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Quantum magnon conversion accompanying magnon antibunching
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The implementation of quantum network made up of multiple nodes and channels needs to take advantage of
hybrid quantum systems. So far, in the hybrid ferromagnet-superconductor quantum system, the establishment
of the remote effective interactions based on the virtual photons exchange mediated by the microwave cavity
mode has been experimentally confirmed, providing a physical basis for the implementation of the remote signal
transfer from one node to another. In this work, we put forward a magnon-based hybrid quantum system con-
sisting of two macroscopic spin subsystems [i.e., millimeter-diameter ferromagnetic yttrium-iron-garnet (YIG)
spheres] and one transmon-type superconducting qubit, and show that the mechanism of the cavity-mediated
remote magnon-mode intertalk is feasible for achieving microwave signal transfer, simultaneously accompanied
by a transition from Poissonian to sub-Poissonian statistics. We find that by tuning the typical system parameters
properly, even if there is a mismatch in magnon-mode frequencies or dissipation rates between the two YIG
spheres, the microwave information transfer from one YIG sphere to another is still robust, where the signal
output through another YIG sphere exhibits pronounced antibunching. In addition, the proposed hybrid quantum
system possesses a robustness window against the dissipation rates of both the qubit and the two Kittel modes.
The analytical calculations and numerical simulations are conducted under experimentally accessible conditions,
and the consistency of the results attained by these two methods makes our research more credible. Physically, we
notice that two conversion channels are opened. One channel comes from the linear coupling. The other is based
on the nonlinear interaction, which also is the underlying mechanism responsible for nonclassical sub-Poissonian
signal output.
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I. INTRODUCTION

The efficient control, operation, and conversion of signals
between different modes are crucial capabilities for highly
integrated information architectures in the future, whose
achievements may require the utilization of more innova-
tive hybrid quantum systems [1,2], such as the hybrid cavity
magnetic system [2–4]. In recent years, the high-quality fer-
romagnetic insulator, namely, yttrium iron garnet (YIG) with
the chemical formula Y3Fe5O12 [5–8], emerges and attracts a
great deal of attention due to its significant advantages, includ-
ing the extremely low magnon dissipation rate with Gilbert
damping factor down to 10−5 [9–11], the high order of magni-
tude of the spin density (∼4.22 × 1027 m−3) [11,12], and the
small mode volume [13,14], etc. YIG sphere can be regarded
as a huge spin [14,15], providing the flexibility to be individ-
ually manipulated in experiments [16,17]. For instance, the
systems based on the magnons, i.e., the bosonic spin excita-
tion from the magnetic YIG spheres [18,19], exhibit better
frequency adjustability compared with the electromechani-
cal and optoelectronic systems [20], which can be achieved
by controlling the external magnetic field to adjust the fre-
quency of the magnons [16,21–23] ranging from MHz to
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THz [19,24,25]. Additionally, owing to the interactions with
phonons [17,26–29], optical photons [25,30,31], and mi-
crowave photons [5,11,12] via the magnetostrictive effect, the
magneto-optical effect and the magnetic dipole interaction,
respectively, the magnons show the excellent compatibility
and become a favored candidate to carry information. Some
advancements have already yielded valuable insights into the
magnon-based hybrid quantum systems which offer a broad
platform for exploring abundant magnon quantum effects and
implementing complex information processing, such as the
preparation of quantum squeezed states of the phonons and
the magnons [28], the magnon exceptional point [32,33],
the photon-magnon bipartite [34] or photon-phonon-magnon
tripartite entanglement [20,26], the magnon-induced trans-
parency [17,27,35], the manipulation of distant spin current
[36], the generation of magnon Schrödinger cat state [37],
the magnon-induced nonreciprocity [38–41], the frequency
conversion between the microwave photons and the optical
photons [30,42,43], etc.

Existing experimental and theoretical progresses [16,21–
23,44,45] demonstrate that due to the high spin density and
the low magnon dissipation rate, the strong or even ultrastrong
photon-magnon coupling [11,12,46] can be realized in the
microwave cavity experiments [11,44], including the cavity-
mediated long-distance Jaynes-Cummings (JC) interaction
between the magnon excitation and the superconducting qubit
[16,21,22]. The key of implementing this intertalk mecha-
nism is to couple both the magnon excitation and the qubit
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to the common microwave cavity mode which acts as the
quantum bus [47–52]. Owing to the large cavity-magnon and
cavity-qubit frequency detunings, the indirect interaction is
established through exchanging the virtual photons from the
microwave cavity mode rather than relying on the real pho-
tons, which can effectively avoid the losses caused by the
microwave cavity. In addition, it is necessary to adjust the
frequencies of both the magnon mode and the qubit to be
nearly resonant, which makes the coherent manipulation of
the microwave magnons possible [22]. It has been confirmed
that the manipulation of the single-magnon state through
exploiting the superconducting qubit becomes a promising
approach [21,21,44]. Furthermore, thanks to the establishment
of the remote effective coupling, the coherent transfer of the
microwave signal may hold the potential to survive at macro-
scopic distances.

On the basis of the experimental advancements above
[16,21,22], the initial proposal to investigate the generation of
the magnon antibunching effect was put forward in Ref. [53].
Similar to the principles of the photon antibunching effect
[54–59] and the phonon antibunching effect [60–62], the
magnon antibunching effect [63–67], a pure magnon-based
quantum phenomenon, follows the sub-Poissonian statistics.
It reveals an interesting phenomenon that the excitation of
the first magnon would prevent the excitation of the second
one, which leads to the repulsive interaction between the two
consecutively emitted magnons and the orderly emissions of
the magnons one by one [67]. The extremely strong magnon
antibunching effect is also known as the magnon blockade,
which is used to prepare the single-magnon sources and is
beneficial to achieve the quantum manipulation at the level
of a single magnon. As a significant means of describing the
statistical properties of the fields, the second-order correlation
function [68] is utilized to distinguish the sub-Poissonian
statistics, Poissonian statistics, and the super-Poissonian
statistics, which correspond to the magnon blockade, the
magnon coherent state, and the magnon tunneling [69],
respectively.

Motivated by the microwave cavity experiments
[11,16,21–23,44,45] involving the magnetic YIG spheres,
here we demonstrate a magnon-based hybrid quantum system
to implement the cavity-mediated remote microwave signal
transfer which accompanies strong magnon antibunching
effect (i.e., sub-Poissonian magnon-number statistics). In our
proposed hybrid ferromagnet-superconductor architecture,
both one transmon-type superconducting qubit and two
macroscopic ferromagnetic YIG spheres are properly placed
into a three-dimensional (3D) microwave cavity. Like
Ref. [2], the uniformly magnetized YIG spheres only retain
the dominant uniform magnetostatic mode, namely, the Kittel
mode which is the simplest Walker mode. The qubit and the
two Kittel modes are coupled to the common microwave
cavity mode through the electric and magnetic dipole
interactions, respectively, which requires us to position the
qubit and the YIG spheres at the antinode of the intracavity
electric and magnetic field, respectively. Under the condition
of the large cavity-magnon and cavity-qubit frequency
detunings, the adiabatic elimination of the microwave cavity
mode allows the establishment of the effective interactions
through the virtual photons excitation of the common cavity

mode. Therefore, the long-range effective interactions exhibit
significant spatial tunability. The YIG sphere driven by a
weak driving field can serve as the excitation node, while
the YIG sphere not driven can serve as the receiving
node.

With current experimentally accessible parameters,
through analytical calculations and numerical simulations
of the mode conversion efficiency between the two Kittel
modes, as well as the second-order correlation function of the
undriven Kittel mode (i.e., the receiving node), we explore
in detail the feasibility of the magnon-based hybrid quantum
system in achieving the remote magnon mode conversion
accompanying the typical antibunching behavior. And we find
that there are two microwave-mediated channels, contributing
to the magnon conversion. To be specific, one channel is
to exploit the linear magnon-magnon coupling mediated by
the microwave cavity. The other is based on the nonlinear
magnon-qubit interaction mediated by the microwave cavity.
At the same time, the latter nonlinear interaction also gives
rise to a classical-to-quantum crossover from the signal input
to output, i.e., a Poisson-to-sub-Poisson transition. Our study
has potential applications in preparing the long-distance
microwave signal converter between the spatially separated
macroscopic individuals, which provides the possibility for
the ferromagnetic material YIG sphere to serve as a key node
in the integrated quantum networks.

The remaining paper is organized according to the fol-
lowing arrangement. In Sec. II, we provide a detailed
introduction of our theoretical model. And on the basis of
the original Hamiltonian which includes the cavity-qubit and
cavity-magnon couplings, we successfully derive an effective
Hamiltonian which includes the long-range effective qubit-
magnon and magnon-magnon couplings. In Secs. III A–III C,
under the weak-driving limit, the analytical calculations of
the mode conversion efficiency governed by the quantum
Heisenberg-Langevin equation of motion and the zero-delay
second-order correlation function of the undriven Kittel mode
given by the Schrödinger equation are provided. In Sec. III D,
we introduce the quantum master equation to investigate more
accurate numerical results of the mode conversion efficiency
and the zero-delay second-order correlation function of the
undriven Kittel mode. Moreover, we compare the analytical
solutions with the numerical results to confirm the consis-
tency of these two methods, which can make our results more
credible. In Sec. IV, the feasibility of the experimental im-
plementation is briefly elaborated, and the system parameters
are taken to the suitable values executed in actual experi-
ments. In Sec. V, by adjusting typical system parameters,
the mode conversion efficiency and the statistical character-
istics of the magnons are discussed in detail. Finally, the
results of our work are summarized and presented in Sec. VI.
In Appendix A, we provide the validity of the ground-state
approximation under the weak-driving condition from a nu-
merical perspective. In order to make the main text more
concise while maintaining the completeness of the content,
the specific processes of analytically solving the Schrödinger
equation are presented in Appendix C. In Appendixes B and
D, we investigate the influence of the driving strength and the
ambient temperature on the magnon conversion efficiency and
the magnon antibunching effect, respectively.
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FIG. 1. (a) Schematic diagram of the proposed magnon-based superconducting qubit hybrid quantum system comprised of one transmon-
type superconducting qubit and two millimeter-sized ferromagnetic YIG spheres. On the far left side of this panel, there is a loop antenna
for loading the microwave driving field and pumping the adjoining YIG sphere 1 [70,77]. And the classical coherent laser is characterized
by the carrier frequency ωd and the driving strength ξ . On the far right of this panel, there is a detector used to detect the output magnons
from the YIG sphere 2. gi (i = 1, 2) describes the magnon-qubit coupling strength of the ith Kittel mode to the qubit (i.e., the red straight
dotted arrows). gm depicts the magnon-magnon coupling strength between the two Kittel modes (i.e., the red curved dotted arrow). The x, y,
and z directions of the 3D microwave cavity are marked in the upper left corner, and the direction of the magnetic field Bz which is used to
uniformly magnetize the YIG spheres is along the z axis [12]. At the top of this panel, the inset encircled by the dashed circle box represents the
energy-level diagram of the two-level qubit. The red solid double arrow denotes the transition between the ground state |g〉 and the excited state
|e〉 of the qubit with the bare qubit transition frequency ω(0)

