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Single-photon sources are necessary components for many prospective quantum technologies. One candidate
for a single-photon source is spontaneous parametric down-conversion combined with a heralding photon
detection. The heralded light pulse from such a source is typically treated as single mode; this treatment,
however, is incomplete. We develop a full multimode description based on the exact Bogoliubov treatment
of the down-conversion process. We then provide a perturbative and effective treatment, which illustrates the
most important physical mechanisms and permits analytical estimates of the success probability and purity of
single-photon states under practical heralding conditions, both without relying on the precise detection time of
the heralding photon and when accepting photons only in a narrow window around the time of the detection. This
permits us to characterize the emitted light under three different assumptions for the pump pulse. For spontaneous
parametric down-conversion with a very short pump pulse, we find the single-mode description to be accurate,
while for longer pump pulses and continuous pumping, a multimode description is necessary. Our findings can
be used to guide the design of quantum information protocols based on heralded single-photon sources, as their
performance may depend on the multimode nature of the sources.
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I. INTRODUCTION

Single-photon sources are crucial components in the ad-
vancement of many of the prospective quantum technologies
under the label of the second quantum revolution [1,2]. This
includes secure communication through device-independent
quantum cryptography [3,4], quantum computation [5], and
the establishment of long-distance quantum networks [6].
The performance of these technologies depends heavily on
the performance of the single-photon source. Characteriz-
ing the single-photon source is thus essential for quantifying
the performance of any setup incorporating the source. This
characterization, furthermore, helps illuminate some of the
possible choices when designing protocols using single-
photon sources.

A candidate for single-photon sources employs an optical
parametric oscillator (OPO). In an OPO, the process of spon-
taneous parametric down-conversion (SPDC) converts pump
photons of frequency ω into photon pairs at frequencies ωA

(the signal photon) and ωB = ω − ωA (the idler photon). Sub-
ject to a classical pump, this process generates a superposition
of quantum states with zero, one, and more photon pairs;
hence, the detection of an idler photon heralds the presence
of one or more signal photons. When the OPO is driven
weakly, an approximate single-photon state is heralded by the
detection event [7–9]. Various methods of driving an OPO
have been employed in experiments, including short pulses
conditioned on a detection at any time [10,11], and continuous
driving, where the heralded signal photon occupies a wave
packet mode centered around the time of the heralding event
[12,13].

The SPDC process is generally treated as single mode
[14]. To fully characterize the heralded quantum state of
the light, a multimode description is, however, in general
required [12,15–22]. In this study, we present such a mul-
timode description of the light from an OPO based on the
exact Bogoliubov treatment of the down-conversion process.
From this, we can provide a perturbative treatment, which
allows us to characterize the light under different experimental
implementations, allowing us to estimate important quantities
for the performance of the OPO as a heralded single-photon
source under different circumstances.

The heralded single-photon source can be employed with
great benefit in the creation of the long-distance network [23],
by mixing the idler beams of two of these sources on a beam
splitter before the detection. A detection of a photon will
thus herald the creation of a superposition of a photon being
present in either of the signal arms. In this paper, we consider
limits appropriate for employing the source in a long-distance
quantum network; however, the results can easily be general-
ized to other applications.

The paper is structured as follows: In Sec. II, we apply
input-output theory to describe the fields produced by an OPO
and determine the temporal correlations within the fields. We
furthermore describe the effect on the signal field by the
detection of an idler photon. In Sec. III we define the char-
acterization parameters used to quantify the quantum nature
of the signal light field. In Sec. IV, we apply our theory to
different experimental implementations of pulsed and contin-
uously driven OPO-based single-photon sources. Section V
summarizes the conclusions of our study.
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FIG. 1. Schematic illustration of the setup. A classical pump
laser beam (green line) drives an OPO (orange box), generating
photon pairs in the nondegenerate signal (blue line) and idler (red
line) cavity modes. The light exits the cavity at a rate κ , producing
continuous signal [a(t )] and idler [b(t )] fields, which are separated
by a dichroic mirror (yellow box). The idler beam impinges on a
single-photon detector (SPD).

II. THEORETICAL MODEL OF THE HERALDED
SINGLE-PHOTON SOURCE

The system under investigation is schematically illustrated
in Fig. 1. Within a cavity featuring a full width half max
linewidth κ , a pump beam interacts with a nonlinear crystal,
generating pairs of photons in the intracavity modes ac and bc.
The two cavity fields exit the cavity and combine with incident
vacuum fields ain and bin to form the output multimode signal
and idler fields a and b. These fields are split by a dichroic
mirror, and the detection of a photon in the idler beam is
accomplished using a single-photon detector (SPD), which
heralds the presence of a photon in the signal beam.

A. Input-output relations and mode decomposition

We begin by detailing how the input fields are transformed
by the OPO into the corresponding output fields. Our results
in this section depends on the specific scenario, but they can
be generalized with small modifications. The Hamiltonian
describing the SPDC process in a cavity is [7]

H = h̄χ (t )(acbc + a†
cb†

c ), (1)

where χ (t ) is given by the temporal profile of the pump pulse.
The dynamics of the cavity fields are given by the Heisen-

berg equations of motion, and the output fields are governed
by the input-output relations [24], resulting in

ẇc = −κ

2
wc + √

κ win + τyχ (t )wc, (2a)

w = win − √
κ wc, (2b)

where wi = (ai, b†
i )T and τy is the Pauli-y matrix introduced

for brevity.
As the commutation relation holds for all the fields, the

solution of the differential equation can be written in the
form of a general Bogoliubov transformation, with exchange
symmetry between the a and b fields

w(t ) =
∫ ∞

−∞
dt ′

(
u(t, t ′) v(t, t ′)
v∗(t, t ′) u∗(t, t ′)

)
win(t ′), (3)

where u(t, t ′) and v(t, t ′) are the Bogoloiubov transformation
functions. From the commutation relations, we obtain identi-
ties obeyed by u(t, t ′) and v(t, t ′),

δ(t − t ′) =
∫ ∞

−∞
dτ [u(t, τ )u∗(t ′, τ ) − v(t, τ )v∗(t ′, τ )]

(4a)

0 =
∫ ∞

−∞
dτ [u(t, τ )v(t ′, τ ) − v(t, τ )u(t ′, τ )]. (4b)

By solving the first-order differential equation (2), we identify
the expressions for u(t, t ′) and v(t, t ′),

u(t, t ′) = δ(t − t ′) − κ�(t − t ′)e− κ
2 (t−t ′ ) cosh[I (t, t ′)]

(5a)

v(t, t ′) = iκ�(t − t ′)e− κ
2 (t−t ′ ) sinh[I (t, t ′)], (5b)

where I (t, t ′) = ∫ t
t ′ dτχ (τ ) and �(t ) is the Heaviside step

function.
We will now follow the method outlined in Refs. [20,21]

to find the state of the light exiting the cavity. We make a
singular value decomposition of the transformation functions
u(t, t ′) and v(t, t ′). The results here rely on the exchange sym-
metry between the output fields a and b. For a more general
derivation see Appendix A. According to the Bloch-Messiah
theorem for bosons [25], the left and right singular vectors of
the two transformation functions are related such that

u(t, t ′) =
∑

�

λ� f�(t )g∗
�(t ′) (6a)

v(t, t ′) =
∑

�

μ� f�(t )g�(t ′), (6b)

and the singular values are related through

λ2
� − μ2

� = 1, (7)

which allows us to write λ� = cosh(ξ�) and μ� = sinh(ξ�).
Rewriting Eq. (3) using the singular value decomposition,

we find

w(t ) =
∑

�

(
cosh(ξ�) f�(t ) sinh(ξ�) f�(t )

sinh(ξ�) f ∗
� (t ) cosh(ξ�) f ∗

� (t )

)
win,�, (8)

where wT
in,� = (ain,�, b†

in,�
) is the vector containing the input

fields in the mode shape described by g�(t ), i.e., ain,� =∫
dt ′g∗

�(t ′)ain(t ′) and b†
in,�

= ∫
dt ′g�(t ′)b†

in(t ′). We can sim-
ilarly transform the output fields to the basis described by
f�(t ) through a� = ∫

dt f ∗
� (t )a(t ) and b†

� = ∫
dt f�(t )b†(t ).

