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Generation of a bipartite mechanical cat state by performing projective Bell-state
measurement on a pair of superconducting qubits
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Quantum state preparation and measurement of photonic and phononic Schrödinger cat states have gathered
significant interest due to their implications for alternative encoding schemes in quantum computation. These
schemes employ coherent state superpositions, leveraging the expanded Hilbert space provided by cavity or me-
chanical resonators in contrast to two-level systems. Moreover, such cat states also serve as a platform for testing
fundamental quantum phenomena in macroscopic systems. In this study, we generate four bipartite phononic
cat states using an entanglement swapping scheme achieved through projective Bell-state measurements on two
superconducting qubits. Employing two superconducting qubits allows for the creation of bipartite phononic cat
states remotely, where the two phononic resonators are separated by a far distance. Subsequently, we conduct a
Bell inequality test on the bipartite cat state using the Clauser-Horne-Shimony-Holt formulation. Given that the
entangled cat states are generated through entanglement swapping, our approach holds promising applications
for the advancement of complex quantum network processors based on continuous-variable systems.
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I. INTRODUCTION

Observing the quantum behavior of macroscopic me-
chanical structures continues to be a challenging endeavor
and a significant step towards realizing quantum-acoustic
state preparation and measurement. The intriguing aspect of
these structures, being massive yet displaying quantum be-
havior, makes them important platforms for implementing
various quantum technological applications and for explor-
ing fundamental physics questions. Recent experiments have
unequivocally demonstrated the quantum properties of solid-
state mechanical objects [1–6]. These include interfacing
mechanical objects with the strong quantum nonlinearity of
superconducting qubits, leading to the field of circuit quan-
tum acoustodynamics (cQAD) [7–13] which is analogous to
the well-developed field of circuit quantum electrodynamics
(cQED) [14–16]. The integration of superconducting qubits
serves as a quantum-acoustic state preparation and measure-
ment element for the mechanical system [12,13]. These state
preparations and measurements are some of the basic build-
ing blocks for constructing acoustic quantum memories and
processors.

A very significant quantum-acoustic state that can be
prepared from the superconducting qubit-mechanical inte-
grated system is the phononic Schrödinger cat state, defined
as quantum superpositions of quasiclassical coherent states.
Such phononic cat state preparation has been studied in
[17,18]. Similar photonic cat states have also been studied
in other various quantum systems such as circuit quantum
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electrodynamics [19,20], vibrational states of trapped ions
[21], and propagating photon modes [22,23]. Preparing
cat states has attracted wide research attention owing to
its applications in implementing quantum metrology [24]
and quantum information processing protocols based on
continuous-variable cat states [25], as well as testing fun-
damental quantum phenomena in macroscopic systems [26].
One of the most fundamental tests of quantum phenomena in
a quantum system is the Bell inequality test [27–30]. Bell
inequality tests, performed on pairs of spatially separated
entangled quantum systems, demonstrate that quantum sys-
tems do not adhere to the principle of local causality. In this
work, we use the Clauser-Horne-Shimony-Holt (CHSH) [31]
formulation of the Bell test to conduct the Bell inequality
test on a bipartite entangled phononic cat state generated
through projective Bell-state measurement on a pair of super-
conducting qubits [32]. The creation of bipartite photonic cat
states using a single qubit is demonstrated in [20,33]. In our
scheme, four bipartite phononic cat states, or four phononic
Bell states, are generated on two phononic crystal mechanical
resonators, interacting piezoelectrically with a pair of super-
conducting qubits via capacitive coupling. The two qubits are
connected through a microwave cavity resonator and, through
virtual excitation of the cavity photon, they become entan-
gled, creating a qubit Bell state. Upon projective measurement
of the Bell state of the qubits, each of the four bipartite
phononic cat states can be distinguished. This measurement
effectively swaps the entanglement from qubit-mechanical
to mechanical-mechanical pairs. Such entanglement swap-
ping schemes are pivotal in quantum repeaters, essential for
realizing long-distance quantum communication and com-
plex quantum networks [34–36]. Since the two qubits are
connected via a microwave cavity bus, the phononic crystal
resonator can be placed at far ends. This setup allows for the
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FIG. 1. Schematic of the hybrid qubit-resonator system. Two
qubits denoted by Q1 and Q2 are capacitively coupled to the phononic
crystal resonators b̂1 and b̂2, respectively [11,12]. The qubits interact
piezoelectrically with the resonators. The two qubits are coupled to
each other via a microwave cavity resonator. This coupling enables
the interaction between the two qubits by exchanging virtual excita-
tions of the cavity photons.