q and dissipation rate γ [2,71]. (b) Schematic illustration of the original interactions
in the hybrid quantum system. The microwave cavity mode can directly couple with the two Kittel modes and the qubit through the magnetic
and electric dipole interactions, respectively, which are represented by these two-color solid arrows. gmic (gqc) denotes the magnetic (electric)
dipole coupling strength of the ith Kittel mode (the qubit) to the microwave cavity mode. (c) Schematic representation of the remote effective
interactions in the hybrid quantum system. The red dashed arrows describe the cavity-mediated long-range effective magnon-magnon and
magnon-qubit couplings. Note that the input signal, denoted by the orange cylindrical arrows with the word “Input,” is exactly resonant with
the first Kittel mode. The light green cylindrical arrows with the word “Output” stand for the output magnon flux from the second Kittel
mode. (d) The differences between the input signal and the output signal of this hybrid quantum system in terms of the magnon mode and the
statistical properties characterized by the normalized second-order correlation function.

II. MODEL AND HAMILTONIAN

The simplified schematic diagram of the hybrid
ferromagnet-superconductor quantum system under
investigation is provided in Fig. 1(a). In the scheme
considered here, there is one superconducting qubit and
two spatially separated YIG spheres, all of which need to
be positioned in a rectangular 3D microwave cavity at the
same time. The YIG spheres (the qubit), which are placed
near the magnetic-field (electric-field) antinode [44] of the
microwave cavity mode, can establish direct cavity-magnon
(cavity-qubit) interactions. As a consequence, the original
Hamiltonian of the hybrid quantum system can be written
with two parts (assuming h̄ = 1 here and hereafter): one part
is the original free Hamiltonian

Ĥ (0)
0 = ωcĉ†ĉ + ω(0)

q σ̂ †σ̂ +
∑
i=1,2

ω(0)
mi

m̂†
i m̂i, (1)

which represents the total free energies of the microwave
cavity mode, the qubit, and the two Kittel modes; and the other
part is the original interaction Hamiltonian

Ĥ (0)
I = gqcσ̂

†ĉ +
∑
i=1,2

gmicm̂†
i ĉ + H.c. (2)

There are some symbols that are necessary to be explained:
the microwave cavity-mode frequency is denoted by ωc, the
bare frequency of the qubit is represented by ω(0)

q , and the
bare frequency of the ith (i = 1, 2) Kittel mode is indicated
by ω(0)

mi
which can be controlled by adjusting the amplitude

of the local external magnetic field [not shown in Fig. 1(a)]
[70]. H.c. means the Hermitian conjugate. The symbols ĉ
and ĉ† correspond to the annihilation and creation operators
of the microwave cavity mode. The transmon-type qubit can
be described as an anharmonic oscillator [51]. Due to the
strong anharmonity in the considered qubit, it is reasonable to
neglect the higher-energy levels and only consider the lowest
two levels (i.e., the ground state and the first excited state) of
the anharmonic oscillator as the qubit subspace [22]. Thus,
σ̂ = |g〉〈e| and σ̂ † = |e〉〈g| are the excitonic lowering and
raising operators between the ground state |g〉 and the first
excited state |e〉 of the qubit in the inset of Fig. 1(a). The
operator m̂†

i (m̂i) can create (annihilate) an excitation in the
uniformly precessing Kittel mode of the ith YIG sphere, and
satisfies the usual bosonic commutation relation [m̂i, m̂†

i′ ] =
δii′ (i, i′ = 1, 2). The symbol gmic (gqc) stands for the direct
coupling strength between the ith Kittel mode (the qubit) and
the microwave cavity mode, i.e., the magnetic (electric) dipole
coupling strength. For clarity, Fig. 1(b) provides a concise
diagram to illustrate these original interactions. Owing to the
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sufficient spatial separations among the qubit and the two
magnetic YIG spheres, the direct interactions among them,
which are not shown in Fig. 1(b), are so weak that they can
be reasonably overlooked [14,44,71]. And such an operation
is also adopted in the relevant experiments [16,22,44].

The original Hamiltonian involving the microwave cavity
mode does not provide intuitive interactions among the two
Kittel modes and the qubit, which is not conducive to gaining
more insight into the information transfer among them. Now,
we define the frequency detuning between the ith Kittel mode
(the qubit) and the microwave cavity mode as δic = ω(0)

mi
− ωc

(δqc = ω(0)
q − ωc). When the two Kittel modes and the qubit

are nearly resonant with each other but far detuned from
the microwave cavity mode, i.e., |ω(0)

mi
− ωq| � {gmic and

gqc} � {δic and δqc} (i = 1, 2) [72], it is feasible to use
a Fröhlich-Nakajima transformation [73,74] to adiabatically
eliminate the microwave cavity mode and derive the effective
interactions which are described by the JC-type Hamiltonian.
To be specific, we can consider a unitary transformation
Û0 = eŜ , where

Ŝ = gm1c

δ1c
(ĉ†m̂1 − ĉm̂†

1) + gm2c

δ2c
(ĉ†m̂2 − ĉm̂†

2 )

+gqc

δqc
(ĉ†σ̂ − ĉσ̂ †) (3)

is anti-Hermitian and needs to satisfy the constraint relation-
ship Ĥ (0)

I + [Ĥ (0)
0 , Ŝ] = 0 [75]. So the effective Hamiltonian

Ĥeff = Û †
0 (Ĥ (0)

0 + Ĥ (0)
I )Û0, which is only expanded to the sec-

ond order [76], can be approximately expressed as

Ĥeff ≈ Ĥ (0)
0 + 1

2

[
Ĥ (0)

I , Ŝ
]

= ωqσ̂
†σ̂ +

∑
i=1,2

[ωmi m̂
†
i m̂i + gi(m̂

†
i σ̂ + m̂iσ̂

†)]

+gm(m̂†
1m̂2 + m̂1m̂†

2), (4)

where ωq = ω(0)
q + g2

qc

δqc
and ωmi = ω(0)

mi
+ g2

mic

δic
imply the ef-

fective frequencies of the qubit and the ith Kittel mode,
respectively. It is clear that owing to the coupling to the
microwave cavity mode, the qubit frequency ωq (the ith

magnon-mode frequency ωmi ) is shifted by
g2

qc

δqc
(

g2
mic

δic
) from ω(0)

q

(ω(0)
mi

) [22]. gi = 1
2 gmicgqc( 1

δic
+ 1

δqc
) means the remote effec-

tive magnon-qubit coupling strength between the ith Kittel
mode and the qubit. gm = 1

2 gm1cgm2c( 1
δ1c

+ 1
δ2c

) denotes the
remote effective magnon-magnon coupling strength. There-
fore, the quanta of excitations are exchanged between the ith
Kittel mode and the qubit at a rate which is proportional to the
magnon-qubit coupling strength gi [2]. Similarly, the quanta
of excitations can also be exchanged between the two Kittel
modes at a rate which is proportional to the magnon-magnon
coupling strength gm. Besides, it is obvious that by modu-
lating the original cavity-magnon and cavity-qubit coupling
strengths, the long-range effective coupling strengths can be
controlled. Figure 1(c) shows a clear diagram to illustrate
these effective interactions. Due to the significant frequency
detunings between the microwave cavity mode and the two
Kittel modes as well as the qubit, the microwave cavity mode
can be reasonably regarded as always remaining in the ground

state, i.e., 〈ĉ†ĉ〉 ≈ 0 [75], so that the microwave cavity mode
can be adiabatically eliminated and the original Hamiltonian
can also be greatly simplified.

The physical essence behind the intertalk among the two
magnetic YIG spheres and the qubit is the generation and
disappearance of the virtual photons from the microwave cav-
ity mode [78]. That is to say, the microwave cavity mode
provides a channel as the quantum bus to assist the exchange
of the virtual photons among the two YIG spheres and the
qubit [79]. Such a mechanism can offer tremendous insights
into the remote information transfer between the indirectly
interacting macroscopic magnets which have the potential
to become an available node in the large-scale quantum
networks.

Before proceeding further, there are four points we would
like to emphasize about the transformation from Eqs. (1) and
(2) to (4): (i) Because there is no direct interaction among the
two Kittel modes and the qubit in Fig. 1(b), the microwave
signal from one YIG node cannot be directly transferred to
another. (ii) Due to the large frequency mismatch, the two
Kittel modes and the qubit can not exchange the real pho-
tons but the virtual photons with the microwave cavity mode.
Additionally, it is necessary to adjust the local external mag-
netic fields to tune the frequencies of the two Kittel modes
[70] to be as close as possible to the frequency of the qubit.
Based on the cavity-mediated long-distance JC interactions
in Fig. 1(c), the second Kittel mode, which does not directly
couple with the input laser field and the first Kittel mode, can
obtain light from the first Kittel mode and the qubit. In other
words, the microwave signal can be indirectly transferred
from one YIG node to another. (iii) Compared with the negli-
gible direct interactions among the two Kittel modes and the
qubit which are very weak, the remote magnon-magnon and
magnon-qubit couplings are strong. (iv) Unlike the real pho-
tons, the virtual photons have the advantages of nonradiation
and nonpropagation [51], which can avoid the cavity-induced
loss [78]. This is crucial because it implies that the cavity-
mediated information transfer over such long distances is
advantageous.