This yields the transformation

w� =
(

cosh(ξ�) sinh(ξ�)

sinh(ξ�) cosh(ξ�)

)
win,�. (9)

This transformation can equivalently be written using the two-
mode squeezing operator

w� = S†
� (ξ�)win,�S�(ξ�), (10)

where S�(ξ�) = exp[ξ�(a†
�b†

� − a�b�)]. The light in the mode
shaped by f�(t ) is thus described by the two-mode squeezed
state |TMSS�〉, which can be expanded in the Fock states
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|n�, n�〉 of the signal and idler mode functions

|TMSS�〉 = 1

cosh (ξ�)

∑
n

tanhn(ξ�)|n�, n�〉. (11)

The combined state of the light exiting the cavity can thus
be described as a product of two-mode squeezed states in
the different modes shaped by the left singular vectors, i.e.,
|�〉 = ⊗

� |TMSS�〉. Thus, by choosing the correct basis, we
can describe the light exiting the cavity as a product of two-
mode squeezed states in independent orthogonal modes.

B. Correlations and the conditional density matrix after
heralding

We now turn to the description of the quantum state of the
signal beam heralded by the detection of a photon in the idler
beam. The description is independent of the particular down-
conversion process investigated above, and the results from
this section are thus valid for any photon pair source.

We will be working in a regime where the OPO is driven
weakly, such that the success probability of detecting photons
in the idler beam PS is small. We will thus expand all the
relevant quantities perturbatively in PS .

The heralding click in the SPD corresponds to the anni-
hilation of a photon in the idler beam. We shall assume that
the collection efficiency of the idler beam ηd is small, which
is the case when considering a heralded single-photon source
employed in long-distance quantum networks. Multiple detec-
tion events can thus be ignored, and we can write

PS = ηd

∫
T

dt〈b†(t )b(t )〉, (12)

where the detector signal is recorded in the time interval T .
We shall from now on ignore ηd for brevity, noting that all
success probabilities should be multiplied by ηd .

A detection event at time tc heralds the preparation of the
signal beam reduced density matrix

ρ̂ → ρ̂A|tc = TrB[b(tc)ρ̂b†(tc)]

〈b†(tc)b(tc)〉 , (13)

where TrB is the trace over the idler-photon subspace.
To develop our formalism, we partition the conditional

reduced density matrix in the signal arm into components with
a definite number of photons, i.e.,

ρ̂A|tc =
⊕

n

Pnρ̂n|tc , (14)

where ρ̂n|tc denotes the normalized density matrix with n pho-
tons in the signal beam and Pn is the population of that state.

We rewrite the density matrix components explicitly in the
temporal representation

ρ̂n|tc =
∫
T

dt1 . . . dt2n

n!2
ρn|tc ({t})|t1, . . . tn〉〈tn+1, . . . , t2n|,

(15)
where ρn|tc ({t}) is the temporal representation of the
density matrix, {t} = {t1, . . . , t2n} and |t1, . . . , tn〉 =
a†(t1) . . . a†(tn)|∅〉.

We now turn to the 2n-point correlation functions
C2n|tc ({t}) of the signal beam after the heralding event, given
by

C2n|tc ({t}) = Tr[a(t1) . . . a(tn)ρA|tc a
†(tn+1) . . . a†(t2n)]. (16)

We can relate the density matrix components to the 2n-point
correlation functions, through the relation (see Appendix B
for derivation)

Pn〈t1, . . . , tn|ρ̂n|tc |tn+1, . . . , t2n〉 =
∞∑

k=0

(−1)k

k!

∫
T k

dτ1 . . . dτkC2(n+k)|tc ({t}′), (17)

where the extended set of time arguments is {t}′ = {τ1, . . . , τk, t1, . . . , t2n, τk, . . . , τ1}. This equation allows us to construct the
full density matrix from all the even correlation functions. As the correlation functions are easy to calculate or measure compared
to the density matrix, we can use this equation as a shortcut to gain information about the state.

We can write the 2n-point signal correlation function conditioned on a specific idler click time tc, by substituting the reduced
density matrix, with the form from Eq. (13), yielding the expression

C2n|tc ({t}) = Tr[a(t1) . . . a(tn)b(tc)ρ̂b†(tc)a†(tn+1) . . . a†(t2n)]

〈b†(tc)b(tc)〉 . (18)

Since the full emitted light from the OPO is in a Gaussian state
before the heralding event, we can apply Wicks theorem to
express all higher-order correlation function in terms of two-
time correlations.

As we are interested in the regime where an approximate
single-photon state is heralded, we will expand C2n|tc pertur-
batively in powers of the interaction strength. To obtain this,
we will thus first expand the operators d = ∑

j d j , where d
is either ac, bc, a(t ), b(t ), wc, or w and d j contains χ (t ) j
times.

The set of differential equations in Eq. (2) is solved recur-
sively for each term in the series expansion,

w0(t ) = win(t ) − κ

∫ t

−∞
dt1e− κ

2 (t−t1 )win(t1) (19a)

w1(t ) = −κ

∫ t

−∞
dt1χ (t1)

∫ t1

−∞
dt2e− κ

2 (t−t2 )τywin(t2)(19b)

w j (t ) =
∫ t

−∞
dt1χ (t1)e− κ

2 (t−t1 )τyw j−1(t1), (19c)
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where Eq. (19c) holds for j � 2.
Using the series expansion of the field operators, we obtain

expressions for the two time field correlation functions in
orders of the interaction strength, and define the jth term in
the expansion of 〈a†(t )a(t ′)〉 as

〈a†(t )a(t ′)〉 j =
j∑

k=0

〈a†
k (t )a j−k (t ′)〉 (20)

with a similar definition for 〈a(t )b(t ′)〉. Since the input light is
in the vacuum state, we can explicitly write the leading order
contributions to the output field correlation functions,

〈a†(t )a(t ′)〉 = 〈a†(t )a(t ′)〉2 + 〈a†(t )a(t ′)〉4 + Oχ6 (21a)

〈a(t )b(t ′)〉 = 〈a(t )b(t ′)〉1 + 〈a(t )b(t ′)〉3 + Oχ5. (21b)

The exchange symmetry between the output fields a and b
implies 〈b†(t )b(t ′)〉 = 〈a†(t )a(t ′)〉. We note from Eq. (12),

that the success probability scales as Oχ2, and we will
thus expand up to second order in the interaction strength.
For any two times ti and t j , the product of the anoma-
lous expectation values 〈a(ti )b(tc)〉 〈a†(t j )b†(tc)〉 scales as
Oχ2, whereas the product of the direct expectation values
〈a†(t j )a(ti )〉 〈b†(tc)b(tc)〉 scales as Oχ4.