creation of bipartite phononic cat states remotely, enabling
long-distance quantum state preparation. By harnessing this
capability and employing entanglement swapping schemes,
the bipartite phononic cat states generated in this study hold
promise for practical applications in implementing quantum
network processors relying on continuous-variable resonators.

We begin in Sec. II with a brief introduction of the hybrid
electromechanical system under study and then discuss the
generation of a resonator-qubit Bell cat state. In Sec. III, we
examine the projective Bell-state measurement on the two
qubits, which leads to entanglement swapping from qubit-
qubit to resonator-resonator. We show how this Bell-state
measurement is realized and how four bipartite phononic Bell
cat states are created as a result of the projective measurement.
Moving on to Sec. IV, we conduct the Bell inequality test on
the bipartite cat state using the CHSH formulation.

II. QUBIT-MECHANICAL RESONATOR ENTANGLEMENT

We consider two hybrid electromechanical systems, each
comprising a mechanical resonator dispersively coupled to a
superconducting qubit, as shown in Fig. 1. Assuming that the
two qubit-mechanical pairs are uncoupled (Appendix A), the
Hamiltonian of the two hybrid systems reads

Ĥbq1 = h̄

2
�1|e1〉〈e1| + h̄ω1

2
b̂†

1b̂1 + h̄λ1 b̂†
1b̂1 |e1〉〈e1|, (1a)

Ĥbq2 = h̄

2
�2|e2〉〈e2| + h̄ω2

2
b̂†

2b̂2 + h̄λ2 b̂†
2b̂2 |e2〉〈e2|. (1b)

Here, �1 (�2) and ω1 (ω2) are the qubit and mechanical
frequency of the first (second) hybrid system. b̂1 and b̂2 are the
operators of the two mechanical resonators. In the dispersive
coupling, the detuning δ1 = ω1 − �1 (δ2 = ω2 − �2) is much
larger than the resonant coupling strength between the qubit
and the mechanical resonator. We prepare two entangled Bell
cat states by evolving the Hamiltonian Ĥbq1 and Ĥbq2. Initiat-
ing the qubits in the superposition state and the mechanical
resonators in the coherent state, the state of the first hybrid
system in the interaction frame after some time t becomes

|ψ〉1 = (|β1eiλ1t 〉|e1〉 + |β1〉|g1〉)/
√

2, (2)

where |β1〉 is the coherent state of the first mechanical res-
onator, while |e1〉 and |g1〉 refer to the excited and the ground
states of the first qubit, respectively. We get a similar state
|ψ〉2 for the second hybrid system. At time interval t = (2n −
1)π/λ1, where n = 1, 2, 3, . . . , we get the Bell cat state of the

FIG. 2. Entanglement EN (green dotted line) and fidelity F (solid
blue line) measurement of the state |ψ〉1 in the presence of thermal
noise. As expected, the state |ψ〉1 evolves into the Bell cat state
|ψ〉1 = (−β1〉|e1〉 + |β1〉|g1〉)/

