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Nondegenerate triple-photon parametric down-conversion (NTPD) is a potential source for unconditional
tripartite non-Gaussian entangled states of continuous variables. Recent experiment has demonstrated strong
third-order correlations among bright photon triplets via microwave NTPD in a superconducting cavity
[C. W. Sandbo Cheng et al., Phys. Rev. X 10, 011011 (2020)]. Previous theoretic works have revealed that
only short-time genuine tripartite non-Gaussian entanglement can be generated in NTPD even in the absence
of dissipation. In this paper, we investigate the properties of tripartite non-Gaussian entanglement and steering
in the cavity output field by taking into account the cavity dissipation. We first derive experimentally detectable
criteria for fully inseparable and genuine tripartite non-Gaussian entanglement and steering. With the criteria, we
then find that steady-state tripartite non-Gaussian entanglement and steering can be generated in the output field,
although they merely exist in the short-time regime inside the cavity. We also find that the initial cavity-field
coherent states can obviously enhance the steady-state and transient tripartite entanglement and steering, in
comparison to the case of initial vacuum states. We finally show that the output tripartite non-Gaussian steerable
correlations can be applied to the remote generation of negative Wigner-function quantum states by homodyne
detection.
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I. INTRODUCTION

Entanglement, a fundamental property within the domain
of quantum mechanics, describes the inseparability inherent in
composite quantum systems consisting of multiple constituent
elements and is a vital resource in quantum information sci-
ence [1]. The concept of quantum steering traces its origin
back to 1935, originally termed by Schrödinger in his re-
sponse to the well-known Einstein-Podolsky-Rosen (EPR)
paradox [2] to critique the nonlocal aspects of quantum me-
chanics. It has been verified that EPR steering is intermediate
between Bell nonlocality and entanglement [3] and useful in,
e.g., one-sided device-independent quantum cryptography [4],
subchannel discrimination [5,6], and secure quantum telepor-
tation [7]. Recent studies have further shown that Gaussian
steering is a sufficient and necessary condition for remotely
creating negative Wigner nonclassicality on certain conditions
[8,9]. Steering has nowadays been realized in a variety of
systems of discrete and continuous variables [10,11].

Non-Gaussian entanglement of continuous variables is of
paramount importance in various aspects of quantum sci-
ence [12–15]. Non-Gaussian entangled states feature diverse
high-order moments of field quadrature operators, beyond
second-order moments statistics in Gaussian states, resulting
in its advantages in the aspects, e.g., fundamental test of quan-
tum mechanics such as loophole-free Bell test [16], quantum
error correction [17], entanglement distillation [18], and es-
pecially universal quantum computation [19]. Non-Gaussian
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entangled states have also proven to be more efficient in
quantum communication [20–24] and quantum sensing and
metrology [25–27]. Over the past decades, the generation of
non-Gaussian entangled states via photon-addition or photon-
subtraction operation on Gaussian states has been extensively
studied theoretically and experimentally [28–34], but this
approach is probabilistic and the target states are condi-
tioned on the detection results. Alternative way is to employ
intrinsic nonlinearity of systems to achieve unconditional non-
Gaussian states [35–40].

Nondegenerate triple-photon parametric down-conversion
(NTPD) describes a nonlinear process in which a pump
photon is down-converted into photon triplets of differ-
ent frequencies and is considered as a potential source for
deterministically generating tripartite non-Gaussian highly
entangled states directly [41–48]. So far, NTPD process has
been demonstrated in different three-order optical nonlin-
ear mediums but with low rates of triple photon generation,
which makes it difficult to certify quantum features [49–52].
Very recently, microwave NTPD in a superconducting cav-
ity has been achieved and strong third-order correlations
among bright photon triplets has been demonstrated [53]. This
achievement immediately attracts much interest in exploring
the properties of tripartite non-Gaussian entanglement of con-
tinuous variables [54–58]. It has been revealed that genuine
tripartite non-Gaussian entanglement can be directly gener-
ated but it just appears in the short-time regime, even without
the consideration of dissipation. In view that the NTPD pro-
cess operates in the cavity in the experiment [53], quantum
steering is stronger than entanglement and steady-state en-
tanglement is more desirable, a question naturally arises:
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Does the cavity output field exhibit steady-state tripartite non-
Gaussian entanglement and even steering? As we know, the
cavity output field is a continuum of frequency modes and
indeed subject to realistic detection and various applications,
with different behaviors from the intracavity field [59,60]. In
this paper, we intend to investigate in detail the properties
of tripartite non-Gaussian entanglement and steering in the
cavity output field in the system of intracavity NTPD. To this
end, we treat the output field with specific modes as virtual
cavities connected to the NTPD cavity in a way of a quantum
input-output (cascade) network [61,62]. We also derive exper-
imentally detectable criteria for fully inseparable and genuine
tripartite non-Gaussian entanglement and steering. With the
criteria, we find that the steady-state tripartite non-Gaussian
entanglement and steering can be generated in the output field,
although they merely exist in the short-time regime inside
the cavity. Moreover, the initial coherent cavity-field states
can effectively enhance the output steady-state and intracav-
ity transient entanglement and steering. We also show that
the output tripartite non-Gaussian steerable nonlocality can
be used to remotely generate negative Wigner-function non-
Gaussian states by homodyne detection. Our findings further
unravel the novel non-Gaussian nonclassical characteristics in
the nonlinear NTPD process.

This paper is arranged as follows. In Sec. II, the system
is introduced and the master equation is given. In Sec. III,
the criteria for fully inseparable and genuine tripartite non-
Gaussian entanglement and steering are derived in detail. In
Sec. IV, the numerical results are presented. In Sec. V, the
summary is given.

II. SYSTEM

In this paper, we consider an intracavity nondegenerate
three-photon down-conversion process, which can be de-
scribed by the Hamiltonian (h̄ = 1) [52,53]

Ĥs = ω0b̂†
0b̂0 +

3∑
k=1

ωkb̂†
kb̂k + g0(b̂†

0b̂1b̂2b̂3 +b̂0b̂†
1b̂†

2b̂†
3), (1)

where g0 represents the three-order nonlinear coupling
constant, and the annihilation operators b̂0 and b̂k (k =
1, 2, 3, and similarly hereinafter) describe the the pump and
three down-converted modes, respectively. By choosing the
frequencies ω0 = ω1 + ω2 + ω3 and treating the pump clas-
sically (assuming it in a large-amplitude coherent state), the
above interaction Hamiltonian reduces to