We can now return to the conditional 2n-point cor-
relation C2n|tc in Eq. (18). The lowest-order terms in
the Wick expansion of numerator of C2n|tc must contain
〈a(ti )b(tc)〉 〈a†(t j )b†(tc)〉 and n − 1 two-point correlation
functions of the form 〈a†(t )a(t ′)〉. As the denominator is of
the order Oχ2, the leading contribution to C2n|tc is of the order
Oχ2n−2. Consequently, C2|tc and C4|tc are the only correlation
functions with terms at most quadratic in χ (t ). Equation (17)
thus tells us that the only density matrix components con-
tributing to linear order in PS are ρ̂1|tc and ρ̂2|tc . These are given
by

P1ρ1|tc (t1; t2) = 〈a†(t2)b†(tc)〉〈a(t1)b(tc)〉
〈b†(tc)b(tc)〉

[
1 −

∫
T

dτ 〈a†(τ )a(τ )〉
]

+ 〈a†(t2)a(t1)〉
[

1 −
∫
T

dτ
|〈a(τ )b(tc)〉|2
〈b†(tc)b(tc)〉

]

−
∫
T

dτ
〈a†(t2)b†(tc)〉 〈a(τ )b(tc)〉 〈a†(τ )a(t1)〉 + 〈a(t1)b(tc)〉 〈a†(τ )b†(tc)〉 〈a†(t2)a(τ )〉

〈b†(tc)b(tc)〉 (22a)

P2ρ2|tc (t1, t2; t3, t4) = 4
〈a†(t3)a(t2)〉 〈a†(t4)b†(tc)〉 〈a(t1)b(tc)〉

〈b†(tc)b(tc)〉 . (22b)

Using the expansion of the two-point correlation functions
in powers of χ (t ) given in Eq. (21), we can expand the
density matrix components in powers of χ (t ). To obtain the
density matrix contributions to second order in χ (t ), we need
〈a(t )b(t ′)〉 up to Oχ3, 〈a†(t )a(t ′)〉 up to Oχ2, and 〈b†(tc)b(tc)〉
up to order Oχ4.

We will consider two different possible applications of the
heralding mechanism: one where we condition on the occur-
rence of a click, but not on the precise time of the click, and
one where we keep track of the specific detection time and the
associated timing of the heralded signal photon in the state
ρA|tc .

In the first case, we consider the weighted average output
state

Pnρ̂n|tc → Pnρ̂n =
∫
T dtc〈b†(tc)b(tc)〉Pnρ̂n|tc

PS
. (23)

In the latter case, we will look for photons in the signal
arm in a short interval of length T < T around the associated
click. We thus consider

ρ̂A|tc → ρ̂A|tc,T = Tr¬T [ρ̂A|tc ], (24)

where Tr¬T is the partial trace over all the signal photons
outside T . This will lead to a zero-photon contribution due to
the possibility of having no photons in the acceptance interval.

We have thus found expressions for the density matrix of
our system after the heralding event only including accessible
parameters of the setup.

Heralding event for the independent modes decomposition

We will now consider the heralding process using the
independent modes description, where the outgoing light is
described by the tensor product of two-mode squeezed states
in Eq. (11). We will assume the pump to emit pulsed light, and
we will look for photons in the entire time range.

The probability of detecting a photon in the kth mode
in the low power limit is PS,k = 〈b†

kbk〉 = sinh2(ξk ), yielding
the total success probability PS = ∑

� sinh2(ξ�). The reduced
density matrix of the signal field conditioned on a click at any
time can be rewritten as conditioned on a click in any of the
different independent modes

ρ̂ → ρ̂A =
∑

� TrB[b�ρ̂b†
�]

PS
. (25)

We partition the density matrix as described in Eq. (14), and
find the normalized density matrix contributions and their
populations up to linear order in the PS,k . Starting with the
single-photon density matrix, we find

ρ̂1 =
∑

k PS,k|1k〉〈1k|
PS

(26)

P1 = 1 − PS −
∑

k P2
S,k

PS
, (27)

where |1k〉 = a†
k |∅〉 is the state with one photon in the kth

signal mode and vacuum in all other modes. We can without
loss of generality assume that the probabilities of detection
in a specific mode are ordered in descending order, meaning
PS,1 � PS,2 � · · · .
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We next turn to the undesired two-photon component of
ρ̂A. The signal field may contain two photons in the heralded
mode, or one photon in the heralded mode and one photon in
one of the other modes. These possibilities are represented by
the two-photon component of ρ̂A,

ρ̂2 =
∑

k

(
2P2

S,k|2k〉〈2k| + ∑
� 
=k PS,�PS,k|1�1k〉〈1�1k|

)
∑

j P2
S, j + P2

S

, (28)

where |1�1k〉 = a†
�|1k〉 with � 
= k. The population of the two-

photon state is

P2 = P2
S + ∑

k P2
S,k

PS
. (29)

Furthermore, if we allow for some loss probability 1 − η in
the signal arm, we have P1 = η and P2 = η2(PS + ∑

k P2
S,k/PS )

to leading order in PS . By considering the ratio of the counting
statistics to leading order in PS we can define a combination
independent of the efficiency, η in the signal arm

ϒ ≡ P2

P2
1 PS

= 1 +
∑

k

P2
S,k

P2
S

, (30)

where the second equality is true for this specific model.
As the right-hand side depends on whether the source emits

single-mode or multimode light, we can use the ratio of the
counting statistics as an indicator of the multimode nature of
the source. This can be exemplified by the two extreme cases:
In the single-mode limit where PS = PS,1 we find ϒ = 2, and
if the single-photon state is maximally mixed with N equally
contributing modes, we find ϒ = 1 + 1/N . Accordingly, this
expression provides a rough characterization of the multimode
nature of the field, and we shall use it for this purpose below.

We have in this section shown that if we consider a herald-
ing click at any time, a complete description of the state of
the light after the heralding process can be found through a
set of parameters PS,k and the orthogonal modes |1k〉. These
can be found through the singular value decomposition of
the Bogoliubov transformation functions detailed in Sec. II A.
Alternatively, one can find them by making an eigenvalue de-
composition of the single-photon density matrix contribution,
found by performing the incoherent summation described in
Eq. (23) of the expression in Eq. (22a), where T is set to cover
the entire time range.

III. CHARACTERIZATION OF THE HERALDED STATES

The expressions derived in the previous section allow us to
describe the full density matrix of the signal field conditioned
on the detection of idler photons in the few-photon regime.
However, to have a simple characterization of the source,
we will consider a range of different parameters introduced
below. The values of these parameters can then form the basis
of further characterization of the quality of the produced states
for different protocols.

The first characterization parameters are the populations of
the single-photon state and the two-photon state, P1 and P2,
and their ratio ϒ given in Eq. (30). As the goal is to have a
single photon in the signal beam after the heralding event, we
want to be in a regime where P1 � P2. In this regime, we have
the second-order correlation function g(2)

pulse = 2P2/P2
1  1.

To investigate the single-photon component further, we
write the density matrix in its eigenbasis

ρ̂1 =
∑

i

wi|φi〉〈φi|, (31)

where wi is the weight associated with the eigenmode |φi〉. We
shall assume the weights are sorted in descending order, i.e.,
w1 � w2 � · · · . Furthermore, we define the (mode) purity of
the single-photon state as

�1 = Tr
[
ρ̂2

1

] =
∑

i

w2
i . (32)

If the single photon is emitted in a pure state, we have �1 = 1,
and for a maximally mixed state, we find �1 = 1/N , where N
is the number of contributing modes. The purity is crucial for
any protocol relying on interference between photons from
different sources. However, for some applications including
quantum key distribution, interference between different pho-
tons is not important, and thus the purity is less relevant.

We now turn to the unwanted two-photon state. To make
a similar characterization, we consider the decomposition of
the two-photon density matrix in terms of the eigenmodes of
the single-photon density matrix |φi〉. We thus define the set
of populations

Qi j = 〈ρ̂2〉φiφ j, (33)

where |φiφ j〉 contains two photons in the respective modes
|φi〉 and |φ j〉. The single-mode case is characterized by Q11 =
1 as the only nonzero population. Some protocols can mitigate
errors from two-photon events [26,27]; however, the effective-
ness of these protocols may rely on the two photons occupying
the same mode [28], thus requiring Qi j ≈ 0 for any i 
= j.
Knowledge of Qi j can thus be used to assess the severity of
errors coming from multiphoton events.