√
2 at the interval π/λ1, 3π/λ1,...,

and so on. The parameters used are β1 = √
2, γ1 = 0.1 MHz, 
1 =

0.1 MHz, nth = 0.03, and λ1 = 8 MHz.

qubit-mechanical system. The fidelity and entanglement of the
bipartite state |ψ〉1 in the presence of a noisy environment is
shown in Fig. 2. The noisy environment is included by solving
the Lindblad master equation,

˙̂ρ1 = − i

h̄
[Ĥint, ρ̂1] + γ1(n1 + 1)L[b̂1] + γ1n1L[b̂†

1]

+ 
1L[σ̂−] + 
1L[σ̂+] + 
1L[σ̂z], (3)

where L[ô] = (2ôρ̂ô† − ô†ôρ̂ − ρ̂ ô† ô)/2 with ô ∈ {b̂1,

σ̂−, σ̂z}. γ1 and 
1 are the decay rates of the mechanical
resonator and the qubit, respectively. The entanglement of
the qubit-mechanical bipartite system is computed using the
relation EN (ρ̂1) = log2 ||ρ̂TA

1 ||, where ρ̂
TA
1 is the trace norm of

the partial transpose of the bipartite mixed state ρ̂1 [37,38].
As shown in the figure, the fidelity (F) reaches near one at
the interval t = 0.39 µs, 1.18 µs, and so on, for coupling
constant λ1 = 8 MHz. Therefore, the qubit-mechanical
bipartite system evolves into a Bell cat state at the interval
of π .

III. GENERATION OF BIPARTITE CAT STATE

After the interaction time of t1 = π/λ1 (t2 = π/λ2),
the state of the qubit-mechanical bipartite state [Eq. (2)]
becomes |ψ〉1 = (| − β1〉|e1〉 + |β1〉|g1〉)/

√
2 (|ψ〉2 = (| −

β2〉|e2〉 + |β2〉|g2〉)/
√

2). The state of the combined system,
|〉, is then given by the tensor product of the states of the
two hybrid systems, i.e., |〉 = |ψ〉1|ψ〉2,

|〉 = 1
2 [e1e2 − β1 − β2〉 + |e1g2 − β1 + β2〉
+ |g1 e2 β1 − β2〉 + |g1 g2 β1 β2〉], (4)

where |β2〉 is the coherent amplitude of the second resonator.
In terms of the Bell’s basis, |φ±〉 = (1/

√
2)(|e1e2〉 ± i|g1g2〉

and |ψ±〉 = (1/
√

2)(|e1g2〉 ± i|g1e2〉, the wave function of
the combined system [Eq. (4)] can be rearranged to

|〉 = 1

2
√

2
[|φ+〉(| − β1 − β2〉 − i|β1 β2〉)

+ |φ−〉(| − β1 − β2〉 + i|β1 β2〉)

+ |ψ+〉(| − β1 β2〉 − i|β1 − β2〉)

+ |ψ−〉(| − β1 β2〉 + i|β1 − β2〉)]. (5)
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Therefore, by measurement of the Bell’s states |φ±〉 and
|ψ±〉, the two mechanical resonators are projected into the
bipartite cat states |C′

∓〉 = N ′
∓(| − β1 − β2〉 ∓ i|β1 β2〉) and

|C∓〉 = N∓(| − β1 β2〉 ∓ i|β1 − β2〉), respectively. The Bell-
state measurement of the two qubits is performed by first
switching on the interaction between them [h̄J ′(σ̂−

1 σ̂+
2 +

σ̂+
1 σ̂−

2 ); refer to Appendix A]. This interaction, which will
entangle the two qubits, is achieved by red detuning the
second qubit from the cavity and blue detuning the same
qubit from the second resonator. Such detuning arrangement
or dispersive coupling allows the exchange of virtual cav-
ity photons with the qubits. Since the actual cavity photon
is not excited, the qubit-qubit interaction generated in this
way is less sensitive to the quality factor of the cavity and
hence can easily achieve maximally entangled states. If we
consider resonant cavity-qubit coupling, then the maximally
entangled state of the qubit-qubit interaction will be further
deteriorated by cavity decay. The virtual interaction between
the two qubits only produces two of the four Bell states, |ψ±〉.
Instead of transforming from one Bell state to the other for
every measurement, we generate all four of the Bell states
simultaneously. To generate all four Bell states, we contin-
uously drive the two qubits, resulting in two dressed states,
|±〉 j = [1/