Ĥs = g(eiθ b̂1b̂2b̂3 + e−iθ b̂†
1b̂†

2b̂†
3), (2)

where g = g0|β0| represents the NTPD interaction strength
proportional to the pump amplitude β0 ≡ |β0|eiθ . Here, we
take θ = π/2 for simplicity. Note that the phase θ can be
canceled via the local transformation b̂ je−iθ → b̂ j , which
does not alter the tripartite correlations. Microscopically, it
describes that the medium absorbs a high-frequency pump
photon and then emits three low-frequency photons si-
multaneously into the cavity modes, during which strong
non-Gaussian quantum correlations are therefore be es-
tablished among the down-converted photons. The NTPD

FIG. 1. Schematic diagram for intracavity NTPD in which a
high-frequency pump photon (with frequency ωp) is down-converted
into a triplet [(denoted by b̂k (k = 1, 2, 3)] in the cavity modes of
frequencies ωk . The parameters γk denote the dissipation rates of
the cavity modes. Three virtual cavities, with modes denoted by
b̂μk , are employed to study the specific temporal modes μk (t ) in the
continuous cavity output fields b̂out

k (t ) via the cascaded couplings to
the (master) cavity modes b̂k , with the time-dependent coupling rates
gμk (t ) dependent on the modes μk (t ).

process has been demonstrated in optical nonlinear mediums
[52] and in a superconducting device [53].

For the cavity mode b̂k coupled to external environment,
one is interested in quantum properties of its output field
which is indeed subject to detection and various realistic ap-
plications. The output field b̂out

k is related to the cavity mode
b̂k and input field b̂in

k via the input-output relation b̂out
k (t ) =√

γkb̂k (t ) − b̂in
k (t ), where γk denote the dissipation rate of the

cavity mode and b̂in
k is the vacuum input. Since the cavity

output field has continuous spectra, from which one can define
a temporal mode μk (t ) with the annihilation operator

b̂μk =
∫

μ∗
k (t ′)b̂out

k (t ′)dt ′, (3)

which satisfies the commutation relation [b̂μk , b̂†
μk

] = 1, lead-

ing to
∫ |μk (t )|2dt = 1. The mode b̂μk filtered from the output

field b̂out
k (t ) can be considered as a virtual cavity (filter) which

is directionally driven by the output field, as shown in Fig. 1,
with the coupling strength between the output field and the
virtual cavity [61]

gμk (t ) = − μ∗
k (t )√∫ t

0 dt ′|μk (t ′)|2
. (4)

In this description, the master equation for the whole cascaded
system consisting of the (master) cavity mode b̂k in the NTPD
and the corresponding (slave) virtual cavity field b̂μk can be
obtained as [61,62]

d ρ̂

dt
= −i[Ĥs + Ĥex, ρ̂] +

3∑
k=1

Lk[Ĵk]ρ̂, (5)

where the unidirectional-coupling resulted coherent exchange
couplings

Ĥex = i

2

3∑
k=1

(
√

γkg∗
μk

b̂†
kb̂μk − H.c.), (6)
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and the collective decay L[Ĵk]ρ̂ = Ĵk ρ̂Ĵ†
k − 1

2 (Ĵ†
k Ĵk ρ̂ +

ρ̂Ĵ†
k Ĵk ), with the jump operators

Ĵk = √
γkb̂k + g∗

μk
b̂μk , (7)

describing the collective dissipation due to the couplings of
the down-converted cavity and virtual cavity modes to the
corresponding common vacuum reservoirs. With Eq. (5), we
can study quantum correlations in the intracavity and output
fields. Here the six-mode master equation will be solved nu-
merically by using quantum-jump Monte Carlo approach to
reduce the Hilbert space dimensions. In this setting, the master
equation (5) can be unveiled by considering that the virtual
cavity modes are monitored via continuous photon counting
and the state of the whole system on one quantum trajectory
can be described by the state vector [63]

d|ψ (t )〉 =
3∑

k=1

⎡
⎢⎣dNk (t )

⎛
⎜⎝ Ĵk√

〈Ĵ†
k Ĵk〉

− 1̂

⎞
⎟⎠ + dt

(
〈Ĵ†

k Ĵk〉(t )

2

− Ĵ†
k Ĵk

2
− iĤ

)⎤
⎥⎦|ψ (t )〉, (8)

where Ĥ = Ĥs + Ĥex and the stochastic increment dNk (t ) is
either one or zero, representing (no) registration of photons of
the detector. The density matrix ρ̂ is obtained by performing
ensemble average on different quantum trajectories. Here,
unless otherwise stated, the ensemble average is done with
two thousand trajectories. In addition, to solve the equation we
consider the initial states of the down-converted modes to be
vacuum or coherent states and the virtual cavity modes to be
vacuum states.

We consider two kinds of the coupling gμk (t ). The first is
time dependent and determined by the most populated modes
μk (t ) via the relation (4). The most populated modes in the
output field, which depend on the autocorrelation functions of
the cavity modes b̂k , i.e.,

	
(1)
k (t1, t2) = γk〈b̂†

k (t1)b̂k (t2)〉 =
∑

i

nk,iμ
∗
k,i(t1)μk,i(t2), (9)

where nk,i are the mean-photon numbers in each orthogonal
(temporal) mode μk,i(t ). Here we only consider the most
populated mode among the modes μk,i, which is denoted
by b̂μk in Eq. (3) with the mode profile μk . The two-time
correlation function 〈b̂†

k (t1)b̂k (t2)〉 can be obtained with the
quantum regression theorem and the master equation for the
intracavity modes b̂k [i.e., gμk = 0 in Eq. (5)]. Figure 2 depicts
the modes μk (t ) and the time dependence of the mean-photon
numbers of 〈b̂†

kb̂k〉 and 〈b̂†
μk

b̂μk 〉, respectively, for initial vac-
uum and coherent states of the down-converted cavity modes.
Such a consideration gives rise to the time-dependent coupling
gμk , as shown in Fig. 2. Besides, we also consider constant
coupling, i.e.,

gμk = √
γμk , (10)

which means that the output field is filtered with generic
cavities of Lorentz line shapes.

(b)(a)

FIG. 2. (a) The most populated output modes μk (t ) and the cou-
pling gμk for initial vacuum and coherent states of the intracavity
modes b̂k , respectively. (b) The mean photon numbers Ik = 〈b̂†

k b̂k〉
and Iμk = 〈b̂†

μk
b̂μk 〉 of the intracavity modes b̂k and virtual cavity

modes b̂μk . The parameters γk = 9g and βk = 1. The abbreviations
“vc” and “co” in subscripts stand for initial vacuum and coherent
states (similarly in Figs. 5 and 9).