Hong-Ou-Mandel visibility

The Hong-Ou-Mandel (HOM) effect, describing how the
interference of two indistinguishable photons mixed on a
beam splitter results in bunching of the two photons [29],
remains one of the clearest experimental indicators of the
single-photon purity. The measure of the HOM effect is the
HOM visibility, which we will define as [30]

V = 1 − Pcc

Pcc,dist
, (34)

where Pcc (Pcc,dist) is the number of coincidence clicks between
the two output ports in a HOM-type experiment (when the
photons are completely distinguishable). If the single-photon
source is perfect, i.e., the emitted light is in a pure single-
photon state, the visibility is 1. However, both the impurity
of the single-photon state and the nonzero two-photon com-
ponent limits the maximum visibility, and the HOM visibility
is thus an important tool for characterizing a single-photon
source experimentally [31,32].

For this reason, we choose to link our characterization
parameters to the HOM visibility, with the goal of indicating
how a measurement of the HOM visibility can yield direct
information about the multimode nature of the source. The
visibility can be expanded up to linear order in P2, in the
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regime relevant for single-photon generation, where P1 � P2.
We generalize the definition given in Refs. [33,34],

V = V0
(
1 − F g(2)

pulse

)
, (35)

where V0 is the single-photon visibility, i.e., the visibility
when P2 = 0 and F characterizes the influence of two-photon
events on the visibility. Compared to Refs. [33,34], which
only consider V0 = 1, we have generalized the formula to
include impure single-photon states. In doing so, we choose
to take the factor V0 outside the parenthesis when defining F .
This definition yields a better separation of effects caused by
the impurity of the single-photon state and the impurity of the
two-photon state into the parameters V0 and F , respectively,
as is seen below.

As mentioned above, we can express V0 and F in terms of
the previously introduced characterization parameters

V0 = �1 (36)

F = 1 + 2P1

[
1 −

∑
i wi(2Qii + ∑

j 
=i Qi j )

2�1

]
, (37)

i.e., the purity of the single-photon state is the same as the
single-photon HOM visibility [30], whereas F depends on
the multimode character of the single-photon and two-photon
states.

In the single-mode case we find V0 = F = 1. If the single-
photon state remains pure and the two-photon state becomes
mixed, F will increase to values between 1 and 3 [33,34]. If
the single-photon state is in a mixed state, V0 will decrease
as the purity decreases. In the limit where the single-photon
state is maximally mixed, i.e., the single-photon state popu-
lates each eigenmode equally, F becomes 1. In the opposite
limit where the single-photon state mostly populates a single
eigenmode and the two-photon state mostly populates a single
combination of eigenmodes, we find F to decrease slightly
from the corresponding value when V0 = 1. Thus, by extract-
ing V0 and F from a HOM-type experiment, one can gain
information about the multimode nature of the emitted light.

IV. QUANTITATIVE RESULTS FOR DIFFERENT DRIVING
METHODS

In this section, we examine three different temporal profiles
of the driving field: an infinitely short pulse, a finite duration
Gaussian pulse, and a continuous wave laser. See Fig. 2 for
the pulse shapes and the lowest-order correlations between
photons in the signal and idler beams for the three cases. We
will characterize the quantum state heralded in the three cases
and make use of the parameters introduced in the previous
section to interpret and explain the results.

A. Short pulse

We first consider an infinitely short pump pulse, meaning
χ (t ) = xδ(t ), where x is the dimensionless strength of the
interaction. We sketch the correlations between photons in the
two beams in Fig. 2(a). We see that the light in the two beams
is temporally uncorrelated, matching the experimental result
in Ref. [11], where the output states in the signal and idler

FIG. 2. (a–c) The correlations between a photon in the signal
beam at time t and a photon in the idler beam at time t ′ in the weak
driving limit. The highest (lowest) value is attained in the yellow
(blue) regions. (d–f) The temporal shape of the interaction χ (t ). (a),
(d) Infinitely short pulse. (b), (e) Gaussian pulse with κσ = 1. (c), (f)
cw laser.

beams is shown to have uncorrelated frequencies if a narrow
pump pulse is employed.

The infinitely short pulse first creates a number of ex-
citations of the intracavity modes, and these excitations
subsequently leak into uncorrelated exponentially decaying
single-mode wave packets in the signal and idler beams.
Hence, the full density matrix before the heralding event is
described by

ρ̂ =
∑

n

An(a†
φSP

)n(b†
φSP

)n|∅〉〈∅|(aφSP )n(bφSP )n, (38)

where An is the weight of the nth component, which can
be calculated from the two-point correlation functions given
below, and a†

φSP
(b†

φSP
) is the creation operator of a photon in

the signal (idler) field in the wave packet shaped by φSP(t ),
i.e.,

a†
φSP

=
∫ ∞

−∞
φSP(t )a(t ), (39)

where φSP(t ) is defined as

φSP(t ) = √
κ e−κt/2�(t ). (40)

We obtain the two-point correlation functions of the signal
and idler fields from the full-density matrix to fourth order in
x

〈a†(t )a(t ′)〉 = φSP(t )φSP(t ′)
(

x2 + x4

2

)
(41a)

〈a(t )b(t ′)〉 = −iφSP(t )φSP(t ′)
(

x + 3x3

4

)
. (41b)

From the correlation functions we find the success probability
to lowest order in x as PS = x2.

The heralding event only influences the state in the
signal beam by changing the populations of the different
n-photon density matrix components, meaning the normal-
ized n-photon density matrix is ρ̂n = (a†

φSP
)n|∅〉〈∅|(aφSP )n/n!.

Using Eq. (22), we find the populations of the conditional
single-photon state and the conditional two-photon state to
second order in x to be P1 = 1 − 2x2 and P2 = 2x2. As the
emitted light is single mode, the HOM-visibility parameters
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FIG. 3. Characterization of a heralded SPDC source driven by a Gaussian pump pulse of width σ . (a) Purity of the single-photon density
matrix for weak driving. The two dashed lines mark the two values of σ for which V0 = 0.99 and V0 = 0.95. The four largest weights of the
single-photon eigendecomposition are plotted in the inset. (b) Linear response of HOM visibility to two-photon events, see Eq. (35). In the
inset, we show the populations of different combinations of single-photon eigenmodes in the two-photon state.

are easily found to be V0 = F = 1, and the ratio of the count-
ing statistics is found to be ϒ = 2 in the low-driving regime.

B. Gaussian pump pulse

We next investigate driving of the SPDC source with a
finite duration pump pulse. We assume that the pump strength
takes the form χ (t ) = (x/

√
2πσ 2) exp(−t2/2σ 2), where σ

defines the width of the pulse and x is again a dimensionless
strength. We show the intensity correlations between the two
beams for κσ = 1 in Fig. 2(b). The photons in the two beams
now have some temporal correlations. To which degree pho-
tons in the two beams are temporally correlated is determined
by the width of the pulse.

In the heralding protocol, we will not condition on a spe-
cific detection time of the idler photon, and we will hence
average over all possible detection times. This means that
results derived in Sec. II B are applicable here. We will follow
the method introduced earlier. We find the single-photon den-
sity matrix contribution by taking the trace over the possible
click times of the expression in Eq. (22a). This density matrix
is then diagonalized to find the weights of the eigenmodes.
This allows us to compute the other density matrix contri-
butions, and thus the characterization parameters. One can
alternatively use the general density matrix in Eq. (22) and
express the characterization parameters directly in terms of
integrals. These integrals are provided in Appendix C and can
be solved numerically.