Below, we apply a microwave field to drive the first Kittel
mode with the driving frequency ωd and driving strength
ξ , that is to say, we can read the driving Hamiltonian as
Ĥd = ξ (m̂†

1e−iωd t + m̂1eiωd t ). Without loss of generality, ξ is
considered to be a real number. For the convenience of
description, we define the Hamiltonian of the hybrid quan-
tum system as the symbol Ĥsys = Ĥeff + Ĥd. In order to
reduce the complexity of the subsequent computations caused
by the dependence of the driving Hamiltonian Ĥd on the
time, the Hamiltonian Ĥsys need to be switched into a rotating
reference frame with respect to the driving field frequency
ωd . Under the help of the unitary transformation formula,
namely,

Ĥrot = Û (t )ĤsysÛ
†(t ) − iÛ †(t )

∂Û (t )

∂t
, (5)

where Û (t ) = e−iωd t (m̂†
1m̂1+m̂†

2m̂2+σ̂ †σ̂ ) is a time-dependent uni-
tary operator, a time-independent Hamiltonian describing the
hybrid quantum system in the interaction picture can be
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attained and written as

Ĥrot = �qσ̂
†σ̂ +

∑
i=1,2

[�im̂
†
i m̂i + gi(m̂

†
i σ̂ + m̂iσ̂

†)]

+gm(m̂†
1m̂2 + m̂1m̂†

2 ) + ξ (m̂†
1 + m̂1). (6)

Here, �1 = ωm1 − ωd , �2 = �1 + δm, and �q = �1 + δq are
the driving detuning of the first Kittel mode, the second Kittel
mode, and the qubit, respectively. The frequency detuning
between the second Kittel mode (the qubit) and the first Kittel
mode can be denoted by the symbol δm = ωm2 − ωm1 (δq =
ωq − ωm1 ). On the basis of the quantum master equation for
the density matrix, which incorporates Eq. (6), we perform
the accurate numerical simulations which are presented in
Sec. III D below.

In practical situations, the energy losses caused by the
external environment are inevitable. As a consequence, it is
necessary to take the dissipative process into consideration.
The non-Hermitian Hamiltonian, which includes the influence
of the dissipation terms, can be derived with the form

Ĥtot = Ĥrot − i
γ

2
σ̂ †σ̂ −

∑
i=1,2

i
κi

2
m̂†

i m̂i, (7)

where γ accounts for the dissipation rate of the qubit and
κi indicates the dissipation rate of the ith Kittel mode. The
effective non-Hermitian Hamiltonian [i.e., Eq. (7)] offers us
the approximate analytical results (presented in Secs. III A–
III C below) which are governed by the Heisenberg-Langevin
equation of motion and the Schrödinger equation of the wave
function.

Finally, in order to gain a clearer understanding of the
differences between the input signal and the output signal,
we provide a brief diagram [i.e., Fig. 1(d)] to illustrate
the differences. To be more specific, first of all, owing to
the establishments of the remote effective couplings among
the two Kittel modes and the qubit, the input microwave
signal, which is exactly resonant with the first Kittel mode m1

(i.e., �1 = 0), can be converted into the second Kittel mode
m2 which is not driven. That is, the magnon conversion from
one node to another can survive over macroscopic distances
via the cavity-mediated effective couplings. Second, with the
aim of generating the nonclassical effects, the nonlinearity
is required in the hybrid quantum system. The Josephson
junctions providing the nonlinearity thus play an important
role for the realization of the transmon-type qubit which
can be modeled as an effective two-level system [22]. After
utilizing a classical laser field to drive the first Kittel mode
to the excited state, a single excitation can be transferred
to the second Kittel mode, which is a feasible manipulation
due to the nonlinearity of the qubit [2]. The input coherent
light (i.e., the boundary between the classical and quantum
states with the normalized second-order correlation function
equal to unity) may be transferred into the antibunching mi-
crowave magnons (i.e., the quantum state with the normalized
second-order correlation function less than unity). So our pro-
posed hybrid quantum system has the potential to achieve the
remote magnon-mode conversion accompanied by the sub-
Poissonian signal output.

III. CALCULATIONS OF CONVERSION
EFFICIENCY AND NORMALIZED ZERO-DELAY

SECOND-ORDER CORRELATION FUNCTION
UNDER WEAK-DRIVING SCENARIO

A. Magnon emission intensity by solving Heisenberg-Langevin
equations of motion under weak-driving limit

Although the analytical calculations consider many ap-
proximations during the solving process, they are still an
essential step in our research process because this approach
provides a physically intuitive perspective. By substituting
the non-Hermitian Hamiltonian [i.e., Eq. (7)] including the
dissipation terms of the hybrid quantum system into the
Heisenberg-Langevin equation of motion [80,81], i.e., dÂ

dt =
−i[Â, Ĥtot], we can attain a set of differential equations of the
operator Â (Â = m̂1, m̂2, and σ̂ ) as the form in the following:

dm1

dt
= −

(
i�1 + κ1

2

)
m1 − ig1σ − igmm2 − iξ, (8a)

dm2

dt
= −

(
i�2 + κ2

2

)
m2 − ig2σ − igmm1, (8b)

dσ

dt
= −

(
i�q + γ

2

)
σ + i(g1m1 + g2m2)σz. (8c)

Here, due to the interest in the mean response of the proposed
system, we replace all operators with their averages but, for
simplicity, still use the same symbols. Additionally, in the cold
reservoir limit, the noise terms also can be safely ignored,
whose expected values are zero [81]. Besides, note that we
use the factorization assumption, i.e., 〈ÂB̂〉 = 〈Â〉〈B̂〉. By
observing Eqs. (8a)–(8c), it is obvious that we do not obtain
a closed set of equations for the first-order moments but the
second-order moments, that is, the differential equation of σ

[i.e., Eq. (8c)] is coupled to m1σz and m2σz [80].
Since our analytical calculations take the weak-driving

condition into account, the qubit is mainly in the ground
state |g〉, which means that it is reasonable to set the average
value of σz to −1 [82,83]. To verify the rationality of this
approximate operation, we provide the numerical simulation
results in Appendix A. On the basis of such approximate
operation above, the steady-state analytical solutions of the
emission amplitudes of the two Kittel modes and the qubit
are, respectively, yielded by

m1 = − iξ
(
a2aq + g2

2

)

a1a2aq + a1g2
2 + a2g2

1 + aqg2
m − 2ig1g2gm

, (9a)

m2 = ξ (ig1g2 − aqgm)

a1a2aq + a1g2
2 + a2g2

1 + aqg2
m − 2ig1g2gm

, (9b)

σ = − ξ (a2g1 − ig2gm)

a1a2aq + a1g2
2 + a2g2

1 + aqg2
m − 2ig1g2gm

. (9c)

Because we have made some approximations in the process
of obtaining the above analytical solutions, which make the
nonlinearity imperceptible intuitively, we will compare the
approximate analytical solutions with the accurate numerical
solutions in Sec. III D below.
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B. Mode conversion efficiency of microwave magnons

It is necessary to provide a parameter to describe the effi-
ciency of the long-distance information transfer between two
spatially separated YIG spheres. In what follows, we define
the microwave magnon-mode conversion efficiency η which
quantifies how much magnon is transferred from the first
Kittel mode with zero coupling to the second Kittel mode
under the coupling, with the form

η = M2

M0
= κ2|m2|2

κ1|m1|2g1=g2=gm=0

= κ2a2
1

(
g2

1g2
2 + a2

qg2
m

)

κ1
[(

a1a2aq + a1g2
2 + a2g2

1 + aqg2
m

)2 + 4g2
1g2

2g2
m

] , (10)

where

M0 = κ1|m1|2g1=g2=gm=0 = κ1

∣∣∣∣
iξa2aq

a1a2aq

∣∣∣∣
2

= κ1ξ
2

a2
1

. (11)

M2 is the unnormalized output of the second Kittel mode. It
should be noted that the denominator of the mode conversion
efficiency, i.e., M0, describes the integrated emission inten-
sity of the first Kittel mode in the absence of the effective
couplings [84] among the two Kittel modes and the qubit
(i.e., g1 = g2 = gm = 0) at �1 = 0. According to Ref. [84],
the mode conversion efficiency can also be understood as the
normalized average magnon population of the second Kittel
mode, i.e., the normalized output magnon flux scattered from
the second Kittel mode to the outside of the cavity [81]. In
addition, we present the research on unnormalized average
magnon population of the second Kittel mode in Appendix B.

By carefully investigating Eq. (10), it is not difficult to
find that the output magnons of the second Kittel mode are
composed of two parts which respectively correspond to two
channels. More specifically, the first term of the numerator
involves two effective coupling strengths, i.e., g1 and g2. That
is to say, with the help of these two remote effective couplings,
the microwave signal can be transferred from the excitation
node (i.e., the first Kittel mode which is driven and resonant
with the driving field) to the receiving node (i.e., the second
Kittel mode which is not driven) with passing through the
qubit. For convenience, this channel can be defined as channel

I (the first Kittel mode
g1−→ the qubit

g2−→ the second Kittel
mode). It is necessary to emphasize again that the channel I
introduces nonlinearity due to the presence of the qubit, which
was also mentioned in the analysis of Eq. (A1) in Appendix A.
The second term of the numerator only involves one effective
coupling strength, i.e., gm. In other words, the microwave
signal can be transferred from the excitation node (i.e., the
first Kittel mode which is driven and resonant with the driving
field) to the receiving node (i.e., the second Kittel mode which
is not driven) without passing through the qubit. This channel

can be defined as channel II (the first Kittel mode
gm−→ the

second Kittel mode) for the sake of convenience. Similarly,
we need to point out that channel II does not introduce non-
linearity so that it can be seen as a linear channel.

In order to gain a clearer understanding of the competition
between these two channels, we introduce a parameter Tx (x =
I, II) which represents the ratio of the emission intensity of

the channel x with respect to the total emission intensity of
these two channels, namely,

TI = g2
1g2

2

g2
1g2

2 + a2
qg2

m

= g4
qc

g4
qc + a2

qδ
2
qc

= p4g4
m1c

p4g4
m1c + a2

qδ
2
qc

= 1

1 + a2
qδ

2
qc

p4g4
m1c

, (12a)

TII = a2
qg2

m

g2
1g2

2 + a2
qg2

m

= a2
qδ

2
qc

g4
qc + a2

qδ
2
qc

= a2
qδ

2
qc

p4g4
m1c + a2

qδ
2
qc

= 1

p4g4
m1c

a2
qδ

2
qc

+ 1

, (12b)

where we define the parameter p to denote the ratio of gqc

to gm1c, i.e., p = gqc/gm1c. According to Eq. (12), we can
easily discover that the parameter Tx is very sensitive to the
cavity-qubit coupling strength gqc and the dissipation of the
qubit γ which is included in aq, and so on. With the increase
of the cavity-qubit coupling strength gqc, the microwave signal
tends to be transferred through channel I . Similarly, when we
consider the two Kittel modes are resonant with the qubit,
i.e., �1 = �2 = �q = 0 and aq = γ /2, the microwave signal
tends to be transferred through channel II with the increase of
the qubit dissipation γ .