III. DETECTABLE CRITERIA FOR TRIPARTITE
NON-GAUSSIAN ENTANGLEMENT AND STEERING

The NTPD process in Eq. (2) is nonlinear and evolves
in non-Gaussian states of which quantum characteristics are
determined by various high-order moments. To fully capture
non-Gaussian correlation nature in the three-mode system, we
introduce single-mode high-order quadratures of the operators
âk (a = {b̂, b̂μ} for the present system)

X̂ n
k = â†n

k + ân
k , Ŷ n

k = i
(
â†n

k − ân
k

)
(11)

for the kth mode and two-mode high-order quadratures

X̂ n
lm = â†n

l â†n
m + ân

l ân
m, Ŷ n

lm = i
(
â†n

l â†n
m − ân

l ân
m

)
(12)

for the lth and mth modes ({l, m} = {1, 2, 3}). The com-
mutation relations for these quadratures [X̂ n

k , Ŷ n
k ] = iĈn

k and
[X̂ n

lm, Ŷ n
lm] = iĈn

lm. For the present system, Ĉn
k = 2 and 8Îk +

4, and Ĉn
lm = 2(Îl + Îm + 1) and 4[2 + Îl (3 + Îl ) + Î2

m(1 +
2Îl ) + Îm(3 + 4Îl + 2Î2

l )], for n = 1 and 2, respectively, with
Îk = b̂†

kb̂k .
To study tripartite entanglement and steering in the system,

one can divide the system into a bipartite, i.e., {k, (l, m)},
and there are three kinds of such bipartition, i.e., {1, (2, 3)},
{2, (1, 3)} and {3, (2, 1)}. The bipartite entanglement between
the kth mode and the subsystem (l, m) falsifies the separable
model for the system’s density operator

ρ̂lm−k =
∑

i

ηiρ̂
i
k ρ̂

i
lm, (13)

where
∑

i ηi = 1 and ρ̂k(l,m) is the density operator of the
subsystem k(l, m). By defining the linear combinations

Û n
k,lm = X̂ n

k + gk,nX̂ n
lm, V̂ n

k,lm = Ŷ n
k + hk,nŶ

n
lm, (14)

with the gain parameters gk,n and hk,n, the sum of their vari-
ances satisfies〈(

�Û n
k,lm

)2〉 + 〈(
�V̂ n

k,lm

)2〉 � Cn
k + |gk,nhk,n|Cn

lm (15)

for the bipartite separable model, with Cn
k(lm) = 〈Ĉn

k(lm)〉. The
violation of the above inequality verifies the corresponding
bipartite entanglement. The violation of all three inequalities
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for the three bipartitions, i.e.,〈(
�Û n

1,23

)2〉 + 〈(
�V̂ n

1,23

)2〉 � Cn
1 + |g1,nh1,n|Cn

23, (16a)〈(
�Û n

2,13

)2〉 + 〈(
�V̂ n

2,13

)2〉 � Cn
2 + |g2,nh2,n|Cn

13, (16b)〈(
�Û n

3,12

)2〉 + 〈(
�V̂ n

3,12

)2〉 � Cn
3 + |g3,nh3,n|Cn

12, (16c)

demonstrates fully inseparable tripartite entanglement. When
the whole system is symmetric with respect to the three modes
[i.e., the master equation (5) is invariant by exchanging the
operators â1, â2, â3], the criteria of fully inseparable tripartite
entanglement can be simplified as (see the Appendix)∣∣〈ân

1ân
2ân

3

〉 − 〈
ân

1

〉〈
ân

2ân
3

〉∣∣
>

√√√√[
〈Î1!〉〈
Î−n
1 !

〉 − 〈ân
1〉2

][
〈Î2!Î3!〉〈

Î−n
2 !Î−n

3 !
〉 − 〈

ân
2ân

3

〉2]

≡ Fn
e , (17)

where the sign Î−n
k = (Îk − n), with the gain parameters

gk,n = −hk,n.
The genuine tripartite entanglement is confirmed if the

state can not be written as a more general state mixed by the
three bipartitions, i.e.,

ρ̂123 = P1

∑
i1

ηi1ρ
i1
1 ρ

i1
23 + P2

∑
i2

ηi2ρ
i2
2 ρ

i2
13

+ P3

∑
i3

ηi3ρ
i3
3 ρ

i3
12, (18)

where
∑

i Pi = 1 and
∑

i ηi = 1. For the variances in Eq. (16),
the inequality for confirming the genuine tripartite non-
Gaussian entanglement is derived in detail in the Appendix.
Again, when the present system is symmetric, the criterion of
genuine tripartite non-Gaussian entanglement reduces to (see
the Appendix)∣∣〈ân

1ân
2ân

3

〉 − 〈
ân

1

〉〈
ân

2ân
3

〉∣∣
> 3

√√√√[
〈Î1!〉〈
Î−n
1 !

〉 − 〈
ân

1

〉2][
〈Î2!Î3!〉〈

Î−n
2 !Î−n

3 !
〉 − 〈

ân
2ân

3

〉2]

≡ Gn
e . (19)

We see that the fully inseparable and genuine tripartite
non-Gaussian entanglement depends on the high-order self
and cross correlations, i.e., 〈ân

k〉 and 〈ân
l ân

m〉. For the present
system, when the cavity mode b̂k is initially seeded with
coherent states, these terms have nonzero values and have
obvious effects on the non-Gaussian tripartite entanglement
and steering, as will be shown later. When the system starts
from vacuum or thermal states, 〈ân

k〉 = 0 and 〈ân
l ân

m〉 = 0, and
the above criteria of Eqs. (17) and (19) for n = 1 are further
simplified into

|〈â1â2â3〉| >

√
〈Î1〉〈Î2 Î3〉 (20)

and

|〈â1â2â3〉| > 3
√

〈Î1〉〈Î2 Î3〉, (21)

respectively, which can also been derived directly with the
Hillery-Zubairy entanglement criterion [64].

We next derive the criterion for tripartite steering in the
system. Different from the entanglement, the steering of the
kth mode by the subsystem (l, m) is confirmed by violating
the model of local hidden state (LHS), i.e.,

ρ̂lm→k =
∑

i

ηiρ̂
i
kQρ i

lm, (22)

where we utilize ρ̂ i
kQ and ρ̂ i

lm to replace ρ̂ i
k and ρ̂ i

lm in Eq. (13),
respectively, since for the LHS model no explicit assumption
is made that ρ̂ i

lm would necessarily be a quantum state de-
scribed by a quantum density operator. According to the LHS
model, the sum of the variances of the operators Û n

k,lm and
V̂ n

k,lm satisfies the inequality

〈[
�Û n

k,lm

]2〉 + 〈[
�V̂ n

k,lm

]2〉 � Cn
k , (23)

whose violation means the bipartite steering from the sub-
system (l, m) to the kth mode. The violation of all three
inequalities for the three bipartitions

Sn
1 = 〈(

�Û n
1,23

)2〉 + 〈(
�V̂ n

1,23

)2〉 � Cn
1 , (24a)

Sn
2 = 〈(

�Û n
2,13

)2〉 + 〈(
�V̂ n

2,13

)2〉 � Cn
2 , (24b)

Sn
3 = 〈(

�Û n
3,12

)2〉 + 〈(
�V̂ n

3,12

)2〉 � Cn
3 (24c)

for any n is sufficient to confirm fully inseparable tripar-
tite steering for the present three-mode system [65]. For the
symmetric system, the fully inseparable tripartite steering be-
comes (see the Appendix)∣∣〈ân

1ân
2ân

3

〉 − 〈
ân

1

〉〈
ân

2ân
3

〉∣∣
>

1

2

√
〈Î2!Î3!〉〈

Î−n
2 !Î−n

3 !
〉 +

〈
Î+n
2 !Î+n

3 !
〉

〈
Î2!I3!