In the inset of Fig. 3(a) we plot the weights of the most
prominent eigenstates of the single-photon density matrix for
different pulse widths. When κσ  1 the single-photon state
is almost exclusively populated by one photon in the same
state, i.e., in this regime the light behaves close to the single-
mode limit. When σ increases the population of this mode
decreases, and the other eigenmodes become more prominent,
necessitating the full multimode description. This is also clear
when considering the single-photon purity, or equivalently, the
single-photon HOM visibility, plotted in Fig. 3(a). The purity
is close to unity in the narrow-pulse regime, but decreases
when transitioning to longer pulses. From Eq. (27) we can re-
late the single-photon population and the single-photon purity
through P1 = 1 − (1 + �1)PS .

We next turn to the two-photon component. The population
of the two-photon density matrix component can be found
from Eq. (29), yielding to leading order in PS ,

P2 = PS (1 + �1), (42)

corresponding to the ratio of counting statistics ϒ = 1 + �1.
In the single-mode case, where �1 = 1, we obtain P2 =
2PS . In the opposite limit, where the single-photon state is
maximally mixed P2 = (1 + 1/N )PS . This relation reveals a
trade-off between the purity of the single-photon state and the
population of the unwanted two-photon state. A high single-
photon purity yields a relatively higher probability of emitting
multiple photons reflecting photon bunching in a single-mode
squeezed state. However, if the coherence of the light from
different sources is less important, it may be an advantage
to have a less pure single-photon state, to gain a smaller
population of the two-photon state. As described above, the
mode purity of the single-photon state is close to unity in the
short-pulse regime; however, as σ increases, the single-photon
purity decreases. The two-photon population will follow this
behavior and decrease as the pump pulse is made wider.

We can express the populations of the two-photon state,
defined in Eq. (33), by considering the two-photon density
matrix for this case in terms of the weights of the single-
photon density matrix

Qi j = 2wiw j

1 + �1
, (43)

which tells us that the two-photon state is pure if the
single-photon state is pure, and that the two-photon state
is maximally mixed if the single-photon state is maximally
mixed.

The largest two-photon populations are plotted in the inset
of Fig. 3(b). When κσ  1 the two-photon state is almost
exclusively populated by two photons in the same state. When
σ increases, the population of this state decreases, and other
combinations of eigenmodes become more prominent. This
result corroborates the conclusion from the characterization of
the single-photon component: a single-mode description is a
good approximation in the narrow-pulse regime, but when the
pulse becomes wider, a multimode description is necessary to
account for the quantum state.
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We now consider the linear response of the HOM visibility
on two-photon events, and find it in terms of the single-photon
weights

F = 1 + 2P1

1 + �1

(
�1 −

∑
i w

3
i

�1

)
. (44)

If the single-photon state is pure or maximally mixed, the
value of F becomes 1, matching the calculations from before.
However, between these two extremes we find F to be smaller
than 1.

The parameter F is plotted in Fig. 3(b). F decreases
initially when the pulse is made broader, going from the
single-mode value of 1 when κσ  1 to ∼0.81 for κσ ∼ 4,
with a slight increase afterward. The decrease in F means
that the HOM visibility is less influenced by the two-photon
component compared to the single-mode case. The reduction
in F is intimately linked to the decrease in single-photon
visibility from the impure single-photon component. For a
mixed single-photon state, the additional photon might have
an overlap with the multiple components from the impure
single-photon state, thus the second photon is less disruptive
for the HOM visibility than in the single-mode case. However,
since we are operating in the limit of single-photon generation
where g(2)

pulse  1, the advantage gained from a reduction in
F cannot mitigate the decrease in HOM visibility from the
impure single-photon states.

C. Continuous wave

We now turn to the continuous wave setting with a constant
pump laser, setting χ (t ) = xκ , such that x is dimensionless.
The correlations between photons in the two arms for this
setting are shown in Fig. 2(c). The signal and idler beams
are highly temporally correlated under these experimental
conditions. As we are working in a continuous setting, the
probability of success increases linearly with the time T . The
relevant quantity is thus the success rate PS/T . Furthermore,
this effectively partitions the long time T into smaller sec-
tions, creating temporal multiplexing, where we try to obtain
the heralding click in each section. This is a great advantage
when the success probability is small, e.g., in the establish-
ment of a long-distance quantum network, as the success
probability is effectively multiplied by the number of multi-
plexing modes.

To evaluate the quality of the state, we find the two-point
correlations up to the appropriate order in x,

〈a†(t )a(t ′)〉 = e− κ
2 |t−t ′ |x2κ (2 + κ|t − t ′|) + Ox3 (45a)

〈b†(tc)b(tc)〉 = 2x2κ[1 + 4x2] + Ox5 (45b)

〈a(t )b(t ′)〉 = −ie− κ
2 |t−t ′|xκ

{
1 + x2

×[
4 + κ|t − t ′|(2 + κ|t−t ′|

2

)]} + Ox5.

(45c)

We make the transformation of the density matrix de-
scribed in Eq. (24), where we accept photons in the signal
arm inside a time interval of length T selected symmetrically
around the heralding click. While we omit the subscript T in
the text, all characterization parameters depend on the length
of the acceptance interval. We use the results from Sec. II

to extract analytical expressions for the density matrix com-
ponents, P1, P2, �1, and Q11 from the two-point correlation
functions. These expressions are given in Appendix D.

The success rate PS/T can be calculated from Eqs. (12)
and (45b), to give PS/T = 2κx2 + Ox4. We will thus expand
all the quantities to second order in x.

The conditional single-photon population P1 is plotted in
Fig. 4(a). The average time between the emission of the sig-
nal and idler photons is set by the cavity decay time ∼1/κ;
hence, for short (long) time intervals κT  1 (κT � 1), the
probability of having a photon inside the acceptance interval
T is small (approaches unity). This behavior is seen in the
population of the single-photon state.

We next consider the purity of the single-photon state. By
examining Eq. (D1a), we note that ρ1(t1, t2) can be expressed
as a product of the most populated mode function evaluated
at t1 and t2, respectively, in the weak driving limit. Thus, the
density matrix can be expressed as ρ̂1 = |φcw〉〈φcw|, where

|φcw〉 =
√

κ

2
(
1 − e− κT

2
) ∫ tc+ T

2

tc− T
2

dt e− κ
2 |t−tc||t〉. (46)

However, the single-photon density matrix can become mixed
to lowest order in χ (t ) if the setup is changed to include
limitations from real devices. In Ref. [22] the finite temporal
resolution of the detectors leads to a mixed single-photon
density matrix.

When x increases, multiple pairs of photons can be emitted,
making it possible that the photon associated with the herald-
ing click is outside the acceptance interval, while a signal
photon from a different pair is inside the acceptance interval.
This leads to a decrease in the purity of the single-photon
state. The most populated mode continues to be |φcw〉, and
the other eigenmodes can be found numerically. We find that
the leading contribution to 1 − �1 is of order Ox2; thus,
by introducing a parameter β we can write the purity as
�1 = 1 − βx2 + Ox4, where β is plotted for a range of time
intervals in Fig. 4(b).

We now characterize the two-photon state, starting with the
second-order contribution of P2, which is plotted in Fig. 4(c).
As T becomes large, the two-photon population increases
linearly with longer time intervals, which stems from an
increased contribution from uncorrelated photons with a con-
stant photon flux. Thus, while the conditional population of
the single-photon state stagnates, the error rate from two-
photon events increases.

We now move to the F factor in the HOM visibility and the
populations of the two-photon state Qi j plotted in Fig. 4(d).
For short time intervals, the two-photon state is solely pop-
ulated by two photons in |φcw〉 matching the single-mode
description, which means the F factor is close to unity in this
regime. For longer acceptance intervals, combinations where
one photon is in a different mode than |φcw〉 get increasingly
populated. As we begin to add more modes for the second
photon to occupy in the two-photon state, F increases.