C. Insights into the normalized zero-delay second-order
correlation function by solving Schrödinger

equation under weak-driving scenario

As is well known, the magnon blockade effect is a typi-
cal magnon-based quantum effect and it can be seen as the
counterpart of the photon blockade effect. It describes a non-
classical phenomenon that the excitation of the first magnon
will block the excitation of the subsequent magnon. In what
follows, we are interested in the quantum correlations among
the output magnons of the second Kittel mode when only
the first Kittel mode is driven. The normalized zero-delay
second-order correlation function can be employed to eval-
uate the degree of the hindrance of the emitted magnon to
the subsequent magnon emission and quantify the statistical
properties of the output magnons. The expression of the nor-
malized zero-delay second-order correlation function of the
second Kittel mode can be written as

g(2)
22 (0) = 〈�ss|m̂†2

2 m̂2
2|�ss〉

〈�ss|m̂†
2m̂2|�ss〉2

, (13)

where �ss denotes the steady-state wave function and
〈�ss|Â|�ss〉 is the ensemble average of the observable
physical quantity Â. Generally speaking, when the condi-
tion of g(2)

22 (0) < 1 is satisfied, the statistical characteristics
of the magnons display the sub-Poissonian distribution, cor-
responding to the magnon antibunching effect which is a
quantum effect of the magnons and represents that the excited
magnons reduce the possibility of subsequent magnon exci-
tation. If the value of g(2)

22 (0) infinitely approaches zero, we
can consider that a perfect single-magnon source is achieved.
When the condition of g(2)

22 (0) > 1 is satisfied, the statistical
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characteristics of the magnons display the super-Poissonian
distribution, corresponding to the magnon bunching effect
which is classical effect of the magnons and suggests that
the excited magnons increase the possibility of subsequent
magnon excitation. If the value of g(2)

22 (0) exceeds two, the
hybrid quantum system exhibits magnon superbunching effect
[85]. Particularly, when the value of g(2)

22 (0) equals to unity, the
statistical characteristics of the magnons exhibit the Poisson
distribution, corresponding to the coherent state which is the
boundary between classical and quantum states.

For the goal of determining the analytical expression of
the normalized zero-delay second-order correlation function
of the output magnons from the second Kittel mode, it is

necessary to explore the evolution of the wave function of
the hybrid quantum system |�〉, which is controlled and
governed by the time-dependent Schrödinger equation, i.e.,
i ∂|�〉

∂t = Ĥtot|�〉. We can expand the wave function |�〉 into
a direct product state, i.e., |α, m1, m2〉 = |α〉 ⊗ |m1〉 ⊗ |m2〉,
which denotes that the qubit is in the |α〉 (α = g, e) state, the
magnon number of the first Kittel mode is m1, and the magnon
number of the second Kittel mode is m2. Under the weak
excitation condition, i.e., ξ � {κ1, κ2, γ , g1, g2 and gm}, the
probabilities of the higher-order magnon number states being
occupied are very small, so that the total excitation number
can be safely truncated to not exceed two. The wave function
|�〉 thus can be approximately and reasonably expanded as

|�〉 ≈ Cg00|g, 0, 0〉 + Cg10|g, 1, 0〉 + Cg01|g, 0, 1〉 + Cg11|g, 1, 1〉 + Cg20|g, 2, 0〉 + Cg02|g, 0, 2〉
+ Ce00|e, 0, 0〉 + Ce10|e, 1, 0〉 + Ce01|e, 0, 1〉, (14)

where the coefficient Cαm1m2 is the probability amplitude of the state |α, m1, m2〉. Additionally, the different magnitudes between
ξ and {κ1, κ2, γ , g1, g2, and gm} result in only a few energy levels being excited (as mentioned earlier, we perform the truncation
operation on the wave function |�〉), and most of the magnons and photons staying in the ground state |g, 0, 0〉. As a consequence,
we can naturally get an approximate relationship which can be expressed as

|Cg00| 
 1 � {|Cg10|, |Cg01|, |Ce00|} � {|Cg11|, |Cg20|, |Cg02|, |Ce10|, |Ce01|}. (15)

In order to obtain the analytical expressions of the probability amplitudes under the steady state, we substitute the non-
Hermitian Hamiltonian [i.e., Eq. (7)] and the truncated wave function [i.e., Eq. (14)] into the Schrödinger equation (i.e.,
i ∂|�〉

∂t = Ĥtot|�〉) which satisfies the steady-state condition i ∂|�〉
∂t = 0. For readability, the detailed derivation processes of solving

the Schrödinger equation are provided in Appendix C. After iteratively calculating a closed set of algebraic equations [i.e.,
Eqs. (C2a)–(C2h) in Appendix C], we can attain the analytical expressions of the single-magnon excitation coefficient Css

g01 and
the two-magnon excitation coefficient Css

g02 which are the main steady-state probability amplitudes responsible for the expression

of g(2)
22 (0). Thus, we only present the expressions of these two steady-state probability amplitudes as follows:

Css
g01 = (g1g2−gm�′

q )ξ
Λ

, (16a)

Css
g02 =

(
g4

1g2
2 − 2g3

1g2gm�′
q + 2g1g2gmχ1 + g2

mχ2 + g2
1χ3

)
ξ 2

√
2Λ

(
ζ1 + 2g1g2gmζ2 + �′

1ζ3 + g2
mζ4 − g2

1ζ5
) , (16b)

where some newly combined coefficients are introduced and defined by

χ1 = g2
m�′

q − g2
2(�′

2 + �′
q) + (�′

1 + �′
2)(�′

1 + �′
q)(�′

2 + �′
q), (17a)

χ2 = g4
2 + g2

2

[
δ2

q + δq�
′
1 − �′

1(�′
1 + �′

2)
] − �′

q(�′
1 + �′

2)
[ − g2

m + (�′
1 + �′

q)(�′
2 + �′

q)
]
, (17b)

χ3 = g4
2 − g2

2

[
g2

m + (�′
1 + �′

2)(�′
1 + �′

q)
] − g2

m

[
δ2

m − (δq − �′
1)(�′

1 + �′
q) + δm(3�′

1 + �′
q)

]
, (17c)

ζ1 = −2g3
1g2gm + g4

1�
′
2 + g4

m(�′
1 + �′

2), (17d)

ζ2 = −g2
2 + g2

m + δm(δm + δq) + 2(2δm + δq)�′
1 + 5�′2

1 , (17e)

ζ3 = [
g2

2 − (�′
1 + �′

2)(�′
1 + �′

q)
][

g2
2 − �′

2(�′
2 + �′

q)
]
, (17f)

ζ4 = g2
2δq − (�′

1 + �′
2)

[
δ2

q + 4δq�
′
1 + 5�′2

1 + δm(2�′
1 + �′

q)
]
, (17g)

ζ5 = g2
m(δm − δq) − g2

2(�′
1 + �′

2) + �′
2

[
δ2

m + 3�′
1(�′

1 + �′
q) + δm(3�′

1 + �′
q)

]
, (17h)

Λ = −2g1g2gm + g2
1�

′
2 + g2

m�′
q + �′

1

(
g2

2 − �′
2�

′
q

)
. (17i)

There are some symbols that need to be explained again:
�′

1 = �1 − i κ1
2 , �′

2 = �2 − i κ2
2 , and �′

q = �q − i γ

2 . In order
to make the main text more concise and easy to read, the
expressions of the other steady-state probability amplitudes,

whose contributions to the normalized zero-delay second-
order correlation function of the second Kittel mode can be
neglected, will no longer be shown and provided. So far, we
complete the preparation work, that is, we successfully yield
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the steady-state analytical solutions of the probability ampli-
tudes Css

g01 and Css
g02 which are the core purpose of solving the

Schrödinger equation.
Next, the above calculation results can be fully utilized

to attain the analytical expression of the physical quantities
of concern. After taking the truncated wave function [i.e.,
Eq. (14)] and the approximate relationship [i.e., Eq. (15)]
above into consideration, the analytical expression of the nor-
malized zero-delay second-order correlation function of the
second Kittel mode thus can be simplified and expressed in
terms of the steady-state coefficients Css

αm1m2
as [68]

g(2)
22 (0) = 〈�ss|m̂†2

2 m̂2
2|�ss〉

〈�ss|m̂†
2m̂2|�ss〉2

=
∑

α,m1,m2
m2(m2 − 1)

∣∣Css
αm1m2

∣∣2

(∑
α,m1,m2

m2

∣∣Css
αm1m2

∣∣2
)2

= 2
∣∣Css

g02

∣∣2

(∣∣Css
g01

∣∣2 + ∣∣Css
g11

∣∣2 + 2
∣∣Css

g02

∣∣2 + ∣∣Css
e01

∣∣2)2


 2
∣∣Css

g02

∣∣2

∣∣Css
g01

∣∣4 , (18)

with the sum indices α and mi being α = g, e and mi = 0, 1, 2
(i = 1, 2). Equation (18) clearly conveys a valuable mes-
sage that indeed only the steady-state probability amplitudes
Css

g01 and Css
g02 make a huge contribution to the normal-

ized zero-delay second-order correlation function g(2)
22 (0). By

substituting Eqs. (16) and (17) into (18), we can obtain an an-
alytical expression of the normalized zero-delay second-order
correlation function g(2)

22 (0) which is so bulky and complex
that we cannot present it here.