〉 − 2
〈
ân

2ân
3

〉2

×
√

〈Î1!〉〈
Î−n
1 !

〉 + 〈Î+n
1 !〉〈
Î1!

〉 − 1

2
Cn

1 − 2
〈
ân

1

〉2
≡ Fn

s . (25)

with Î+n
k = (Îk + n).

Similarly, the genuine tripartite steering is achieved if one
can exclude more general LHS models that are constructed
from convex combinations of LHS models across the three
bipartitions [66], i.e.,

ρ̂123 = P1

∑
i1

ηi1 ρ̂
i1
1Qρ

i1
23 + P2

∑
i2

ηi2 ρ̂
i2
2Qρ

i2
13

+ P3

∑
i3

ηi3 ρ̂
i3
3Qρ

i3
12, (26)

where
∑

i Pi = 1, and
∑

i ηi = 1. With Eqs. (24), the vio-
lation of the inequality Sn

1 + Sn
2 + Sn

3 � min{Cn
1 ,Cn

2 ,Cn
3 } for

any n is sufficient to certify genuine tripartite non-Gaussian
steering. In our fully symmetric system, the criteria of
genuine tripartite non-Gaussian steering can be derived as
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(see the Appendix)∣∣〈ân
1ân

2ân
3

〉 − 〈
ân

1

〉〈
ân

2ân
3

〉∣∣
>

1

2

√
〈Î2!Î3!〉〈

Î−n
2 !Î−n

3 !
〉 +

〈
Î+n
2 !Î+n

3 !
〉

〈Î2!I3!〉 − 2
〈
ân

2ân
3

〉2

×
√

〈Î1!〉〈
Î−n
1 !

〉 +
〈
Î+n
1 !

〉
〈
Î1!

〉 − 1

6
Cn

1 − 2
〈
ân

1

〉2
≡ Gn

s . (27)

For the case of initial thermal or vacuum states, the above
criteria of Eqs. (25) and (27) for n = 1 further reduce to

|〈â1â2â3〉| >

√〈(
Î2 + 1

2

)(
Î3 + 1

2

)
+ 1

4

〉
〈Î1〉 (28)

and

|〈â1â2â3〉| >

√〈(
Î2 + 1

2

)(
Î3 + 1

2

)
+ 1

4

〉〈
Î1 + 1

3

〉
. (29)

We see that the tripartite non-Gaussian entanglement and
steering criteria for n = 1 just depend on the three-order
amplitude correlation 〈X̂1X̂2X̂3〉 = 2〈â1â2â3〉 for the present
system, intensity correlations 〈Îk Îk′ 〉, and intensities 〈Îk〉,
which can be measured in the recent NTPD experiment [53].
Note that it is shown from Eqs. (20) and (28) that the condition
for achieving the full inseparable tripartite steering is more
strict than that for the full inseparable tripartite entanglement,
but it is not true for the genuine tripartite entanglement and
steering, as revealed by Eqs. (21) and (29). This is essentially
because these conditions are sufficient for detecting the en-
tanglement and steering. Note that in deriving the inequality
(A8), six terms on the right-hand side in the inequality (A6)
are discarded, different from the derivation of the condition
for genuine tripartite entanglement in Eq. (A17).

IV. NUMERICAL RESULTS

In this section, we investigate in detail the features
of intracavity and output non-Gaussian tripartite entangle-
ment and steering in the NTPD. We define the quan-
tities En

f (g) = |〈ân
1ân

2ân
3〉 − 〈ân

1〉〈ân
2ân

3〉| − F (G)n
e and Sn

f (g) =
|〈ân

1ân
2ân

3〉 − 〈ân
1〉〈ân

2ân
3〉| − F (G)n

s to characterize the full in-
separable (genuine) tripartite entanglement and steering.
Their existences are signified by the conditions Sn

f (g) > 0 and
En

f (g) > 0.
In Fig. 3, the time evolution of the tripartite entanglement

and steering inside the cavity are plotted for n = 1 and 2,
with initial vacuum and coherent states of the cavity modes
b̂k . It is shown that the non-Gaussian tripartite genuine en-
tanglement and fully inseparable steering can be achieved in
the short-time regime. The genuine tripartite steering can-
not be found (at least) with the quantity Sn

g . It is obviously
shown that for the same value of n, the full inseparable
entanglement lasts longer than genuine entanglement since
the latter exhibits stronger quantum correlations, and both of
them for n = 1 last longer than those for n = 2, which is
contrary to the case of the steering. Compared to the case
of initial vacuum states, the maximally achievable tripartite

(a) (b)

FIG. 3. The time evolution of the tripartite entanglement En and
steering Sn (n = 1, 2) inside the cavity for γk = 0. The initial states
of the cavity modes are considered to be vacua in (a) and coherent
states in (b) with the amplitude βk = 1.

entanglement and steering are obviously enhanced by initial
coherent states, as shown in Fig. 3(b). The reason may be
that for the NTPD process, the initial coherent seeding of
the cavity modes results in nonzero single-mode and two-
mode high-order correlations, i.e., 〈b̂n

k〉 	= 0 and 〈b̂n
l b̂n

m〉 	= 0,
which in turn increase the tripartite non-Gaussian quantum
correlations. Figure 4(a) plots the dependence of the maximal
tripartite entanglement and steering on the amplitudes βk = β,
and it shows that the increasing of the initial amplitudes β,
the maximal tripartite entanglement and steering increase first,
then decrease, and finally disappear. This is because in this
situation we can express the down-converted cavity mode
b̂k as the sum of average amplitude 〈b̂k〉 and correspond-
ing quantum fluctuation δb̂k around the amplitude. Then, the
Hamiltonian Ĥs in Eq. (2) can be divided into two parts: the
linearized and nonlinear parts which are respectively depen-
dent and independent on the average amplitude 〈b̂k〉. As the
initial amplitude β increases such that the linearized part dom-
inates over the nonlinear one, the NTPD mainly appears as a
Gaussian system, i.e., three concurrent two-mode nondegen-
erate parametric down-conversion of δb̂k and its non-Gaussian
characteristics is suppressed, which leads to that the non-
Gaussian entanglement and steering decrease gradually and
the NTPD dominantly exhibits Gaussian tripartite entangle-
ment and steering. We therefore see that the initial preparation
of the down-converted modes in weak coherent states is
helpful to the generation of the tripartite non-Gaussian entan-
glement and steering. In addition, it shows from Fig. 4(b) that
the initial coherent states shorten the existence time of the