√
(2)](|g〉 j ± ei� j |e〉 j ), j = 1, 2. The qubit cannot

go into transitions between different dressed states under the
conditions �1 = �2 = � and |A1 − A2| � |J ′|, where Aj and
� j are the drive amplitude and phase. When the phases of
both the driving fields are reversed right in the middle of the
two-qubit interaction time, then the dressed state of the two
qubits evolves to | + +〉τ = (1/2)(i|φ−〉 + |φ+〉 + i|ψ−〉 +
|ψ+〉), where τ = π/(2J ′). The above protocol for produc-
ing the dressed state | + +〉τ is known as the dressed-state
phase gate. In Figs. 3(a) and 3(b), we plot the fidelity of
the dressed state generated through the dressed-state phase
gate. The measurement fidelity of the Bell state is depen-
dent on the fidelity of the dressed-state phase gate. The four
Bell states generated through the dressed-state phase gate can
be mapped onto the computational basis as |φ+〉 → (0102),
|φ−〉 → (1112), |ψ+〉 → (1102), and |ψ−〉 → (0112) [32,39]
(see Appendix B). Therefore, based on the measurement out-
comes of the two qubits in the computational basis, all four
bipartite cat states of the resonators are generated. The se-
quence of operations performed in our scheme to generate the
bipartite cat state is illustrated in Fig. 3(c).

The above protocol is realized in the noisy environment
by first independently evolving the two qubit-mechanical hy-
brid systems under the Lindblad master equation and then
performing the projective measurement on the density matrix
of the combined system, ρ̂ = ρ̂1ρ̂2. The reduced density ma-
trices of the four bipartite Bell cat states after the projective
Bell-state measurement on the two qubits read

ρ̂C′∓ = 〈φ±|ρ̂|φ±〉
tr(〈φ±|ρ̂|φ±〉)

, ρ̂C∓ = 〈ψ±|ρ̂|ψ±〉
tr(〈ψ±|ρ̂|ψ±〉)

. (6)

Constructing the reduced density matrix [Eq. (6)] on the num-
ber basis will require a huge subspace, and performing joint
state tomography on the resonators will be experimentally
challenging. So, we reconstruct the density matrix into a
two-level system subspace by projecting into the basis state

/2

/2

| ⟩

| ⟩

( )

( )

( )

( )

| ⟩

| ⟩

| ⟩

| ⟩

(c)

FIG. 3. The change in fidelity of the dressed state | + +〉τ with
respect to (a) decay rate 
1,2 and (b) coupling strength J ′. The
coupling strength in (a) is J ′ = 8 MHz and the decay rates in
(b) are 
1,2 = 0.1 MHz. (c) Sequence of qubit detuning and Bell-
state preparation and measurement. Both the qubits Q1 and Q2 are
initially prepared in the superposition state by applying a π/2 pulse.
Similarly, mechanical resonators (M1 and M2) are initially prepared
in coherent states (|β1〉 and |β2〉) by driving it on resonance with a
microwave drive. We then initiate the qubit-mechanical dispersive
interaction by detuning the qubits to δ1 and δ2 with respect to the
resonators. After time t1 = t2 = π/λ1,2, we bring the qubits back to
their idle frequencies, terminating the qubit-mechanical dispersive
interaction. Now we switch on the qubit-qubit interaction by detun-
ing the qubits to �1 and �2 with respect to the microwave resonator
R. After time τ = π/2J ′, we bring the qubits back to their idle
frequencies and start the Bell-state measurements. During the time
τ , the qubits are continuously driven, generating the dressed-state
phase gate.

