have set h̄ = 1. Here, g3 represents the three-
wave-mixing coupling strength [22], and ω{A,B,C} describe
the frequencies of the three modes. We assume that these
frequencies account for all of the shifts that appear when the
Hamiltonian is written in normal-ordered form. The Heisen-
berg equations of motion can be obtained from Eq. (A5) using
da
dt = i[H, a], and they are given by

da/dt = − iωAa − ig3(b + b†)(c + c†),

db/dt = − iωBb − ig3(a + a†)(c + c†). (A6)

For the BAE measurement scheme, the C mode is driven
strongly off its resonance frequency at ω� and ω� and can
therefore be treated as a classical pump field under the stiff-
pump approximation [22], replacing its annihilation operator
with its average value c → | 〈c〉 |(e−iω�t + e−iω� t ), where we
have set the phase difference between the microwave drives
φ = 0 without loss of generality. We take a → Ae−iωAt and
b → Be−iωBt in order to solve for the behavior of their slowly
varying envelopes a and b. Writing the equations of motion
for these two modes with the explicit time dependence and
treating the C mode as a classical pump field, we find

dA/dt = − ig(Be−iω�t + B†eiω� t )(e−iω�t

+ eiω�t + e−iω� t + eiω� t ),

dB/dt = − ig(Aeiω�t + A†eiω� t )(e−iω�t

+ eiω�t + e−iω� t + eiω� t ), (A7)

where we have defined the interaction rate g = g3| 〈c〉 |. The
terms that survive the rotating-wave approximation (RWA) are
given by

dA/dt = − ig(B + B†),

dB/dt = − ig(A + A†). (A8)

Equivalently, Eq. (A8) can be obtained by starting from an
effective interaction Hamiltonian of the form

HINT = g(A†B + A†B†) + H.c., (A9)

as given in Eq. (4).
The interaction Hamiltonians given in Eqs. (7) and (9) can

be derived by following the same procedure but including
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the fourth-order terms and the detuning effects, respectively.
Accounting for the fourth-order terms, Eq. (A5) becomes

H = ωa
(
a†a + 1

2

) + ωb
(
b†b + 1

2

) + ωc
(
c†c + 1

2

)
+ g3(a + a†)(b + b†)(c + c†) + KAA(a + a†)4

+ KBB(b + b†)4 + KCC (c + c†)4

+ KAB(a + a†)2(b + b†)2

+ KAC (a + a†)2(c + c†)2 + KBC (b + b†)2(c + c†)2,

(A10)

where we have used KAA to represent the self-Kerr rate of
mode A and KAB to represent the cross-Kerr rate between
modes A and B, defining the other rates analogously. The Kerr
terms will shift the resonance frequencies of the modes, and
we therefore use ωa,b,c in Eq. (A10) to describe the bare (un-
shifted) mode frequencies. The Kerr shifts can be identified
by writing the Heisenberg equations of motion for Eq. (A10).
For example, the Kerr shift of the A mode will be given by the
imaginary coefficient of a in its equation of motion, as shown
in Eq. (A6). We find that the Kerr-shifted frequencies ωA,B,C

are given by

ωA = ωa + 12KAA
〈
a†a + 1

2

〉
+ 4KAB

〈
b†b + 1

2

〉 + 4KAC
〈
c†c + 1

2

〉
,

ωB = ωb + 12KBB
〈
b†b + 1

2

〉
+ 4KAB

〈
a†a + 1

2

〉 + 4KBC
〈
c†c + 1

2

〉
,

ωC = ωc + 12KCC
〈
c†c + 1

2

〉
+ 4KAC

〈
a†a + 1

2

〉 + 4KBC
〈
b†b + 1

2

〉
. (A11)

Using these full expressions for the Kerr-shifted mode
frequencies and leaving the mode occupancies unspecified,
we accordingly make the substitutions a → Ae−iωAt , b →
Be−iωBt , and c → 〈C〉e−i(ωB−ωA )t + 〈C〉e−i(ωB+ωA )t into the
Heisenberg equations of motion. Under the RWA, the equa-

tions of motion can be written as

dA/dt = − ig(B + B†) − isAA†,

dB/dt = − ig(A + A†) − isBB†. (A12)

The effective interaction Hamiltonian for (A12) is then given
by

HINT = g(A†B + A†B†) + sAA†2 + sBB†2 + H.c., (A13)

where we have defined the single-mode-squeezing rates sA =
2KAC | 〈c〉 |2 and sB = 2KBC | 〈c〉 |2. We note that other Kerr
terms will contribute to these interaction rates and that they
will depend on the occupancies of the A and B modes. How-
ever, in the regime where the stiff-pump approximation is
valid, we assume that the pump power is significantly larger
than the power of the amplified vacuum, meaning that these
contributions are negligible compared to the contributions
from the pump. Equation (A13) is given in its quadrature form
in Eq. (7).

Finally, we return to Eq. (A10) to treat our compensatory
detunings. Having solved for the Kerr shifts that appear at
fourth order, we again define ωA and ωB accordingly. How-
ever, we now pump the C mode detuned from ω� = ωB −
ωA and ω� = ωB + ωA, taking c → | 〈c〉 |(e−i(ω�+δc−δd )t +
e−i(ω�+δc+δd )t ). Because of these detunings, it is simplest to
solve for the behavior of the envelopes that are slowly vary-
ing relative to (ω� − ω�)/2 = ωA + δd for the A mode and
(ω� + ω�)/2 = ωB + δc for the B mode. As in Sec. II, we
therefore take a → Ae−i(ωA+δd )t and b → Be−i(ωB+δc )t . Follow-
ing these substitutions, the equations of motion after making
the RWA are given by

dA/dt = − ig(B + B†) − isAA† + iδdA,

dB/dt = − ig(A + A†) − isBB† + iδcB, (A14)

which can be obtained from the effective interaction Hamilto-
nian

HINT = g(A + A†)(B + B†)

+ sA(A†2 + A2) + sB(B†2 + B2)

− δd
(
A†A + 1

2

) − δc
(
B†B + 1

2

)
,

(A15)

which is given in the quadrature basis in Eq. (9).
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