(b)(a)

FIG. 4. (a) The dependence of the maximum entanglement En
max

and steering Sn
max inside the cavity on the amplitude βk of the initial

cavity-field coherent states. (b) The duration �t of the entanglement
and steering versus the coherent amplitude βk . The parameters are
the same as Fig. 3.
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(b)

(c) (d)

(a)

FIG. 5. The maximum entanglement En
max and steering Sn

max (n =
1) inside the cavity as the functions of the cavity dissipation rates
γk = γ [(a) and (b)] and the coupling g [(c) and (d)] for the initial
cavity-field coherent amplitude βk = 1.

tripartite entanglement and steering. Figure 5 illustrates the
dependence of the maximal tripartite entanglement and steer-
ing on the cavity dissipation rates γk and interaction strength g.
As expected, the tripartite entanglement and steering decrease
with the increasing of the dissipation rates, and they eventu-
ally disappear when the dissipation rates γk 
 g, irrespective
of initial vacuum or coherent states, as plotted in Figs . 5(a)
and 5(b), since the intracavity field escapes rapidly from the
cavity for the large cavity dissipation rates. In addition, it can
be seen from Figs. 5(c) and 5(d) that the maximal tripartite
entanglement and steering increase as the interaction strength
g increases and the growth rates decrease gradually when the
strength further arises.

We next investigate the properties of the tripartite non-
Gaussian entanglement and steering in the output field by
investigating the virtual cavity modes b̂μk . In Fig. 6, the time
evolution of the entanglement and steering is plotted for the
time-dependent and constant couplings gμk , with initial vac-
uum and coherent states of the intracavity modes. It shows
that steady-state non-Gaussian genuine tripartite entangle-
ment and fully inseparable tripartite steering can be achieved,
although they are just present in the short-time regime inside
the cavity. This can be understood as that the variances in
Eqs. (15) and (23) of the intracavity field can be considered
as the sum of those of all output modes μk and therefore
the steady-state tripartite entanglement and steering in out-
put field may be generated, although they only exist in a
finite time. Further, we see from Figs. 6(a) and 6(c) that the
steady-state tripartite entanglement and steering for n = 1 and
2 can also be enhanced by the initial coherent states of the
down-converted cavity modes. The entanglement and steering
for the initial vacua in Fig. 6(a) drop and slowly stabilize
after reaching the maximal values, while they stabilize as the
maxima are reached for the case of initial coherent states in
Fig. 6(c), as the coupling gμk [see Fig. 2(a)] approaches the
steady states much faster in the latter case. The entanglement
and steering for the constant coupling gμk are less improved
with the coherent states in Fig. 6(d), but much faster reach the

(c) (d)

(a) (b)

FIG. 6. The time evolution of the entanglement En and steering
Sn (n = 1, 2) of the cavity output field for initial cavity-field vacua
[(a) and (b)] and coherent states [(c) and (d)] with the amplitude βk =
1, with the time-dependent coupling gμk (t ) [(a) and (c)] and constant
coupling gμk (t ) = 1.5

√
g [(b)] and (d)]. The cavity dissipation rates

γk = 9g.

steady states compared to the case of initial vacua in Fig. 6(b).
In Figs. 6(c) and 6(d), the entanglements E1

g and E2
f go down

after reaching the highest points because the ratio of the cavity
dissipation rates

√
γk to the constant coupling gμk is not opti-

mized for them and here the same ratio is settled simply. The
purity of the output states, defined by P = Tr[(ρ̂bμ1bμ2bμ3 )2],
is plotted in Fig. 7. It is shown that the purity for the initial
coherent states is decreased, although the entanglement and
steering are enhanced by them, compared to the case of the
initial vacuum states. In addition, the purity for the constant
coupling in Figs. 6(b) and 6(d) is obviously higher than that
in Figs. 6(a) and 6(c) because of the larger coupling gμk .

We finally consider the application of the steady-state out-
put tripartite non-Gaussian steering to remotely generating
negative Wigner-function conditional states via homodyne de-
tection. Specifically, we investigate the conditional states of
the output mode b̂μ3 by homodyning the quadratures X̂bμ1(2)

=

FIG. 7. The purity Pa − Pd of the cavity output states ρ̂bμ1bμ2bμ3

corresponding to the states in Figs. 6(a)–6(d), respectively.
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(a) (b)

(c) (d)

FIG. 8. The density plots of the Wigner functions
Wbμ3

(xbμ3
, pbμ3

) of the conditioned final state ρ̂bμ3
(xbμ1

= xbμ2
= 5)

corresponding to the states in Figs. 6(a)–6(d), respectively.

(b̂μ1(2) + b̂†
μ1(2)

) of the output modes b̂μ1 and b̂μ2 . Conditioned
on the homodyne detection outcomes xbμ1

and xbμ2
, the density

operator of the mode b̂μ3 [67]

ρ̂bμ3
(xbμ1

, xbμ2
) =

ˆ̃ρbμ3
(xbμ1

, xbμ2
)

Trbμ3

[
ˆ̃ρb

(
xbμ1

, xbμ2

)] , (30)

where the unnormalzied operator ˆ̃ρbμ3
(xbμ1

, xbμ2
) =

Trbμ1 bμ2
[(M̂bμ1 bμ2

⊗ Îbμ3
)ρ̂bμ1 bμ2 bμ3

(Îbμ3
⊗ M̂bμ1 bμ2

)] and

the projection operator M̂bμ1 bμ2
= |bμ1 , bμ2〉〈bμ1 , bμ2 |,

which can be calculated in the Fock space with
〈xo | n〉 = 1

π1/4
1√

2no no!
e−x2

o/2Hno (xo), with Hno being the
Hermite polynomial of order no and o = {bμ1 , bμ2}.