The analytical calculations of the normalized zero-delay
second-order correlation function g(2)

22 (0) provide a method for
us to better comprehend the magnon blockade effect from a
mathematical perspective. By carefully observing the above-
mentioned expression (19), it is not difficult to summarize that
the perfect magnon blockade effect, i.e., g(2)

22 (0) ≈ 0, which
is the ultimate goal of our quest, can be achieved via setting
the value of the coefficient |Css

g02|2 equal to zero. From a
physical perspective, this is also reasonable. The occupying
probability of the two-magnon state of the second Kittel mode
is equal to zero, which implies that two magnons from the
second Kittel mode cannot be excited simultaneously. Unfor-
tunately, due to the complexity of the total Hamiltonian and
the truncated wave function in our proposed hybrid quantum
system, we cannot obtain an explicit expression of the optimal
condition of achieving the magnon blockade effect so that
it is difficult to offer more intuitive physical insights from a
quantitative perspective. But it does not prevent us from ana-
lyzing the statistical properties of the second Kittel mode from
a qualitative perspective. Through carefully looking into the
steady-state probability amplitudes Css

g01 and Css
g02, we find that

they are closely related to the cavity-magnon couplings, the
cavity-qubit coupling, the magnon-magnon frequency detun-
ing, and the dissipation rates of the two Kittel modes as well
as the qubit, etc. This means that by the aid of the sensitive

dependence of the magnon statistical properties on the typical
system parameters, we can deeply explore the statistical prop-
erties of the magnons which will be displayed in more detail
in Sec. V.

D. Dissipative dynamical evolution governed
by quantum master equation

Another method to accurately elucidate the driving-
dissipation characteristics of this hybrid quantum system is to
solve the quantum master equation via using the numerical
simulation methods. In this subsection, we conduct a de-
tailed numerical calculation of the long-distance information
transfer and the magnon statistical properties by utilizing the
Lindblad quantum master equation. We assume a reservoir
temperature of zero. Under the Born-Markovian approxima-
tion, the full quantum master equation is offered as [80,86,87]

d ρ̂

dt
= −i[Ĥrot, ρ̂] + γ

2
L̂[σ̂ ]ρ̂ +

∑
i=1,2

κi

2
L̂[m̂i]ρ̂, (19)

where the Hamiltonian Ĥrot is given by Eq. (6) under the
ωd -rotating frame of the hybrid quantum system, γ denotes
the dissipation rate of the qubit, and κi stands for the dissi-
pation rate of the ith magnon mode. The last two terms can
be expanded as the standard Lindblad type of the dissipation
for the annihilation operator Â [Â = σ̂ and m̂i (i = 1, 2)].
The Lindblad dissipation superoperator L̂[Â] acts on the
density matrix ρ̂, i.e., L̂[Â]ρ̂ = 2Âρ̂Â† − Â†Âρ̂ − ρ̂Â†Â.
These terms account for the losses to the environment.

When the evolution of the hybrid quantum system reaches
a steady state which can be performed by solving Eq. (19)
with the left hand set to zero, i.e., d ρ̂

dt = 0, the steady-state

magnon number of the mode Â satisfies nÂ
ss = Tr(ρ̂ssÂ†Â),

where ρ̂ss is the steady-state density matrix. Therefore,
the normalized zero-delay second-order correlation function
g(2)

22 (0) of the second Kittel mode, which is a key physical
quantity used to gain a physical insight into the magnon sta-
tistical characteristics, can be specifically yielded by [68]

g(2)
22 (0) = Tr

(
ρ̂ssm̂

†2
2 m̂2

2

)

[Tr(ρ̂ssm̂
†
2m̂2)]2

, (20)

where Tr(. . . ) represents taking the trace operation. Similarly,
the numerical expression of the magnon-mode conversion
efficiency η can be written as

η = κ2nm̂2
ss

κ1(nm̂1
ss )g1=g2=gm=0

= κ2Tr(ρ̂ssm̂
†
2m̂2)

κ1Tr[ρ̂ss(m̂
†
1m̂1)g1=g2=gm=0]

. (21)

Additionally, in order to simulate the full quantum
magnon conversion efficiency η and the normalized zero-
delay second-order correlation function of the second Kittel
mode g(2)

22 (0) by using the PYTHON software, it is necessary to
truncate the Hilbert space at a finite number of the magnons
so that the full convergence can be guaranteed under the
condition of the weak-driving scenario. To do so, we consider
a Hilbert space expanded by the magnon Fock states of both
Kittel modes and one qubit which is a two-level electronic sys-
tem. The cutoff number of magnons as low as 10 for the two
Kittel modes corresponds to a total Hilbert space of 200 for the
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FIG. 2. Comparison between the analytical calculations (rep-
resented by the blue solid lines) and the numerical simulations
(represented by the pink-circle lines) of the conversion efficiency
η and the normalized zero-delay second-order correlation func-
tion of the second Kittel mode g(2)

22 (0). (a) Conversion efficiency
η varying with the dissipation rate of the second Kittel mode κ2.
(b) Normalized zero-delay second-order correlation function of the
second Kittel mode g(2)

22 (0) as a function of the dissipation rate
of the second Kittel mode κ2. The selections of the other system
parameters used in these two plots are in accordance with the rel-
evant experiments [16,21–23,44,45]: �1 = �2 = �q = 0 (i.e., δm =
δq = 0), gm1c/2π = 15 MHz, gm2c/gm1c = 1, gqc/gm1c = 10, ξ/2π =
0.001 MHz, κ1/2π = 5 MHz, and γ /2π = 1 MHz.

hybrid quantum system. And such a master equation for the
steady-state density matrix is equivalent to a linear system of
40 000 equations [88]. Hence, the truncated magnon number
mentioned above is sufficient to guarantee the convergence
of the simulations. The numerical simulations offered in this
subsection and the analytical calculations offered in Sec. III C
can provide us with a more comprehensive insight.

With the goal of verifying the correctness of the analyt-
ical results governed by the quantum Heisenberg-Langevin
equation of motion and the Schrödinger equation, we com-
pare the analytical results with the numerical results in
the steady state. For example, the analytical solutions
of the mode conversion efficiency η and the normalized
zero-delay second-order correlation function of the second
Kittel mode g(2)

22 (0) are given by Eqs. (10) and (18), respec-
tively, which are denoted by the blue solid lines in Fig. 2.

And the numerical solutions of the mode conversion efficiency
η and the normalized zero-delay second-order correlation
function of the second Kittel mode g(2)

22 (0) are expressed by
Eqs. (21) and (20), respectively, which are indicated by the
pink-circle lines in Fig. 2. We show the comparison between
the analytical results and the numerical results under the
weak-driving scenario. It is obvious that the analytical results
can be faithfully reproduced by the numerical results. The
consistency of the results attained from these two methods
confirms the credibility of our results. For this reason, in the
following main text, we will only present the numerical results
obtained from the quantum master equation and the detailed
results are given in Figs. 3–6 later.

IV. EXPERIMENTAL FEASIBILITY CONSIDERATION
AND TYPICAL SYSTEM PARAMETER SELECTION

Before continuing the research, it is significant to briefly
evaluate the experimental feasibility of the proposed hybrid
quantum system. And based on the existing experiments, we
can determine the appropriate values for the typical parameter
involved in the implementation of our scheme. In accordance
with the experimental reports in Refs. [16,21–23,44,45], at
a considerably low temperature, both of the 1-mm-diameter
YIG spheres need to be mounted in the oxygen-free copper
part [12,21] of the 3D microwave cavity, and the transmon-
type superconducting qubit needs to be mounted in the
aluminum part [44] of the 3D microwave cavity. The reason
for such placement and design is that the oxygen-free cop-
per part cannot hinder the passage of the external magnetic
field, making it convenient to control the frequencies of the
two Kittel modes [23]. And in order to maintain the high
coherence of the qubit and protect it from the disturbance
of the magnetic field [22,44], it is necessary to ensconce
the qubit in an aluminum space which exhibits diamagnetic
and superconducting properties [23] at the extremely low
temperature. Besides, this aluminum part also needs to be
covered by a pure iron shell to achieve more efficient magnetic
shielding [21]. In Appendix D, we explore the temperature
limit of the considered hybrid quantum system for implement-
ing the magnon-mode conversion accompanying the magnon
antibunching effect, and compare this limit with relevant ex-
perimental works [16,22,23,44] to guarantee the experimental
feasibility of the considered hybrid quantum system.

In the considered hybrid quantum system, the frequency
of the microwave cavity mode TE102 is ωc/2π = 8.653 GHz;
the transition frequency of the qubit which can be regarded
as a two-level artificial atom [22,89,90] is ωq/2π = 7.713
GHz; and the uniform magnetostatic modes in ferromagnetic
crystals possess tunable frequency ωmi (i = 1, 2). By applying
a uniform external bias magnetic field Bz to the YIG spheres,
the YIG spheres can be magnetized to saturation and only
retain the uniform magnetostatic modes [45] which are also
known as the Kittel modes [2,16]. In addition, the two Kittel
modes are also subject to the local magnetic fields [not shown
in Fig. 1(a)] which are further applied to the two YIG spheres.
Through tuning the amplitudes of the local external magnetic
fields, the frequencies of the two Kittel modes can be con-
trolled to be close to resonant with the qubit [70]. The resonant
qubit and Kittel modes are far detuned from the microwave
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FIG. 3. (a) Contour map of the conversion efficiency η as a function of the ratio of the two cavity-magnon coupling strengths gm2c/gm1c as
well as the ratio of the cavity-qubit coupling strength to the first cavity-magnon coupling strength gqc/gm1c. (b) Contour map of the logarithmic
normalized zero-delay second-order correlation function of the second Kittel mode log10g(2)

22 (0) as a function of the ratio of the two cavity-
magnon coupling strengths gm2c/gm1c as well as the ratio of the cavity-qubit coupling strength to the first cavity-magnon coupling strength
gqc/gm1c. The black dashed lines in (b) with label “0” are the contour of log10g(2)

22 (0) 
 0, i.e., g(2)
22 (0) 
 1. The white solid arrows with the label

“g(2)
22 (0) < 1” point out the regions where the magnon antibunching effect can be achieved. The relevant system parameters used in these two

contour maps are set to typical values which are borrowed from the advanced experimental progress [16,21–23,44,45]: �1 = �2 = �q = 0
(i.e., δm = δq = 0), gm1c/2π = 15 MHz, ξ/2π = 0.001 MHz, and κ1/2π = κ2/2π = γ /2π = 1 MHz.