(|β1,2〉, | − β1,2〉). The Pauli operators for the resonator can be
obtained by measuring the displaced phonon number parity
observable P̂β1 = D̂β1 P̂D̂†

β1
, where D̂β1 is the displacement

operator and P̂ is the phonon number parity operator [13,26].
The Pauli operators for the resonator mode become

X̂β1 = P̂0, Îβ1 = [
P̂β1 + P̂−β1

]
,

Ŷβ1 = P̂−iπ
8β∗

1

, Ẑβ1 = [
P̂β1 − P̂−β1

]
. (7)

We have assumed a large orthonormal cat state, i.e., 〈β1| −
β1〉 � 1. Four Wigner functions [W (α) = 2

π
〈Pα〉, where α =

0, β,−β,−iπ/8β∗] are required to reconstruct the state. The
basis for the Pauli operators is (|β1〉, | − β1〉) which is analo-
gous to the qubit basis (|e〉, |g〉). Similar Pauli operators and
basis (|β2〉, | − β2〉) can be generated for the second resonator
using the same approach. In Fig. 4, we plot the joint density
matrix of the two resonators in the joint basis states (|β1 β2〉,
| − β1 β2〉, |β1 − β2〉, and | − β1 − β2〉). We observe four
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FIG. 4. Construction of the four bipartite phononic cat state den-
sity matrices in the two-level subspace. (a) and (b) [(c) and (d)]
represent the real and imaginary parts of ρ̂C′− (ρ̂C′+ ), respectively.
Similarly, (e) and (f) [(g) and (h)] represent the real and imaginary
parts of ρ̂C− (ρ̂C+ ), respectively. The density matrices resemble those
of the two-qubit Bell state [32]. We have used the resonator coherent
amplitudes β1,2 = √

2.

bipartite cat states having fidelities FC′− = 0.919, FC′+ = 0.919,
FC− = 0.92, and FC+ = 0.92 and entanglements EC′− = 0.799,
EC′+ = 0.799, EC− = 0.799, and EC+ = 0.799. The dip in the
density matrix element is mainly attributed to the relaxation
and decoherence effect of the two qubits, as well as the relax-
ation of the two resonators. As shown in Fig. 5, the fidelity
of the bipartite cat state can be significantly improved by
improving the decay rates of both the qubit and the phononic
resonator. For example, we get FC′− = 0.9581, FC′+ = 0.9581,
FC− = 0.9581, and FC+ = 0.9581 and entanglements EC′− =
0.895, EC′+ = 0.895, EC− = 0.895, and EC+ = 0.895 for decay
rates γ1,2 = 0.05 MHz and 
1,2 = 0.05 MHz. In Fig. 5, we
have generated the fidelity variation for the |C+〉 state. We get
similar plots for the other cat states too. In addition to the de-
cays resulting from direct contact with the noisy environment,

FIG. 5. Fidelity of the bipartite cat state |C+〉 as a function of (a)
λ1 and λ2, (b) γ1 and 
1, (c) 
1 and λ1, and (d) λ1 and γ1. The decay
rates in (a) are γ1,2 = 0.1 MHz and 
1,2 = 0.1 MHz. The coupling
strengths in (b) are λ1,2 = 8 MHz. In (c), the decay rates of the first
and second resonators are γ1,2 = 0.1 MHz. The qubits decay rates
in (d) are 
1,2 = 0.1 MHz. In all four plots, the variable parameters
are simultaneously varied for both of the qubit-mechanical systems.
As expected, we observe an increase in fidelity when the decay rates
decrease and coupling constant increases.

the other factors that lead to the infidelities of the prepared
state include readout errors while measuring the mechanical
resonators and errors while performing the Bell measurement.
The four bipartite cat states resemble the traditional qubit Bell
states generated using a HADAMARD and CNOT gate in a quan-
tum circuit. Going by this similarity, the scheme proposed
here could be used to implement an entanglement gate for a
continuous-variable resonator qubit and may find applications
in the bosonic-based quantum processors.