As expected, our characterization highlights a compromise
when designing experiments based on these sources. For short
acceptance intervals, the error rate from two-photon events
is negligible; however, the probability of getting any photon
after the heralding event is small, as the signal photon accom-
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FIG. 4. Characterization of a SPDC source driven with a constant pump field and accepting clicks within the acceptance time interval T
around the detector click. (a) Population of the single-photon state in the weak driving limit. (b) Lowest-order correction to the purity of the
single-photon density matrix, 1 − �1 = βx2. (c) Lowest-order contribution to the population of the two-photon density matrix component.
(d) The linear response of HOM to two-photon events, see Eq. (35). The inset shows the populations of the expansion of the two-photon state
on eigenmodes of the single-photon density matrix. The most prominent eigenmode is |φcw〉 given in Eq. (46). The other eigenmodes are found
numerically using the value x = √

10−3/2κT .

panying the detected photon might be outside the acceptance
interval. Conversely, choosing a long interval length T ensures
that the signal photon is inside the interval, but the error rate
from two-photon events increases, due to the contamination
by photons generated at other times.

Description by a multiple-independent-modes model

As the heralding scheme in this case is based on the detec-
tion at a specific time, we cannot apply the theory developed
in Sec. II B 1. However, to guide intuition when setting up
an experiment based on a cw-driven SPDC source, we now
introduce a simplified model to highlight the trade-offs be-
tween different properties of the model inherent from the full
multimode nature. Since sources are for simplicity typically
described in terms of single-mode models, we shall here de-
velop a model where the source is described as a collection of
independent single modes with modified parameters.

We consider the model sketched in Fig. 5. The total du-
ration, where we look for photons, T , is partitioned into N
uncorrelated time bin modes of length T1 = T /N . The prob-
ability for getting a heralding click in any particular time bin
mode is PS,1 = 2x2κT1 + Ox4.

The properties of the model, e.g., the number of modes and
the purity of the single-photon state, depends on the relation
between T1 and the acceptance interval T . Hence, by changing
the relation between T1 and T , we optimize the model for
different properties. We consider three separate and equally
valid models, based on different choices:

(1) The number of modes per time interval is defined by
the cavity decay rate. Here, T1 is independent of T .

(2) The ratio of the counting statistics follows the single-
mode prediction. The relation between T1 and T is chosen to
ensure this.

(3) The length of a mode is set by T , i.e., T1 = T .

FIG. 5. Illustration of the multiple-independent-modes model
used in the cw case. Each point represents a photon pair, present in
the signal beam at time t and in the idler beam at time t ′. We have
indicated the length of a time bin T1 and the acceptance interval T on
the t axis, and we have indicated the total duration T on the t ′ axis.
When a photon is detected in the idler beam, it heralds the presence
of a signal photon in the area highlighted by the gray rectangle on the
t axis. Furthermore, in the independent modes picture, the presence
of the photon in the mode highlighted in red is heralded by the
detection. The actual temporal distribution of photon pairs leaves the
possibility of no (multiple) photons in the gray interval, in particular
if T is chosen to be small (large). Similar arguments can be made for
the T1. The photon pairs are sampled from the distribution shown in
Fig. 2(c), with T and T1 set to 1/κ and 2/κ , respectively.
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FIG. 6. Characterization of the different approximate models introduced in the text. Models (1), (2), and (3) are shown with the solid
orange, dashed blue, and dotted green curves, respectively. (a) The number of time bin modes per total time. (b) The ratio between single- and
two-photon counting statistics. (c) The parameter β̃ which represents the correction to the purity of the single-photon density matrix to linear
order in PS,1, β̃PS,1 = 1 − �1.

To compare the different models, we focus on three pa-
rameters, which impact protocols relying on a single-photon
source. The first parameter is the number of modes per total
time, which yields the number of modes available for mul-
tiplexing. The second parameter is the ratio of the counting
statistics, as expressed through ϒ , yielding a measure of the
relative occurrence of two-photon events to single-photon
events. As the total success probability grows with the total
time T , ϒ decreases with the total time, since it is normalized
to the overall success probability. To remove the dependence
on the total time, we will consider ϒN , which is the counting
statistics with respect to a single time bin mode. This is found
to be

ϒN = P2/x2

P2
1

1

2κT1
, (47)

and is equal to 2 in the single-mode case. The third parameter
is the correction to the purity of the single-photon state to
linear order in PS,1, defining 1 − �1 = β̃PS,1 + OP2

S,1. These
properties are plotted for the three models in Fig. 6, and the
precise definitions of the three models are given below.

We see a large variation between the models for the first
two parameters; however, for the correction to the purity, even
for a relatively large success probability for any particular
mode of PS,1 = 0.15 the purity of the single-photon state is
bounded by �1 � 0.98 for all models. We will thus focus on
the other two parameters in the comparison.

In model (1), the modes have a fixed duration. In the
limit where the acceptance interval is very narrow, i.e., when
κT  1, we expect the emitted light to be single mode, mean-
ing the ratio of counting statistics, as expressed through ϒN ,
should approach the single-mode value. Solving for T1 in this
case, we find T1 = 2/κ , yielding the duration of the time bins
for this model. We now consider the ratio of counting statis-
tics, ϒN . For a fixed time bin duration, we can consider the
populations of the single- and two-photon states directly from
Figs. 4(a) and 4(c). We see that P1 increases asymptotically
toward unity for long time intervals, whereas P2/x2 is not
bounded in the weak driving limit. Thus, the ratio of counting
statistics will increase as the acceptance interval increases, as
is seen in Fig. 6(b). This tells us that the relative two-photon
error increases with the acceptance interval if we fix the length
of the time bins.

We now turn to model (2). In this model, T1 is chosen to
ensure that the counting statistics obey the single-mode rela-
tion ϒN = 2. In this case, the errors arising from two-photon
events are fixed at the single-mode predicted level. This is
compensated by changing the number of modes available for
multiplexing. Solving for the number of modes, we find

N = 4P2
1

P2
x2κT , (48)

which depends on the length of the acceptance interval
through Eq. (D2). In Fig. 6(a), we see that the number of
modes decrease when increasing T for this model. Thus, the
price of the constant error rate from two-photon events is the
number of modes available for multiplexing when increasing
the acceptance interval.

We finally consider model (3). In this model, we fix T1 to
the length of the interval, i.e., T1 = T . Hence, the number of
modes available for multiplexing is inversely proportional to
T . When κT is small, many modes are available for mul-
tiplexing. The relative error rate from two-photon events is,
however, large. We find the opposite case when κT is large.

From the three approximate and equally valid models,
we see that the properties cannot be determined indepen-
dently. The problem is that the emitted light is fundamentally
multimode and the modes are not independent. Thus, when
constructing this simplified model where the modes are as-
sumed to be independent, we have to compensate at some
point. If one chooses a relatively large number of modes,
the error rate from two-photon events is larger than the pre-
dicted value in a single-mode description. Alternatively, if
the single-mode predicted two-photon error is assumed, fewer
modes are available for multiplexing. The rate of two-photon
errors and the number of multiplexing modes only reach their
desired values simultaneously in the regime κT  1, where
the conditional probability of having any photons inside the
acceptance interval is small, cf. Fig. 4(a).