FIG. 4. Contour maps of the conversion efficiency η as a function of the frequency detuning between the two Kittel modes δm as well
as the ratio of the cavity-qubit coupling strength to the first cavity-magnon coupling strength gqc/gm1c for the parameters: gm2c/gm1c = 1 in
(a) and gm2c/gm1c = 4 in (c). Contour maps of the logarithmic normalized zero-delay second-order correlation function of the second Kittel
mode log10g(2)

22 (0) as a function of the frequency detuning between the two Kittel modes δm as well as the ratio of the cavity-qubit coupling
strength to the first cavity-magnon coupling strength gqc/gm1c for the parameters gm2c/gm1c = 1 in (b) and gm2c/gm1c = 4 in (d). In (b) and (d),
the black dashed lines with the label “0” and the white solid arrows with the label “g(2)

22 (0) < 1” have the same influence as those in Fig. 3(b).
The values of the other parameters keep the same as those in Fig. 3.
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FIG. 5. Contour maps of the conversion efficiency η as a function of the dissipation rate of the first Kittel mode κ1 as well as the dissipation
rate of the second Kittel mode κ2 for the parameters gm2c/gm1c = 1 with gqc/gm1c = 10 in (a) and gm2c/gm1c = 4 with gqc/gm1c = 1 in (c).
Contour maps of the logarithmic normalized zero-delay second-order correlation function of the second Kittel mode log10g(2)

22 (0) as a function
of the dissipation rate of the first Kittel mode κ1 as well as the dissipation rate of the second Kittel mode κ2 for the parameters gm2c/gm1c = 1
with gqc/gm1c = 10 in (b) and gm2c/gm1c = 4 with gqc/gm1c = 1 in (d). In (b) and (d), the black dashed lines with label “0” are the contour of
log10g(2)

22 (0) 
 0, i.e., g(2)
22 (0) 
 1. The values of the other parameters keep the same as those in Fig. 3.

cavity mode, which is a necessary experimental condition to
achieve remote coherent couplings. Also, in Fig. 1(a), there
is a specially designed port near the YIG sphere 1, and the
end of this port is a loop antenna which can be used to load
the microwave-driving field [70,77]. Finally, we would like
to emphasize that because the electric field and magnetic
field of the microwave cavity are located at the capacitive
and inductive components, respectively, their antinodes can
be easily spatially separated in the lumped-element cavity [2].
Our work brings the study of the hybrid cavity magnonics
systems into the interesting remote-mode conversion.

On the basis of the experimental requirements mentioned
above, we take reasonable values for the relevant system
parameters which are allowed during the experimental im-
plementation [16,21–23,44,45]. Due to the high spin density
of the YIG magnets, the Kittel modes are coupled to the
microwave cavity photons through the magnetic dipole inter-
actions, whose strengths can reach strong or even ultrastrong
coupling regions [11,12,46]. To this end, the YIG sphere
1, pumped by the weak driving field with strength ξ/2π =
0.001 MHz, needs to be placed near the magnetic-field antin-
ode [44] of the microwave cavity mode TE102. And the
strength of the magnetic dipole interaction between the ex-
cited Kittel mode (from the YIG sphere 1) and the microwave

cavity mode gm1c/2π is 15 MHz. Similarly, the qubit needs
to be placed near the electric-field antinode of the mi-
crowave cavity mode TE102, and the strength of the electric
dipole interaction between the qubit and the microwave cavity
mode is gqc with p = gqc/gm1c. The undriven Kittel mode
from the YIG sphere 2 couples with the microwave cavity
mode through the magnetic dipole interaction gm2c with d =
gm2c/gm1c. The Kittel-mode linewidths are taken to the value
of κ1/2π = κ2/2π = 1 MHz. The dissipation rate of the qubit
is set to the value of γ /2π = 1 MHz, too. Unless otherwise
noted, we will always employ these typical values of the
system parameters. Under different parameter conditions, the
more in-depth results of numerical simulations via utilizing
the quantum master-equation method are presented and dis-
cussed in the following chapter.

In addition, considering that the frequency of the magnon
is in the microwave band [37], which represents that the
energy of the microwave magnons is much lower than that
of the optical photons, the common method of directly mea-
suring the second-order correlation function by employing
the Hanbury Brown–Twiss interferometer [91,92], becomes
challenging and less suitable for the magnons [93]. The direct
measurement of the second-order correlation function of the
microwave photons in the circuit quantum electrodynamics
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FIG. 6. Contour maps of the conversion efficiency η as a function of the dissipation rate of the qubit γ as well as the dissipation rate of
the second Kittel mode κ2 for the parameters gm2c/gm1c = 1 with gqc/gm1c = 10 in (a) and gm2c/gm1c = 4 with gqc/gm1c = 1 in (c). Contour
maps of the logarithmic normalized zero-delay second-order correlation function of the second Kittel mode log10g(2)

22 (0) as a function of the
dissipation rate of the qubit γ as well as the dissipation rate of the second Kittel mode κ2 for the parameters gm2c/gm1c = 1 with gqc/gm1c = 10
in (b) and gm2c/gm1c = 4 with gqc/gm1c = 1 in (d). In (b) and (d), the black dashed lines with label “0” are the contour of log10g(2)

22 (0) 
 0, i.e.,
g(2)

22 (0) 
 1. The values of the other parameters keep the same as those in Fig. 3.

(QED) systems has been achieved by using the measurement
records of the linear detectors [93–95], rather than relying on
the number or intensity detectors. We expect that the second-
order correlation function of the microwave magnons can
also be directly measured via utilizing the same experimental
method which is presented in detail in Ref. [94].

V. RESULTS AND DISCUSSIONS ABOUT MAGNON
CONVERSION ACCOMPANYING MAGNON

ANTIBUNCHING EFFECT

For the sake of providing a meaningful parameter adjust-
ment scheme, we fully consider the values of the qualitative
analysis offered by the analytical solutions (10) and (18).
Therefore, we plan to delve into the modulation effect of the
typical system parameters on the conversion efficiency η and
the normalized zero-delay second-order correlation function
g(2)

22 (0), e.g., the magnon-magnon frequency detuning δm, and
the dissipation rates of the two Kittel modes κi (i = 1, 2)
as well as the qubit dissipation rate γ . Additionally, in the
process of the numerical simulations and the result discus-
sions, our focus is on the intuitive degrees of freedom that
can be directly measured or manipulated in experiments, such
as the original cavity-magnon coupling gmic (i = 1, 2) and the

original cavity-qubit coupling gqc, rather than the effective
coupling strength gi and gm.

First, with the goal of gaining a better insight into the
independent regulatory effect of the cavity-magnon coupling
gm2c and the cavity-qubit coupling gqc on the mode conversion
and the magnon statistical properties, we assume that the two
Kittel modes and the qubit have the same dissipation rate and
effective frequency, that is, κ1 = κ2 = γ and ωm1 = ωm2 =
ωq (i.e., δm = δq = 0). The conversion efficiency η and the
logarithmic normalized zero-delay second-order correlation
function log10g(2)

22 (0) are computed to produce Figs. 3(a) and
3(b), respectively, which show the conversion efficiency η

and the logarithmic normalized zero-delay second-order cor-
relation function of the second Kittel mode log10g(2)

22 (0) as
a function of the ratio of the two cavity-magnon coupling
strengths gm2c/gm1c as well as the ratio of the cavity-qubit
coupling strength to the first cavity-magnon coupling strength
gqc/gm1c. In Fig. 3(a), in the center area where the val-
ues of gm2c and gqc are comparable, the conversion of the
magnon modes hardly occurs. However, it is obvious that
the magnon mode conversion occurs in two regions, namely,
the strong cavity-qubit coupling with the weak cavity-magnon
coupling region, and the weak cavity-qubit coupling with the
strong cavity-magnon coupling region. When we shift our

023725-12



QUANTUM MAGNON CONVERSION ACCOMPANYING … PHYSICAL REVIEW A 110, 023725 (2024)

attention to the normalized zero-delay second-order corre-
lation function of the second Kittel mode in Fig. 3(b), the
contour lines of log10g(2)

22 (0) 
 0 are added in this panel which
clearly distinguish the regions of the pure quantum regimes
and the classical regimes [96]. We find that the parame-
ter range that can generate the magnon antibunching effect
highly overlaps with the parameter range that can achieve the
magnon-mode conversion. Based on these attainable analy-
ses, we can gain a preliminary conclusion that our proposed
magnon-based hybrid quantum system indeed can achieve the
remote signal transfer from one node to another accompany-
ing the well-behaved sub-Poissonian character of the magnons
emitted by the second Kittel mode. That is to say, we simul-
taneously implement the two transformations mentioned in
Fig. 1(d).

It should be emphasized that when gqc is equal to zero
which leads to gi = 0 (i = 1, 2), i.e., the qubit does not partic-
ipate in the remote signal transfer process, the output magnons
of the second Kittel mode are in the coherent state [where the
black dashed line partially overlaps with the x-coordinate axis
in Fig. 3(b)]. In this case, the efficiency of mode conversion is
still high, but it is a linear conversion. With the introduction
of the qubit, i.e., gqc is not equal zero, the output magnons of
second Kittel mode exhibit significant magnon antibunching
effect [g(2)

22 (0) < 10−2], which verifies that the qubit is very
essential for achieving the magnon quantum effect.

According to what has been analyzed above, we discover
that for the sake of achieving the mode conversion accompa-
nied by the sub-Poissonian signal output simultaneously, we
need to adjust the values of gqc and gm2c to make them sig-
nificantly different. On the basis of this condition, we plan to
explore the regulatory effects of the other system parameters
on the magnon-mode conversion efficiency η and the logarith-
mic normalized zero-delay second-order correlation function
log10g(2)

22 (0) under the premises of either gm2c/gm1c = 1 or
gm2c/gm1c = 4.