IV. BELL’S TEST OF THE RESONATOR
BIPARTITE CAT STATE

The bipartite entangled cat states of the two resonators
generated on a conditional Bell-state measurement of the two
qubits can be used as a platform to test the Bell’s inequality in
a macroscopic quantum system. Here, we perform this test by
calculating the expectation values of all the correlations of the
measurement outcomes measured locally at the two resonators
and then determine the Clauser-Horne-Shimony-Holt (CHSH)
value S = 〈X1X2〉 + 〈X1Y2〉 − 〈Y1X2〉 + 〈Y1Y2〉, where, X1 (X2)
and Y1 (Y2) are the observables of the first (second) resonator.
The observables are measured in the resonator-qubit subspace
discussed above. As per CHSH inequality, a system is said
to be classically correlated if |S| � 2 and quantumly if 2 <

|S| � 2
√

2. The correlation of the observables is measured by
first choosing two arbitrary values of β ′

1 and β ′
2 corresponding

to X1, Y1 and X2, Y2, respectively. We then rotate the resonator
detector basis by coherently displacing the observables X1 and
Y1 to Xα = D−iαX1Diα and Yα = D−iαY1Diα , or

Xα = X1 cos 2(αβ ′∗
1 + α∗β ′

1) + Y1 sin 2(αβ ′∗
1 + α∗β ′

1),

Yα = Y1 cos 2(αβ ′∗
1 + α∗β ′

1) − X1 sin 2(αβ ′∗
1 + α∗β ′

1). (8)
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FIG. 6. Measurement correlations and inequality test are con-
ducted with respect to the change in the displacement amplitude
α for mechanical coherence strength β1,2 = √

2. (a) The expecta-
tion values of all the joint measurement correlations between the
two resonators. The red dotted, blue dashed, black dash-dotted, and
solid orange lines represent the measurement correlations 〈YαX2〉,
〈XαY2〉, 〈YαY2〉, and 〈XαX2〉, respectively. (b) The CHSH value S
of the Bell inequality. The solid and dash-dotted lines correspond
to the coupling strengths λ1 = λ2 = 8 MHz and λ1 = λ2 = 7 MHz,
respectively. For both cases, the maximum |S| values occur at α1 =
−0.14 and α2 = 0.41, denoted by the two dotted vertical lines,
with corresponding values of 2.132 and 2.049. The decay rates in
(b) are γ1,2 = 0.1 MHz and 
1,2 = 0.1 MHz. For different decay
rates γ1,2 = 0.05 MHz and 
1,2 = 0.05 MHz, we get |S| = 2.454 for
λ1 = λ2 = 8 MHz, as shown in (c) (solid line). The dash-dotted line
in (c) is for γ1,2 = 0.1 MHz, 
1,2 = 0.1 MHz, and λ1 = λ2 = 8 MHz,
which is similar to the solid line in (b). The shaded horizontal lines
represent the regions of the quantum limit.

Here, α is the coherent displacement amplitude of the res-
onator. By changing the amplitude α, we are able to rotate
the measurement basis direction and perform measurements
at all possible orientations of the detectors. The |S| value for
the state |C+〉 is shown in Fig. 6(b). We observe a maximum
|S| value when β ′

1,2 = β1,2 and at the displacement amplitude
α1 = −0.14 and α2 = 0.41. Furthermore, the α1, α2, and β ′

1
amplitudes corresponding to the maximum |S| value satisfy
the relations 4α2β

′
1 = 3π/4 and 4α1β

′
1 = −π/4. The corre-

sponding observables [Eq. (8)] at these amplitudes become
Xα1 = (X1 − Y1)/

√
2 and Yα1 = (X1 + Y1)/

√
2. Therefore, the

|S| value observed in the figure exceeds the classical bound
limit and attains a value which is less than the ideal quantum
bound limit 2