In Figs. 8(a)–8(d), the density plots of the Wigner
functions Wbμ3

(xbμ3
, pbμ3

), obtained by performing Fourier
transform on the characteristic function defined via χbμ3

(ξ ) =
Tr[eξ b̂†

μ3
−ξ∗b̂μ3 ρ̂bμ3

(xbμ1
, xbμ2

)], are presented for the tripartite
non-Gaussian steerable states Figs. 6(a)–6(d), respectively,
with the homodyne detection outcomes xbμ1

= xbμ2
= 5. It

shows that the Wigner function exhibits negativity

N =
∫

[|W (α, α∗)| − W (α, α∗)]d2α, (31)

with phase-space variable α = xbμ3
+ ipbμ3

, indicating gen-
uine non-Gaussian nonclassicality. Essentially, the capability
for this remote generation of negative Wigner states is en-
dowed with the non-Gaussian steerable nonlocality generated
in the NTPD process. In Fig. 9, we shown the effects of the
cavity dissipation rates γk on the steady-state tripartite entan-
glement, steering, and Wigner negativity for the case of the
constant coupling gμk in Figs. 6(b) and 6(d). In Fig. 9(a), the
fully inseparable tripartite entanglement increases rapidly first
and then decreases with the dissipation rates, but the genuine
tripartite entanglement just increases only after the dissipation
rate reaches a certain value, due to the fact that the latter
exhibits stronger correlations than the former. As the dissipa-
tion rate increases, the dissipative cascaded coupling increases

(a) (b)

FIG. 9. (a) The steady-state tripartite entanglement En
ss for the

constant coupling gμk = 1.5
√

g (initial vacua and coherent states
with the amplitude βk = 1) as the function of the cavity dissipation
rate γk . (b) The same for the steady-state tripartite steering Sn

ss and
the Wigner negativity N of the conditioned final state ρ̂bμ3

(xbμ1
=

xbμ2
= 5).

and the entanglement thus increases accordingly, and as the
dissipation rate continues to increase, the entanglement and
steering are decreased by the dissipation. In Fig. 9(b), the
Wigner negativity and the fully inseparable tripartite steering
increases rapidly and then decreases slowly over the range
of the dissipation rate. It is shown clearly that the negativity
has the similar dependence on the dissipation rate to that of
the tripartite steering and the improved steering for initial
coherent states gives larger negativity, which therefore reflects
the intrinsic capability of quantum steering for manipulating
local quantum states via remote detection.

V. CONCLUSION

In summary, we study in this paper the properties of tripar-
tite non-Gaussian entanglement and steering in an intracavity
NTPD process. We derive the criteria for full inseparability
and genuine tripartite non-Gaussian entanglement and steer-
ing with high-order field quadratures for the present system.
With the criteria and visualizing the specific modes in the out-
put continuous field as virtual cavities coupled to the NTPD
cavity in a cascade way, the tripartite non-Gaussian entangle-
ment and steering inside and outside the cavity are studied
in detail. It is found that the tripartite non-Gaussian entangle-
ment and steering inside the cavity only exist in the short-time
regime but they can be generated in the steady-state regime
in the output field of the cavity. Moreover, it is revealed that
the initial coherent cavity-field states can effectively enhance
the output steady-state and intracavity transient entangle-
ment and steering. It is also shown that the output tripartite
non-Gaussian steering can be utilized to remotely generate
non-Gaussian states with negative Wigner functions by ho-
modyne detection. Our findings unravel the non-Gaussian
nonclassical characteristics in the nonlinear NTPD process.
Further work may include the investigation on the application
of the output triple photons in genuine tripartite non-Gaussian
entangled states to various quantum tasks, such as quantum
parameter estimation and quantum illumination.
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APPENDIX: DERIVATION OF THE NON-GAUSSIAN TRIPARTITE ENTANGLEMENT AND STEERING

In this paper, the high-order quadrature operators are defined as X̂ n
k = (â†n

k + ân
k ) and Ŷ n

k = i(â†n
k − ân

k ), where âk and â†
k are

the annihilation and creation operators with [âk, â†
k] = 1. X̂ n

k and Ŷ n
k satisfy the commutation relation [X̂ n

k , Ŷ n
k ] = iĈn

k . X̂ n
lm and

Ŷ n
lm satisfy the commutation relation [X̂ n

lm, Ŷ n
lm] = iĈn

lm.
According to the biseparable state ρk,lm = ∑

i
ηiρ

i
kρ

i
lm, the total variance of the pair of operators Û n

k,lm and V̂ n
k,lm satisfies the

inequality〈(
�Û n

k,lm

)2〉 + 〈(
�V̂ n

k,lm

)2〉 = 〈(
Û n

k,lm

)2〉 + 〈(
V̂ n

k,lm

)2〉 − 〈
Û n

k,lm

〉2 − 〈
V̂ n

k,lm

〉2
=

∑
i

ηi
{〈(

X̂ n
k

)2 + (
gk,nX̂ n

lm

)2 + (
Ŷ n

k

)2 + (
hk,nŶ

n
lm

)2〉
i + 2gk,n

〈
X̂ n

k X̂ n
lm

〉
i + 2hk,n

〈
Ŷ n

k Ŷ n
lm

〉
i

}

− 〈
Û n

k,lm

〉2 − 〈
V̂ n

k,lm

〉2
=

∑
i

ηi
{〈(

�X̂ n
k

)2 + (
�Ŷ n

k

)2 + (
gk,n�X̂ n

lm

)2 + (
hk,n�Ŷ n

lm

)2〉
i + 2gk,n

(〈
X̂ n

k X̂ n
lm

〉
i − 〈

X̂ n
k

〉
i

〈
X̂ n

lm

〉
i

)

+ 2hk,n
(〈

Ŷ n
k Ŷ n

lm

〉
i − 〈

Ŷ n
k

〉
i

〈
Ŷ n

lm

〉
i

)} +
∑

i

ηi
〈
Û n

k

〉2
i −

(∑
i

ηi
〈
Û n

k

〉
i

)2

+
∑

i

ηi
〈
V̂ n

k

〉2
i −

(∑
i

ηi
〈
V̂ n

k

〉
i

)2

�
∑

i

ηi
{〈(

�X̂ n
k

)2 + (
�Ŷ n

k

)2 + (
gk,n�X̂ n

lm

)2 + (
hk,n�Ŷ n

lm

)2〉
i

}
� Cn

k + |gk,nhk,n|Cn
lm. (A1)