V. CONCLUSION

We have developed a full multimode description to char-
acterize the light from an SPDC source under three different
scenarios, where the OPO is driven using an infinitely short
pulse, the OPO is driven using a Gaussian pulse of varying
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width, or the OPO is driven continuously. In the first case,
we show the light follows the single-mode behavior. In the
second case, the light can be described as multiple indepen-
dent modes. As the width of the pulse increases, a larger
number of modes influence the state of the light. For a fixed
total success probability, the population of the two-photon
component decreases as the light becomes more multimode
at the expense of the purity of the single-photon state. In the
cw case, the state is assigned to a mode or modes centered
around the click time. Again, the multimode description is
necessary to explain the physics of the system. Nevertheless,
the behavior in this scenario can be approximated by defining
simplified models with independent modes capturing the es-
sential effects by adjusting the number of modes and counting
statistics. Our findings can thus guide the design of various
quantum information protocols to achieve the best possible
outputs when employing heralded single-photon sources.
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APPENDIX A: SINGULAR VALUE DECOMPOSITION OF A
GENERAL TWO-PHOTON BOGOLIUBOV

TRANSFORMATION MATRIX

We will in this Appendix derive the results for a singular
value decomposition of the Bogoliubov transformation func-
tions. We will start by descretizing the time axis, meaning
for all of the fields d (ti ) are written as di. The most general
Bogoliubov transformation is(

ai

b†
i

)
=

∑
j

(
ua

i, j vab
i, j

(vba
i, j )

∗ (ub
i, j )

∗

)(
ain, j

b†
in, j

)
. (A1)

We write the different uk
i, j and vkk̄

i, j , where k̄ is b (a) when k is a
(b), as matrices Uk and Vkk̄ . From the commutation relations
we obtain the identities

I = UkU†
k − Vkk̄V†

kk̄
= U†

kUk − VT
k̄kV∗̄

kk (A2a)

0 = UaVT
ba − VabUT

b = VT
baU∗

b − U†
aVab, (A2b)

where I is the identity matrix. From the first expression, we
see that UkU†

k (U†
kUk) and Vkk̄V†

kk̄
(VT

k̄k
V∗̄

kk
) commute, thus

they are diagonalized by the same basis. From diagonalizing
the matrix AA† (A†A) one obtains the left (right) singular
vectors of the singular value decomposition of A. We thus
note that Uk and Vkk̄ (V∗̄

kk
) has the same left (right) singular

vector. From Eq. (A2b) we note that Ua and Ub (Vab and Vba)
must have the same singular values. We make a singular value
decomposition of Ua, Ub, Vab, and Vba, using the knowledge
just attained,

Ua =
∑

�

λ�f�gT
� (A3a)

Ub =
∑

�

λ�p�qT
� (A3b)

Vab =
∑

�

μ�f�q†
� (A3c)

Vba =
∑

�

μ�p�g†
�, (A3d)

where λ� and μ� are singular values, f� and p� are left singular
vectors, and gT

� and q†
� are right singular vectors. Putting this

back into the Bogoliubov transformation, we find(
ai

b†
i

)
=

∑
j,�

(
λ�[f�gT

� ]i, j μ�[f�q†
�]i, j

μ�[p∗
�gT

� ]i, j λ�[p∗
�q†

�]i, j

)(
ain, j

b†
in, j

)
, (A4)

where Ai, j is the matrix entry in the ith row and the jth
column. We now make a basis transformation, transforming
the output (input) fields ai and bi (ain, j and bin, j) into the basis
defined by the vectors f� and p� (gT

� and qT
� ), respectively.

Finally, the singular values must fulfill λ2
� − μ2

� = 1, leading
us to write λ� = cosh(ξ�) and μ� = sinh(ξ�). We thus obtain(

a�

b†
�

)
=

(
cosh(ξ�) sinh(ξ�)
sinh(ξ�) cosh(ξ�)

)(
ain,�

b†
in,�

)
. (A5)

We can now make the same transformations into the
Schrödinger picture as in the main text. The primary differ-
ence between this scenario and the one considered in the main
text is that the mode shape of the signal and idler fields are not
identical.

APPENDIX B: GENERAL EXPRESSION FOR DENSITY
MATRICES

In this Appendix, we will show how the general form
for the density matrices in Eq. (17) is found. We start from
Eq. (16), expand the density matrix in a sum of components
with m photons (14), and explicitly write out the trace, yield-
ing

C2n({t}) =
∞∑

m=0

∞∑
k=0

1

k!

∫
dτ1 . . . dτk〈τ1, . . . , τk, t1, . . . , tn|Pmρ̂m|tn+1, . . . , t2n, τk, . . . , τ1〉. (B1)

The matrix element is zero when m 
= n + k, thus we set m = n + k. We now introduce N as the maximal number of photons
we will include, meaning ρ̂n = 0 for n > N . We then find

C2(N−n)({t}) =
n∑

k=0

1

k!

∫
dτ1 . . . dτk〈τ1, . . . , τk, t1, . . . , tN−n|PN−n+k ρ̂N−n+k|tN−n+1, . . . , t2(N−n), τk, . . . , τ1〉. (B2)
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We want to invert this equation, to find 〈t1, . . . , tN−n|ρ̂N−n|tN−n+1, . . . , t2(N−n)〉. We postulate that

PN−n〈t1, . . . , tN−n|ρ̂N−n|tN−n+1, . . . , t2(N−n)〉 =
n∑

k=0

(−1)k

k!

∫
dτ1 . . . dτkC2(N−n+k)({t}′). (B3)

We prove this relation using induction. We start by noting that the base case holds, i.e., the equation is true for n = 0. We now
assume that Eq. (B3) holds for all values 0 � n′ < n. We will show that this implies that the equation also holds for n. We start
from Eq. (B2), and write the term with k = 0 in the sum explicitly

C2(N−n)({t}) = 〈t1, . . . , tN−n|PN−nρ̂N−n|tN−n+1, . . . , t2(N−n)〉 (B4)

+
n∑

k=1

1

k!

∫
dτ1 . . . τk〈τ1, . . . , τk, t1, . . . , tN−n|PN−n+k ρ̂N−n+k|tN−n+1, . . . , t2(N−n), τk, . . . , τ1〉.

As n − k < n for all terms in the sum, we can use Eq. (B3) to rewrite the sum

C2(N−n)({t}) = PN−n〈t1, . . . , tN−n|ρ̂N−n|tN−n+1, . . . , t2(N−n)〉 (B5)

+
n∑

k=1

1

k!

∫
dτ1 . . . τk

n−k∑
�=0

(−1)�

�!

∫
dτk+1 . . . dτk+�C2(N−n+k+�)({t}′).

We now manipulate the sum of the latter terms. The sum over � is reindexed and we change the order of summation, yielding

C2(N−n)({t}) = PN−n〈t1, . . . , tN−n|ρ̂N−n|tN−n+1, . . . , t2(N−n)〉 +
n∑

�=1

∫
dτ1 . . . dτ�C2(N−n+�)({t}′)

�∑
k=1

(−1)�−k

k!(� − k)!
. (B6)

The sum over k is given by (−1)�+1/�!. Rewriting the equation, we obtain

PN−n〈t1, . . . , tN−n|ρ̂N−n|tN−n+1, . . . , t2(N−n)〉 =
n∑

�=0

(−1)�

�!

∫
dτ1 . . . dτ�C2(N−n+�)({t}′), (B7)

which is of the same form as Eq. (B3), meaning we have proved the postulate. We reindex the expression setting n → N − n to
obtain

Pn〈t1, . . . , tn|ρ̂n|tn+1, . . . , t2n〉 =
N−n∑
k=0

(−1)k

k!

∫
dτ1 . . . dτkC2(n+k)({t}′). (B8)

We then take the limit N → ∞, which is Eq. (17).

APPENDIX C: CHARACTERIZATION PARAMETERS IN TERMS OF NUMERICAL INTEGRALS

In this Appendix, we provide the integrals required to find the characterization parameters for the general pulsed case, where
the time window T is set to cover the entire time range. These integrals can be used to find the characterization parameters in
Secs. IV A and IV B, by inserting the form of χ (t ). All parameters will be expanded to lowest order in χ (t ).