√
2 [see Figs. 6(b) and 6(c)]. As we decrease the

decay rates of the resonators and the qubits, the maximum
attainable |S| value also increases, as shown in Fig. 6(c).
The expectation values of all the measurement correlations
are also shown in Fig. 6(a). The behavior of these correla-
tions as we change the displacement amplitude α resembles
the one observed in two-qubit Bell test experiments [30].
By integrating two phononic crystal resonators into the ex-
perimental arrangement typically employed for conducting a
loophole-free Bell test with two superconducting qubits [30],
our proposed approach could be employed to examine the Bell

inequality of a phononic cat state. Additionally, the bipartite
phononic cat state generated through entanglement swapping
in this work could hold significant practical implications for
the advancement of complex quantum network processors
based on continuous-variable resonators.

V. CONCLUSION

In conclusion, we propose a scheme to generate four
bipartite phononic cat states by performing a projective
Bell-state measurement on two superconducting qubits. Ini-
tially uncoupled phononic crystal resonators, each coupled
to a different superconducting qubit, become entangled
through entanglement swapping from qubit-mechanical to
mechanical-mechanical interactions. Displaced phonon parity
measurement is done to generate a joint density matrix of
the two resonators in two-level subspace. These joint density
matrices resemble those of traditional qubit Bell states gener-
ated using a HADAMARD and CNOT gate in a quantum circuit.
Subsequently, we investigate the Bell inequality test using the
CHSH formulation. The expectation values of the measure-
ment correlations and the S values of the CHSH inequality
test obtained here are akin to those observed in [30] for two
superconducting qubits. The bipartite phononic cat state gen-
erated through entanglement swapping in this work may be
useful in implementing quantum network processors based
on continuous-variable resonators. Furthermore, the scheme
presented in this work also serves as a platform for studying
the Bell inequality test in a continuous-variable system.
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APPENDIX A: DISPERSIVE HAMILTONIAN

The interaction part of the complete Hamiltonian, includ-
ing the cavity resonator connecting the two qubits, is given by
the Jaynes-Cummings interaction,

Ĥint = g1(b̂†
1σ̂

1
− + b̂1σ̂

1
+) + g2(b̂†

2σ̂
2
− + b̂2σ̂

2
+)

+ G1(â†σ̂ 1
− + âσ̂ 1

+) + G2(â†σ̂ 2
− + âσ̂ 2

+). (A1)

Here, g1 (g2) and G1 (G2) are the resonant coupling
strength of mechanical-qubit and qubit-cavity interactions,
respectively. â and â† are the creation and annihilation
operators of the cavity resonator. We blue detune the first
resonator from the first qubit (δ1 = ω1 − �1), second qubit
from the cavity resonator (�2 = ω − �2), and red detune the
cavity from the first qubit (�1 = �1 − ω), second resonator
from the second qubit (δ2 = �2 − ω2). Here, ω refers to the
cavity resonance frequency. Because of the detuning, we
can transform the Jaynes-Cummings interaction [Eq. (A1)]
into a dispersive one by performing a unitary operation,
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U = exp{ g1/δ1 (b̂†
1 σ̂ 1

− − b̂1 σ̂ 1
+) + g2/δ2(b̂2σ̂

2
+ − b̂†

2 σ̂ 2
−) +

G1/�1(âσ̂ 1
+ − â†σ̂ 1

−) + G2/�2(â†σ̂ 2
− − âσ̂ 2

+)} on Ĥint,

Ĥdis = h̄
(
η1σ̂

1
z + η2σ̂

2
z

)
â†â + h̄λ1σ̂

1
z b̂†

1b̂1 + h̄λ2σ̂
2
z b̂†

2b̂2

+ h̄J (σ̂−
1 σ̂+

2 + σ̂+
1 σ̂−

2 ) + h̄χ1(âb̂†
1 + b̂1â†)σ̂ z

1

+ h̄χ2(âb̂†
2 + b̂2â†)σ̂ z

2 , (A2)