In the derivation process, we utilized the Cauchy-Schwartz inequality
∑

i ηi〈Û n〉2
i � (

∑
i ηi〈Û n〉i )2, the sum uncertainty relation

〈(�X̂ n)2〉 + 〈(�Ŷ n)2〉 � |〈[X̂ n, Ŷ n]〉|, and 〈Ĉn〉 ≡ Cn.
But if the state of subsystems l and m is not assumed to be a quantum state, there is only the assumption of non-negativity for

the associated variances. For the biseparable local hidden state model symbolized as ρlm→k = ∑
i ηiρ

i
kQρ i

lm,

〈(
�Û n

k,lm

)2〉 + 〈(
�V̂ n

k,lm

)2〉 = 〈[
�

(
X̂ n

k + gk,nX̂ n
lm

)]2〉 + 〈[
�

(
Ŷ n

k + hk,nŶ
n

lm

)]2〉
�

∑
i

ηi
{〈(

�X̂ n
k

)2〉
i + 〈

�
(
gk,nX̂ n

lm

)2〉
i + 〈(

�Ŷ n
k

)2〉
i + 〈

�
(
hk,nŶ

n
lm

)2〉
i

}

�
∑

i

ηi
{〈(

�X̂ n
k

)2〉
i + 〈(

�Ŷ n
k

)2〉
i

}
� Cn

k . (A2)

In the derivation process, we utilized the non-negativity of variances that for any local hidden variables, i.e., 〈�(gk,nX̂ n
lm)2〉 � 0

and 〈�(hk,nŶ n
lm)2〉 � 0, the sum uncertainty relation 〈(�X̂ n

k )2〉 + 〈(�Ŷ n
k )2〉 � |〈[X̂ n

k , Ŷ n
k ]〉| and 〈Ĉn

k 〉 ≡ Cn
k .

Then, the three inequalities can be written as

Sn
1 = 〈(

�Û n
1,23

)2〉 + 〈(
�V̂ n

1,23

)2〉 � Cn
1 , Sn

2 = 〈(
�Û n

2,13

)2〉 + 〈(
�V̂ n

2,13

)2〉 � Cn
2 , Sn

3 = 〈(
�Û n

3,12

)2〉 + 〈(
�V̂ n

3,12

)2〉 � Cn
3 . (A3)

Violation of the three inequalities above can confirm fully inseparable tripartite steering.
In our symmetric system, Sn

1 = Sn
2 = Sn

3, Cn
1 = Cn

2 = Cn
3 , g1,n = g2,n = g3,n, h1,n = h2,n = h3,n, i.e., violating any of the

above formulas can confirm fully inseparable tripartite steering. Calculating

Sn
1 = 〈(

�Û n
1,23

)2〉 + 〈(
�V̂ n

1,23

)2〉 = 〈(
X̂ n

1

)2〉 − 〈
X̂ n

1

〉2 + 2g1,n
(〈

X̂ n
1 X̂ n

23

〉 − 〈
X̂ n

1

〉〈
X̂ n

23

〉) + g2
1,n

(〈(
X̂ n

23

)2〉 − 〈
X̂ n

23

〉2) + 〈(
Ŷ n

1

)2〉 − 〈
Ŷ n

1

〉2
+ 2h1,n

(〈
Ŷ n

1 Ŷ n
23

〉 − 〈
Ŷ n

1

〉〈
Ŷ n

23

〉) + h2
1,n

(〈(
Ŷ n

23

)2〉 − 〈
Ŷ n

23

〉2)
, (A4)

where the optimal gain parameters g1,n = −h1,n = −(〈X̂ n
1 X̂ n

23〉−〈X̂ n
1 〉〈X̂ n

23〉)+(〈Ŷ n
1 Ŷ n

23〉−〈Ŷ n
1 〉〈Ŷ n

23〉)
[〈(X̂ n

23 )2〉−〈X̂ n
23〉2 )+(〈(Ŷ n

23 )2〉−〈Ŷ n
23〉2]

. Bringing the parameters back to the first

formula in Eq. (A3), we can get a simplified inequality

∣∣〈ân
1ân

2ân
3

〉 − 〈
ân

1

〉〈
ân

2ân
3

〉∣∣ � 1
2

√〈
â†n

2 ân
2â†n

3 ân
3

〉 + 〈
ân

2â†n
2 ân

3â†n
3

〉 − 2
〈
ân

2ân
3

〉2√〈
â†n

1 ân
1

〉 + 〈
ân

1â†n
1

〉 − 1
2Cn

1 − 2
〈
ân

1

〉2
. (A5)

Violation of the inequality above can confirm fully inseparable tripartite steering.
Furthermore, we consider that the system is described by mixtures of the type ρmix = P1

∑
i1

ηi1ρ
i1
1Qρ

i1
23 + P2

∑
i2

ηi2ρ
i2
2Qρ

i2
13 +

P3
∑

i3
ηi3ρ

i3
3Qρ

i3
12, where

∑
i Pi = 1 and

∑
i ηi = 1. Then substituting the mixture state into Eq. (A3), we find

Sn
1 � P1Sn

1,1 + P2Sn
1,2 + P3Sn

1,3, Sn
2 � P1Sn

2,1 + P2Sn
2,2 + P3Sn

2,3, Sn
3 � P1Sn

3,1 + P2Sn
3,2 + P3Sn

3,3, (A6)

023729-8



STEADY-STATE TRIPARTITE NON-GAUSSIAN … PHYSICAL REVIEW A 110, 023729 (2024)

where Sn
j, j′ stands for the total variance of operators Ûj and V̂j over the density operator ρ j . Thus, we have

Sn
1,1 = 〈(

�Û n
1,23

)2〉
1 + 〈(

�V̂ n
1,23

)2〉
1

= 〈[
�

(
X̂ n

1 + g1,nX̂ n
23

)]2〉
1 + 〈[

�
(
Ŷ n

1 + h1,nŶ
n

23

)]2〉
1

� P1

∑
i1

ηi1

{〈(
�X̂ n

1

)2〉
i1

+ 〈
�

(
g1,nX̂ n

23

)2〉
i1

+ 〈(
�Ŷ n

1

)2〉
i1

+ 〈
�

(
h1,nŶ

n
23

)2〉
i1

}

� P1

∑
i1

ηi1

{〈(
�X̂ n

1

)2〉
i1

+ 〈(
�Ŷ n

1

)2〉
i1

}
� P1

〈
Ĉn

1

〉
. (A7)

Applying the same conditions as the above inequality on S2,2 and S3,3, we can get

Sn
1 + Sn

2 + Sn
3 � P1S1,1 + P2S2,2 + P3S3,3 � P1C

n
1 + P2C

n
2 + P3C

n
3 � min

{
Cn

1 ,Cn
2 ,Cn

3

}
. (A8)

Violation of above inequality with any n is sufficient to confirm the genuine tripartite steering.
In our symmetric system, Eq. (A8) can be simplified to 3Sn