In order to make our research more closely related to
experimental reality, it is necessary to take the fact that we
cannot obtain two YIG ferromagnetic samples with the same
frequency in the experiments into account, i.e., δm = 0. In
Fig. 4, the two-dimensional color-scale maps of the conver-
sion efficiency η and the logarithmic normalized zero-delay
second-order correlation function log10g(2)

22 (0) are plotted ver-
sus the frequency detuning between the two Kittel modes δm

as well as the ratio of the cavity-qubit coupling strength to
the first cavity-magnon coupling strength gqc/gm1c simultane-
ously. In Figs. 4(a) and 4(b), gm2c/gm1c is assigned a smaller
value, i.e., gm2c/gm1c = 1. When the frequency detuning be-
tween the two magnon modes is very small, the magnon-mode
conversion can reach the maximum value 24.6%. We shift our
focus on the logarithmic normalized zero-delay second-order
correlation function of the second Kittel mode in Fig. 4(b).
Unfortunately, under the same condition, the considered hy-
brid quantum system exhibits Poisson output. These results
suggest that this parameter scheme is too strict for the two
YIG ferromagnetic samples, which is not friendly and con-
venient to conduct experiments. So we need to adjust the
other system parameters to achieve the magnon-mode con-
version accompanied by the significant sub-Poissonian signal
output. Besides, similar to Fig. 3(b), when gqc is equal to zero,

i.e., there is no qubit, the second Kittel mode cannot realize
magnon antibunching effect. When gm2c/gm1c is assigned a
larger value, i.e., gm2c/gm1c = 4 in Figs. 4(c) and 4(d), the
regulation effect of δm and gqc/gm1c on the output of the hybrid
quantum system is improved. The parameter range, which
can simultaneously realize the magnon-mode conversion and
the sub-Poissonian signal output, is expanded. Within the
region of the weaker cavity-qubit coupling strength and the
smaller magnon-magnon frequency detuning, we can obtain
the antibunching signal output with high magnon-mode con-
version efficiency. With the increase of the magnon-magnon
frequency detuning, the magnon-mode conversion efficiency
begins to decrease. But within the same parameter range, the
value of g(2)

22 (0) can reach the negative second power of ten.
In the experimental implementation process, we cannot

guarantee that the frequencies of the two Kittel modes are
the same, nor can we guarantee that their dissipation rates
are also the same. Consequently, the investigation of the
mismatch between their dissipation rates is meaningful for
the experiments. In Figs. 5(a) and 5(b), we plot the two-
dimensional color-scale maps of the conversion efficiency η

and the logarithmic normalized zero-delay second-order cor-
relation function log10g(2)

22 (0) as a function of the dissipation
rate of the first Kittel mode κ1 as well as the dissipation
rate of the second Kittel mode κ2 with gm2c/gm1c = 1 and
gqc/gm1c = 10. In Fig. 5(a), within the considered coordinate
range, when the values of κ1 and κ2 are comparable, η, which
approaches the maximum value ∼21%, shows the robustness
against κ1 and κ2. In Fig. 5(b), within almost the entire pa-
rameter range, the value of g(2)

22 (0) is less than unity all the
time, representing that the output of the second Kittel mode is
antibunching. And with the increase of κ2, the value of g(2)

22 (0)
instead gradually decreases from unity, which provides us a
way to control the smooth transition of the statistical char-
acteristics of the output magnons for the second Kittel modes
from Poissonian to sub-Poissonian. However, due to the bulky
and complex analytical expression of g(2)

22 (0) given by Eq. (18)
which includes the high-order variables, we are unable to
provide an intuitive physical explanation from a quantitative
perspective for this monotonic behavior. Besides, the value of
g(2)

22 (0) is strongly robust against κ1. In Figs. 5(c) and 5(d),
the magnon-mode conversion and the magnon antibunching
effect are demonstrated under the condition of gm2c/gm1c = 4
and gqc/gm1c = 1. In Fig. 5(c), when the dissipation rate of
the first Kittel mode κ1 is low and the dissipation rate of the
second Kittel mode κ2 is large, the mode conversion efficiency
η is high. However, the magnon antibunching effect is con-
centrated in the region of the low magnon dissipation rates.
Compared with the results under the condition of gm2c/gm1c =
1 and gqc/gm1c = 10, we cannot simultaneously achieve the
magnon-mode conversion and the magnon antibunching effect
in a large parameter space.

On the basis of the previous research results, it can be
seen that the qubit plays an important role, so we are also
curious about the regulatory effect of the qubit dissipation rate
on the magnon-mode conversion and the magnon statistical
properties. Figures 6(a) and 6(b) display the magnon-mode
conversion efficiency η and the logarithm of the normalized
zero-delay second-order correlation function g(2)

22 (0), respec-
tively, as a function of the dissipation rate of the qubit γ as
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well as the dissipation rate of the second Kittel mode κ2 with
gm2c/gm1c = 1 and gqc/gm1c = 10. In the region of the low
qubit dissipation rate, although the value of the magnon dissi-
pation rate κ2 is large, the magnon mode conversion efficiency
is still high. In the same parameter range, we can also generate
the nonclassical output of the second Kittel mode, which is
shown in Fig. 6(b). Besides, similar to the results of Fig. 5(b),
within almost the entire parameter range, the value of g(2)

22 (0)
is less than unity all the time. Next, we still need to change the
relative size of gm2c and gqc, that is, we set gm2c/gm1c = 4 and
gqc/gm1c = 1 in Figs. 6(c) and 6(d). The region where the de-
gree of the magnon-mode conversion is high overlaps with the
region where the magnon antibunching effect can be achieved.
And this region is far away from the low qubit dissipation
region, which means that the proposed hybrid quantum system
is very tolerant towards the qubit dissipation rate. Now, we can
summarize that our system has strong robustness against the
dissipation rates of both the two Kittel modes and the qubit,
which provides us with more parameter selection freedom
to realize the magnon-mode converter accompanied by the
antibunching signal output.

VI. CONCLUSIONS

In summary, we demonstrate that in the proposed hybrid
ferromagnet-superconductor quantum system consisting of
one transmon-type superconducting qubit and two millimeter-
sized ferromagnetic YIG spheres, the long-range microwave
signal conversion can be realized between the two macro-
scopic magnets accompanying the sub-Poissonian signal
output. Because of the large frequency mismatches between
the microwave cavity mode and the magnon modes as well
as the qubit, the microwave cavity mode can be regarded as
a medium undertaking the virtual photons exchange and thus
offer a physical basis for the realization of the remote effective
magnon-qubit and magnon-magnon couplings which hold the
advantage of the high spatial adjustability. Moreover, the in-
troduction of the qubit provides us with the nonlinearity which
is an essential condition for the achievement of the magnon
quantum effects. Our displayed analytical calculations indi-
cate that the undriven magnon mode (i.e., the second Kittel
mode) can obtain the coherent microwave radiation with the
assistance of the two conversion channels related to the effec-
tive couplings. The channel with the magnon-qubit couplings
is a nonlinear channel, while the other channel without the
magnon-qubit couplings is a linear channel.

Besides, we investigate the independent modulation effects
of the cavity-magnon and cavity-qubit couplings on the mode
conversion and the magnon statistical properties. It is found
that only when the values of gm2c and gqc are uncompara-
ble, the microwave signal can be transferred from one YIG
sphere to another, and the signal output through the latter
node simultaneously exhibits significant antibunching effect.
At the same time, our proposed scheme is robust over a large
window of the dissipation rates of the magnon modes and the
qubit, which means that even if the dissipation rates of the two
Kittel modes are largely mismatched, it is still feasible and
robust to use the two YIG spheres as the nodes to perform the
microwave signal transfer, simultaneously accompanied by a
transition from the Poissonian statistics to the sub-Poissonian

statistics. Furthermore, we compare the approximate analyt-
ical results governed by the quantum Heisenberg-Langevin
equation of motion and the Schrödinger equation with the ac-
curate numerical simulations governed by the quantum master
equation, finding that the agreement between these two meth-
ods is quite good. Our scheme is also feasible within the
experimentally achievable temperature range. All the obtained
results suggest that the possible applications of the proposed
scheme include the preparation of the magnon-mode con-
verters and the control of the statistical characteristics of the
output microwave signal.

Finally, it is worth pointing out that, taking inspiration
from the current work, it would be interesting to engineer a
more complex magnon-based hybrid quantum system which
contains more than two ferromagnetic YIG spheres. Mediated
by a common microwave cavity mode, the qubit and these Kit-
tel modes can establish remote effective couplings with each
other. The only qubit that exists in the hybrid quantum sys-
tem provides the necessary nonlinearity for the achievement
of the quantum effects. After coherently driving one of the
Kittel modes, the remote signal transfer among multiple mag-
netic nodes may be accompanied by more diverse statistical
characteristics.
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APPENDIX A: VERIFICATION OF GROUND-STATE
APPROXIMATION FROM ACCURATE

NUMERICAL PERSPECTIVE

In Sec. III A, based on a set of differential equations of the
hybrid quantum system, i.e., Eq. (8), the analytical expres-
sions of m1, m2, and σ nested with σz can be obtained and
written as

m1 = − iξ
(
a2aq − g2

2σz
)

a1a2aq + aqg2
m − σz

(
a1g2

2 + a2g2
1 − 2ig1g2gm

) ,

(A1a)

m2 = ξ (−ig1g2σz − aqgm)

a1a2aq + aqg2
m − σz

(
a1g2

2 + a2g2
1 − 2ig1g2gm

) ,

(A1b)

σ = − ξ (ig2gm − a2g1)σz

a1a2aq + aqg2
m − σz

(
a1g2

2 + a2g2
1 − 2ig1g2gm

) ,

(A1c)

where a1 = i�1 + κ1
2 , a2 = i�2 + κ2

2 , and aq = i�q + γ

2 . It
is clear that σz always is multiplied by the terms involving
g1 or g2, which provides nonlinearity for the interactions
between the qubit and the two Kittel modes. In addition, σ̂z
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FIG. 7. Dependence of the average value of σz on the driving
strength ξ . The values of the other parameters keep the same as those
in Fig. 3, except for gm2c/gm1c = 1 and gqc/gm1c = 10.

describes the population difference between the excited state
and ground state of the qubit, i.e., σ̂z = |e〉〈e| − |g〉〈g|. Thus,
the average value of σz can be used to characterize the degree
of saturation. As illustrated in Ref. [82], the average value of
σz ranges from 0 to −1. And when the qubit is completely
saturated (i.e., the probabilities of occupying the ground state
and excited state are equal), the average value of σz is equal
to 0. When the qubit is not saturated (i.e., the qubit is in the
ground state), the average value of σz is equal to −1. When
the qubit is partially saturated, the average value of σz can take
other values from −1 to 0. Under the weak-driving condition,
the average value of σz can be approximately taken as −1,
thus, we can obtain Eq. (9). But it is necessary to verify the
rationality of this approximation from the accurate numerical
perspective. As shown in Fig. 7, the average value of σz is
plotted as a function of the driving strength ξ . We can clearly
see that under the weak-driving condition, it is reasonable to
approximately take the average value of σz as −1. And as
the driving strength increases, the average value of σz also
increases, but within the parameter range shown in this figure,
its average value can still be approximated as −1.