where η1 = G2
1/�1, η2 = G2

2/�2, λ1 = g2
1/δ1, λ2 = g2

2/δ2,
J = G1G2(1/�1 − 1/�2), χ1 = g1G1(1/δ1 − 1/�1), and
χ2 = g2G2(1/�2 − 1/δ2). The first term in the Hamiltonian
(A2) can be neglected since the cavity remains in the
ground state. We can ignore the last three terms if we
only dispersively detune the qubit-mechanical pair and the
detuned qubit frequency is way off from the cavity frequency
such that there is no interaction between the qubit and
the cavity [32]. If the qubit-mechanical and qubit-cavity
detuning are simultaneous, then by choosing �1 = �2,
δ1 = �1, and δ2 = �2, we can also neglect the last terms
[12,40]. The remaining two interacting terms are the ones
used in Hamiltonian (1a) and (1b). Thus, we see that by
changing the detuning, we can independently evolve the
two qubit-resonator pairs. In our scheme, we first evolve the
qubit-mechanical pair dispersively up to a certain time period.
We then bring back the qubits to their idle frequencies so that
the interaction between the qubit and mechanical resonator
is turned off [13]. We now initiate the qubit-qubit interaction
(fourth term) by detuning back the qubit with respect to
the cavity in order to perform the Bell-state measurement.
This can be done in two ways: First, by choosing �1 �= �2,
or second, by red detuning the second qubit from the
cavity and blue detuning the second qubit from the second
resonator. In the second approach, the coupling constant J
becomes J ′ = G1G2(1/�1 + 1/�′

2), where �′
2 = �2 − ω.

The coupling sequence is shown in Fig. 3(d).

APPENDIX B: BELL STATE OF THE TWO QUBITS

In order to distinguish all the Bell states of the two qubits,
we resonantly drive the qubits individually. In the interaction
frame, the Hamiltonian of the two-qubit interaction is

Ĥ = h̄

⎛
⎝J ′σ̂+

1 σ̂−
2 +

∑
j=1,2

Aje
−i� j σ+

j

⎞
⎠ + H.c. (B1)

Here, Aj and � j are the Rabi frequency and phase, respec-
tively, of the drive applied to the qubits. We have assumed that
J ′ � λ1, λ2. The drive produces two dressed states, |±〉 j =
[1/

√
(2)](|g j〉 ± ei� j |e〉 j ). The qubit cannot go into transi-

tions between different dressed states under the conditions
�1 = �2 = � and |A1 − A2| � |J ′|. Then the Hamiltonian
(B1) in the dressed-state basis reduces to [32,39]

Ĥeff = 1

2
h̄J ′Sz1Sz2 + h̄

∑
j=1,2

AjSz j . (B2)

Here, Sz j = |+〉 j〈+| j − |−〉 j〈−| j . If the phases of both
driving fields are reversed right in the middle of the two-
qubit interaction time, then the dressed state |+〉1|+〉2

evolves to | + +〉t = exp(iJ ′t/2)|+〉1|+〉2. At time τ =
π/2J ′, the dressed state becomes | + +〉τ = (1/2)(i|φ−〉 +
|φ+〉 + i|ψ−〉 + |ψ+〉). In the computational basis (|0〉, |1〉),
the state |++〉τ can be obtained by applying the unitary oper-
ator,

U =

⎡
⎢⎢⎣

1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

⎤
⎥⎥⎦. (B3)

Therefore, in the computational basis, the Bell state |φ+〉 is
mapped to |0102〉, i.e., U |0102〉 = |φ+〉. Similarly, |φ−〉, |ψ+〉,
and |ψ−〉 are mapped onto |1112〉, |1102〉, |0112〉.
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