1 � Cn
1 , and

3Sn
1 = 3

[〈(
�Û n

1,23

)2〉 + 〈(
�V̂ n

1,23

)2〉] = 3
〈(

X̂ n
1

)2〉 − 3
〈
X̂ n

1

〉2 + 6g1,n
(〈

X̂ n
1 X̂ n

23

〉 − 〈
X̂ n

1

〉〈
X̂ n

23

〉) + 3g2
1,n

[〈(
X̂ n

23

)2〉 − 〈
X̂ n

23

〉2]
+ 3

〈(
Ŷ n

1

)2〉 − 3
〈
Ŷ n

1

〉2 + 6h1,n
(〈

Ŷ n
1 Ŷ n

23

〉 − 〈
Ŷ n

1

〉〈
Ŷ n

23

〉) + 3h2
1,n

[〈(
Ŷ n

23

)2〉 − 〈
Ŷ n

23

〉2]
, (A9)

where the optimal gain parameters g1,n = −h1,n = −(〈X̂ n
1 X̂ n

23〉−〈X̂ n
1 〉〈X̂ n

23〉)+(〈Ŷ n
1 Ŷ n

23〉−〈Ŷ n
1 〉〈Ŷ n

23〉)
[〈(X̂ n

23 )2〉−〈X̂ n
23〉2 )+(〈(Ŷ n

23 )2〉−〈Ŷ n
23〉2]

. Bringing the parameters back to 3Sn
1 �

Cn
1 , we can get

∣∣〈ân
1ân

2ân
3

〉 − 〈
ân

1

〉〈
ân

2ân
3

〉∣∣ � 1
2

√〈
â†n

2 ân
2â†n

3 ân
3

〉 + 〈
ân

2â†n
2 ân

3â†n
3

〉 − 2
〈
ân

2ân
3

〉2√〈
â†n

1 ân
1

〉 + 〈
ân

1â†n
1

〉 − 1
6Cn

1 − 2
〈
ân

1

〉2
. (A10)

Violation of the above inequality can confirm the genuine tripartite steering.
When all the subsystems are constrained to be quantum states, we will get ρ ′

mix = P1
∑

i1
ηi1ρ

i1
1 ρ

i1
23 + P2

∑
i2

ηi2ρ
i2
2 ρ

i2
13 +

P3
∑

i3
ηi3ρ

i3
3 ρ

i3
12. Referring to the inequalities (A3), we can get

En
1 = 〈(

�Û n
1,23

)2〉 + 〈(
�V̂ n

1,23

)2〉 � Cn
1 + |g1,nh1,n|Cn

23,

En
2 = 〈(

�Û n
2,13

)2〉 + 〈(
�V̂ n

2,13

)2〉 � Cn
2 + |g2,nh2,n|Cn

13,

En
3 = 〈(

�Û n
3,12

)2〉 + 〈(
�V̂ n

3,12

)2〉 � Cn
3 + |g3,nh3,n|Cn

12. (A11)

Violation of the three inequalities above can confirm fully inseparable tripartite entanglement. The same as the fully inseparable
tripartite steering,

En
1 = 〈(

�Û n
1,23

)2〉 + 〈(
�V̂ n

1,23

)2〉 = 〈(
X̂ n

1

)2〉 − 〈
X̂ n

1

〉2 + 2g1,n
(〈

X̂ n
1 X̂ n

23

〉 − 〈
X̂ n

1

〉〈
X̂ n

23

〉) + g2
1,n

[〈(
X̂ n

23

)2〉 − 〈
X̂ n

23

〉2] + 〈(
Ŷ n

1

)2〉
− 〈

Ŷ n
1

〉2 + 2h1,n
(〈

Ŷ n
1 Ŷ n

23

〉 − 〈
Ŷ n

1

〉〈
Ŷ n

23

〉) + h2
1,n

[〈(
Ŷ n

23

)2〉 − 〈
Ŷ n

23

〉2]
(A12)

in our system, where the g1,n = −h1,n = −(〈X̂ n
1 X̂ n

23〉−〈X̂ n
1 〉〈X̂ n

23〉)+(〈Ŷ n
1 Ŷ n

23〉−〈Ŷ n
1 〉〈Ŷ n

23〉)

[〈(X̂ n
23 )2〉−〈X̂ n

23〉
2
]+[〈(Ŷ n

23 )2〉−〈Ŷ n
23〉

2
]−Cn

23

. Bringing the parameters back to the first formula

in Eq. (A11), we can get a simplified inequality

∣∣〈ân
1ân

2ân
3

〉 − 〈
ân

1

〉〈
ân

2ân
3

〉∣∣ � √〈
â†n

2 ân
2â†n

3 ân
3

〉 − 2
〈
ân

2ân
3

〉2√〈
â†n

1 ân
1

〉 − 〈
ân

1

〉2
. (A13)

Violation of the inequality above can confirm fully inseparable tripartite entanglement.
According to inequalities (A11) and ρ ′

mix, we have

En
1 � P1En

1,1 + P2En
1,2 + P3En

1,3, En
2 � P1En

2,1 + P2En
2,2 + P3En

2,3, En
3 � P1En

3,1 + P2En
3,2 + P3En

3,3, (A14)
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where

En
1,1 � P1

(〈
Ĉn

1

〉
1 + |g1,nh1,n|

〈
Ĉn

23

〉
1

)
, (A15)

En
1,2 = 〈(

�Û n
1,23

)2〉
2 + 〈(

�V̂ n
1,23

)2〉
2

� P2

∑
i2

ηi2

{〈(
X̂ n

1

)2 + (
g1,nX̂ n

23

)2 + (
Ŷ n

1
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h1,nŶ

n
23

)2〉
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+ 2g1,n
〈
X̂ n

1 X̂ n
23

〉
i2
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〈
Ŷ n

1 Ŷ n
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〉
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1
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23
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Ŷ n

1

〉
2

〈
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2. (A16)

Combining those inequalities in Eqs. (A14)–(A16), we find that

En
1 + En

2 + En
3 � Cn

1 + |g1,nh1,n|Cn
23 + Cn
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Ŷ n

1

〉
3

〈
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. (A17)

Violation of the above inequality is the condition for genuine tripartite entanglement.
In our system, Eq. (A17) can be further simplified to

3En
1 � 3Cn

1 + 3|g1,nh1,n|Cn
23 + 4g1,n

〈
X̂ n

1 X̂ n
23
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〉
, (A18)

where we use the operator properties〈
X̂ n

1 X̂ n
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〉 = P1
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3, (A19)

and
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Ŷ n

23

〉
. (A20)

Then, the same as the genuine tripartite steering,
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(A21)

in Eq. (A18), where the optimal gain parameters g1,n = −h1,n = −(〈X̂ n
1 X̂ n

23〉−〈X̂ n
1 〉〈X̂ n
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. Bringing the parameters

back to Eq. (A18), we can get∣∣〈ân
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2 ân

2â†n
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. (A22)

Violation of the above inequality is the condition for genuine tripartite entanglement in our system.
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