The probability of success is explicitly written out to second order in χ (t ),

PS =
∫ ∞

−∞
dt1dτ1χ (t1)χ (τ1)e−κ|t1−τ1| + 2κ

∫ ∞

−∞
dtχ (t )

∫ t

−∞
dt2χ (t2)

∫ t2

−∞
dt3χ (t3)

∫ t3

−∞
dt4eκt4

∫ ∞

t4

dτχ (τ )e−κmax(t,τ ). (C1)

Defining Ibbn ≡ ∫ ∞
−∞ dtc〈b†(tc)b(tc)〉n, we see that the first (second) term is Ibb2 (Ibb4). The density matrix components are found

to second order in χ (t )

P1ρ1(t1; t2) =
Ia0b1(t1, t2)

(
1 − Ibb2 − Ibb4

Ibb2

)
+ Ia0b3(t1, t2) + Ia2b1(t1, t2) + Ia0b3(t2, t1) + Ia2b1(t2, t1)

Ibb2
(C2a)

+〈a†
1(t2)a1(t1)〉 − 〈a†

1(t2)a1(t1)〉 ∫ ∞
−∞ dτIa1b0(τ, τ ) + Iaaabab(t1, t2) + Iaaabab(t2, t1)

Ibb2

P2ρ2(t1, t2; t3, t4) = 4〈a†
1(t4)a1(t1)〉Ia0b1(t2, t3)

Ibb2
, (C2b)
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where we have used that 〈a†
1(t )a1(t ′)〉 = 〈b†

1(t )b1(t ′)〉 for the considered model and we have further defined the integrals

Ianbm(t1, t2) =
∫ ∞

−∞
dtc〈a†

1(t2)b†
0(tc)〉〈an(t1)bm(tc)〉 (C3a)

Iaaabab(t1, t2) =
∫ ∞

−∞
dtc

∫ ∞

−∞
dτ 〈a†

1(t2)b†
0(tc)〉〈a0(τ )b1(tc)〉〈a†

1(τ )a1(t1)〉. (C3b)

We now write the integrals in terms of χ (t )

Ia0b1(t1, t2) = κe− κ
2 (t1+t2 )

∫ t1

−∞
dτ1

∫ t2

−∞
dτ2χ (τ1)χ (τ2)eκmin(τ1,τ2 ) = 〈a†

1(t2)a1(t1)〉 (C4a)

Ia0b3(t1, t2) = κe− κ
2 (t1+t2 )

∫ t2

−∞
ds1χ (s1)eκs1

∫ ∞

−∞
dτ1χ (τ1)

∫ τ1

−∞
dτ2χ (τ2)

∫ min(τ2,t1 )

−∞
χ (t3)eκτ3 e−κmax(s1,τ1 ) (C4b)

Ia2b1(t1, t2) = κe− κ
2 (t1+t2 )

∫ t2

−∞
ds1χ (s1)eκs1

∫ ∞

−∞
dτ1χ (τ1)

∫ t1

−∞
dτ2χ (τ2)

∫ τ2

−∞
χ (t3)eκmin(τ3,τ1 )e−κmax(s1,τ1 ) (C4c)

Iaaabab(t1, t2) = κe− κ
2 (t1+t2 )

∫ t1

−∞
dτ1

∫ t2

−∞
dτ2

∫ ∞

−∞
dτ3

∫ ∞

−∞
dτ4χ (τ1)χ (τ2)χ (τ3)χ (τ4)eκ[min(τ1,τ3 )+min(τ2,τ4 )−max(τ3,τ4 )].

(C4d)

We then find expressions for the various parameters characterizing the single-photon component, starting with the occupation

P1 = 1 − Ibb2 + 2
∫ ∞
−∞ dτ [Ia0b3(τ, τ ) + Ia2b1(τ, τ ) − Iaaabab(τ, τ )] − Ibb4

Ibb2
. (C5)

We express the purity of the one photon state �1 to zeroth order in χ (t ) using the integrals

�1 =
∫ ∞

−∞
dt1dt2

[Ia0b1(t1, t2)]2

I2
bb2

. (C6)

Using the relation given in Eq. (C4a), we can write the density matrix elements of the two-photon component as a product of
single-photon density matrix elements

P2ρ2(t1, t2, t3, t4) = 4PSP2
1 ρ1(t1, t4)ρ1(t2, t3), (C7)

where PS [ρ1(t, τ ) and P1] is taken to second (zeroth) order in χ (t ). We note that even though ρ2(t1, t2, t3, t4) is not symmetric
under exchange of time arguments between t1 (t3) and t2 (t4), the density matrix element 〈t1, t2|ρ2|t3, t4〉 is symmetric under
exchange of time arguments, as can be found by using the density matrix of the form in Eq. (15). The relation allows us to find
P2,

P2 = PS (1 + �1). (C8)

Finally, the overlap between the two-photon density matrix and combinations of eigenstates of the single-photon density matrix
Qi j are given to zeroth order in x

Qii = 1

2

∫ ∞

−∞
dt1 . . . dt4φi(t1)φi(t2)φi(t3)φi(t4)ρ2(t1, t2, t3, t4) = 2〈φi|ρ̂1|φi〉2

1 + �1
(C9a)

Qi j = 1

2

∫ ∞

−∞
dt1 . . . dt4φi(t1)φ j (t2)φ j (t3)φi(t4)[ρ2(t1, t2, t3, t4) + ρ2(t1, t2, t4, t3)] = 2〈φi|ρ̂1|φi〉〈φ j |ρ̂1|φ j〉

1 + �1
, (C9b)

where we have used that |φi〉 is an eigenstate of ρ̂1, and thus 〈φ j |ρ̂1|φi〉 = 0.

APPENDIX D: ANALYTICAL EXPRESSION FOR CW DRIVING

In this Appendix, we give the analytical expressions for the cw case. We center the time arguments around tc, meaning they
run from −T/2 to T/2. We will drop the subscripts referring to the detection time and the interval length for convenience. The
density matrices components are found to second order in x,

P1ρ1(t1; t2) = κ

2
e− 1

2 κ (|t1|+|t2|)
{

1 − x2

[
2 + κT + (

1 − e− κT
2
)
(6 + κ (|t2| + |t1| + T )

]}

+κx2

2
e− 1

2 κ (−|t1|+|t2|+T )

[
3 + κ

(
T

2
− |t1|

)]
+ κx2

2
e− 1

2 κ (|t1|−|t2|+T )

[
3 + κ

(
T

2
− |t2|

)]
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+ κx2e− 1
2 κ (|t1−t2|+T )(2 + κ|t1 − t2|) (D1a)

P2ρ2(t1, t2; t3, t4) = 4x2κ2e− κ
2 (|t1−t3|+|t2|+|t4|)

(
1 + κ|t1 − t3|

2

)
. (D1b)

From the density matrices, we obtain the population of the different density matrix components

P1 = 1 − e− κT
2 − x2

[
10 + 2κT − e− κT

2

(
18 + 9κT + κ2T 2

4

)
+ 2e−κT (4 + κT )

]
(D2a)

P2 = x2

{
10 + 2κT − e− κT

2

(
κ2T 2

4
+ 6κT + 14

)
+ e−κT (κT + 4)

}
. (D2b)

Furthermore, the purity of the one-photon state, which is equivalent to the HOM visibility when P2 = 0, is given by

�1 = 1 − 4x2 e− κT
2
[
κT − 5 + e− κT

2
(
7 + κT + (κT )2

8

) − e−κT
(
2 + κT

2

)]
(1 − e− κT

2 )2
, (D3)

and the population of the two-photon density matrix with two photons in the state |φc〉 is

Q11 = 2{40 − e− κT
2 [(κT )2 + 16κT + 56] + 4e−κT (κT + 4)}

8(κT + 5) − e− κT
2 [(κT )2 + 24κT + 56] + 4e−κT (κT + 4)

. (D4)
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