APPENDIX B: INFLUENCE OF DRIVING STRENGTH
ON THE MAGNON CONVERSION

AND THE MAGNON BLOCKADE EFFECT

The weak-driving limit is a prerequisite for the imple-
mentation of our scheme, so we are interested in whether
the increase of the driving strength within a certain range
would make our scheme no longer applicable. In Fig. 8, we
plot the conversion efficiency η, the unnormalized output of
the second Kittel mode M2, and the zero-delay second-order
correlation function of the second Kittel mode g(2)

22 (0) versus
the driving strength ξ . With the increase of ξ , the value of
g(2)

22 (0) is increased, but the magnitude of its increase is very
small. The value of η is almost always equal to 17.3%. But
the unnormalized output of the second Kittel mode M2 grows
rapidly. When the value of ξ/2� approaches 1, which is still

FIG. 8. Dependence of the conversion efficiency η, the unnor-
malized output of the second Kittel mode M2, and the zero-delay
second-order correlation function of the second Kittel mode g(2)

22 (0)
on the driving strength ξ . The values of η and M2 described by
the green dotted line and the blue dashed-dotted line, respectively,
correspond to the black axis on the left. And the values of g(2)

22 (0)
described by the red solid line correspond to the red axis on the
right. The values of the other parameters keep the same as those
in Fig. 3, except for gm2c/gm1c = 1, gqc/gm1c = 10, κ1/2π = 4 MHz,
and κ2/2π = 8 MHz.

within the weak-driving range, the value of M2 increases to
∼0.1. At the same time, our system can also robustly achieve
magnon-mode conversion accompanied by the output of the
antibunching signal.

APPENDIX C: DYNAMICAL EVOLUTION EQUATIONS
AND STEADY-STATE SOLUTIONS

In Sec. III C, it is shown that the normalized zero-delay
second-order correlation function g(2)

22 (0) can be analytically
calculated by substituting the relevant probability amplitudes
Cg01 and Cg02 [i.e., Eqs. (16) and (17)] into Eq. (18). In this
Appendix, our main aim is to provide the detailed calculation
and deduction processes which are omitted in the main text
but make contribution to attaining the analytical expressions
of the probability amplitudes of the single- and two- magnon
excitation states from the second Kittel mode [i.e., Eqs. (16a)
and (16b)].

After substituting the non-Hermitian Hamiltonian Ĥtot

given by Eq. (7) which contains the dissipative terms and
the truncated wave function |�〉 expanded as Eq. (14) into
the time-dependent Schrödinger equation i ∂|�〉

∂t = Ĥtot|�〉, a
series of dynamical evolution equations satisfied by the prob-
ability amplitudes Cαm1m2 can be attained as follows:

i
∂Cg10

∂t
= �′

1Cg10 + ξCg00 +
√

2ξCg20

+g1Ce00 + gmCg01, (C1a)

i
∂Cg01

∂t
= �′

2Cg01 + ξCg11 + g2Ce00 + gmCg10, (C1b)
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i
∂Cg11

∂t
= (�′

1 + �′
2)Cg11 + ξCg01 + g2Ce10

+g1Ce01 +
√

2gm(Cg20 + Cg02), (C1c)

i
∂Cg20

∂t
= 2�′

1Cg20 +
√

2ξCg10 +
√

2g1Ce10 +
√

2gmCg11,

(C1d)

i
∂Cg02

∂t
= 2�′

2Cg02 +
√

2g2Ce01 +
√

2gmCg11, (C1e)

i
∂Ce00

∂t
= �′

qCe00 + g1Cg10 + g2Cg01 + ξCe10, (C1f)

i
∂Ce10

∂t
= (�′

1 + �′
q)Ce10 + g2Cg11 +

√
2g1Cg20

+ξCe00 + gmCe01, (C1g)

i
∂Ce01

∂t
= (�′

2 + �′
q)Ce01 + g1Cg11 +

√
2g2Cg02

+gmCe10, (C1h)

where �′
1 = �1 − i

κ1

2
, �′

2 = �2 − i
κ2

2
, and �′

q = �q − i
γ

2
.

Then in the limit of weak driving, the dynamical evolution
equations can be simplified by making full use of the approx-
imate relationship, which is expressed as Eq. (15), to neglect
some terms and set Cg00 = 1. Besides, through introducing the

steady-state condition i
∂Cαm1m2

∂t
= 0 into Eqs. (C1a)–(C1h),

a set of linear equations about the steady-state probability
amplitudes Css

αm1m2
under the steady state |�ss〉 can be obtained

after straightforward simplifications, which are given by

0 = �′
1C

ss
g10 + ξ + g1C

ss
e00 + gmCss

g01, (C2a)

0 = �′
2C

ss
g01 + g2C

ss
e00 + gmCss

g10, (C2b)

0 = (�′
1 + �′

2)Css
g11 + ξCss

g01 + g2C
ss
e10

+g1C
ss
e01 +

√
2gmCss

g20 +
√

2gmCss
g02, (C2c)

0 = 2�′
1C

ss
g20 +

√
2ξCss

g10 +
√

2g1C
ss
e10 +

√
2gmCss

g11, (C2d)

0 = 2�′
2C

ss
g02 +

√
2g2C

ss
e01 +

√
2gmCss

g11, (C2e)

0 = �′
qCss

e00 + g1C
ss
g10 + g2C

ss
g01, (C2f)

0 = (�′
1 + �′

q)Css
e10 + g2C

ss
g11 +

√
2g1C

ss
g20

+ξCss
e00 + gmCss

e01, (C2g)

0 = (�′
2 + �′

q)Css
e01 + g1C

ss
g11 +

√
2g2C

ss
g02 + gmCss

e10. (C2h)

Since the above coupled algebraic equations (C2a)–(C2h) are
closed, i.e., the number of the equations equals to the number
of the unknown parameters, it provides the possibility to it-
eratively solve the analytical expressions of all the probability
amplitudes under the steady state. In order to make our content
more concise without compromising the completeness, we
thus only provide the analytical expressions of the steady-
state probability amplitudes that we are concerned about, i.e.,
the steady-state probability amplitudes of the single-magnon
excitation state Css

g01 and the two-magnon excitation state Css
g02

which are shown in the main text [i.e., Eqs. (16) and (17)],
while we ignore the display of other unimportant steady-state
probability amplitude expressions.

FIG. 9. Dependence of the conversion efficiency η and the zero-
delay second-order correlation function of the second Kittel mode
g(2)

22 (0) on the ambient temperature T . The values of the other pa-
rameters keep the same as those in Fig. 3, except for gm2c/gm1c = 1,
gqc/gm1c = 10, and κ2/2π = 8 MHz.

APPENDIX D: INFLUENCE OF TEMPERATURE
ON THE MAGNON CONVERSION

AND THE MAGNON BLOCKADE EFFECT

As we all know, the temperature has a significant impact
on the magnon blockade effect. Therefore, we need to take
the ambient temperature into account in the exact numerical
simulation of the quantum master equation. The quantum
master equation at temperature T is rewritten as

d ρ̂

dt
= −i[Ĥrot, ρ̂] + γ

2
L̂[σ̂ ]ρ̂ +

∑
i=1,2

κi

2
(nthi + 1)L̂[m̂i]ρ̂

+
∑
i=1,2

κi

2
nthiL̂[m̂†

i ]ρ̂, (D1)

where nthi = [exp(
h̄ωmi
KBT ) − 1]−1 is the mean thermal magnon

occupation number of the ith magnon mode, h̄ is the re-
duced Planck’s constant, and KB is Boltzmann constant. The
two collapse operators L̂[m̂†

i ]ρ̂ and L̂[m̂i]ρ̂ act on the den-
sity matrix of the magnonic subsystem, for controlling the
excitation and collapse of the magnons from or to the ther-
mal reservoir, respectively, with the imbalanced efficiency
κinthi and κi(nthi + 1). When the zero-temperature limit is
not met, i.e., T = 0, the thermal magnons appear in the
reservoir and enter into the microwave cavity, which are
governed by the term κinthiL̂[m̂†

i ]ρ̂ in the quantum master
equation (D1) [97].

In Fig. 9, we plot the conversion efficiency η and the
zero-delay second-order correlation function of the second
Kittel mode g(2)

22 (0) versus the ambient temperature T . As we
tune the ambient temperature T from 1 to 16 mK, g(2)

22 (0)
is always equal to 0.24 and η is always equal to 0.1. When
the ambient temperature T exceeds 16 mK, g(2)

22 (0) starts to
rapidly increase to 1. The ambient temperature T at this time
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is equal to 24 mK. Under the same conditions, η increase
slightly, whose reason is that the existence of L̂[m̂†

i ]ρ̂ can
act as an incoherent pump [98] and promote the microwave
signal conversion between the two Kittel modes. In addition,

in the current experimental works [16,22,23,44], the hybrid
ferromagnet-superconductor quantum systems are placed in a
dilution refrigerator at temperature of ∼10 mK. Therefore, the
considered hybrid quantum system is experimentally feasible.

[1] G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P.
Rabl, and J. Schmiedmayer, Quantum technologies with hybrid
systems, Proc. Natl. Acad. Sci. USA 112, 3866 (2015).

[2] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and
Y. Nakamura, Hybrid quantum systems based on magnonics,
Appl. Phys. Express 12, 070101 (2019).

[3] M. Elyasi, Y. M. Blanter, and G. E. W. Bauer, Resources of
nonlinear cavity magnonics for quantum information, Phys.
Rev. B 101, 054402 (2020).

[4] B. Z. Rameshti, S. V. Kusminskiy, J. A. Haigh, K. Usami,
D. Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang,
G. E. W. Bauer, and Y. M. Blanter, Cavity magnonics, Phys.
Rep. 979, 1 (2022).

[5] H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan,
Quantum magnonics: When magnon spintronics meets quan-
tum information science, Phys. Rep. 965, 1 (2022).

[6] M. A. Gilleo and S. Geller, Magnetic and crystallographic prop-
erties of substituted yttrium-iron garnet, 3Y2O3 · xM2O3 · (5 −
x)Fe2O3, Phys. Rev. 110, 73 (1958).

[7] A. A. Serga, A. V. Chumak, and B. Hillebrands, YIG magnon-
ics, J. Phys. D: Appl. Phys. 43, 264002 (2010).

[8] V. Cherepanov, I. Kolokolov, and V. Ľvov, The saga of
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