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Stochastic Maxwell-Bloch equations for modeling amplified spontaneous emission
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An approach for studying atom-radiation interaction has been developed, associating quantum operators with
stochastic variables governed by discrete Heisenberg equations. This framework models general multilevel
atomic systems using the paraxial approximation in both single- and multipass configurations. Simulation results
for x-ray laser oscillators with parameters of interest are presented. The stochastic model is efficient to solve,
as the required computational resources scale linearly with the number of emitters, and it may be applicable to
various other quantum systems.
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I. INTRODUCTION

Successful observations of transient gain in atomic media
[1–4], achieved through inner-shell photoionization by pow-
erful x-ray free electron lasers (XFELs) [5–7], have shown
that x-ray lasers may be possible using the physical process
variously referred to as superradiance [8], superfluorescence
[9,10], and amplified spontaneous emission (ASE) [11]. An
x-ray laser oscillator (XLO) [12], a multipass device employ-
ing an x-ray cavity [13,14], has been proposed to achieve
higher coherence and stability.

To develop a practical XLO, solid understanding and inter-
pretation of experimental outcomes are fundamental, as they
lay the groundwork for refining theoretical frameworks and
designing experiments with greater accuracy. At the heart of
this endeavor is an accurate ASE numerical simulation based
on a detailed quantum representation of spontaneous emission
in the x-ray domain, where the timescales of radiation are
closely aligned with those of loss and decay processes. Ad-
ditionally, it must account for three-dimensional (3D) effects
to adequately model both the spatial dependence of the gain
and the diffractive effects of the field. Moreover, it should be
adaptable to implementation in systems with multiple turns.

Several theoretical models for simulating ASE have been
proposed: The first is based on classical Maxwell-Bloch equa-
tions (CMBEs) with an ad hoc noise term for the spontaneous
emission. They have been used in the past for modeling ASE
at optical wavelengths [15] and, more recently, at x-ray wave-
lengths [4,16–26]. The classical model appears to be suitable
in the stimulated-emission-dominant regime, but it fails to ac-
curately predict the time dependence of spontaneous-emission
intensity due to its inclusion of random noise in the atomic
coherence’s time derivative. This results in an initial behavior
mimicking Brownian motion and a time-delayed peak [24,27],
diverging from the exponential decay predicted by Weisskopf-
Wigner theory [28] and confirmed by experiments [29].

*Contact author: jeongwan.park@anl.gov

Another stochastic model is the positive-P stochastic equa-
tions (PPSEs) [30–33], which are based on the positive-P
representation [34,35] formulation of quantum mechan-
ics. This method claims to precisely model spontaneous
emission’s temporal correlation [31,33]. However, the imple-
mentation of this approach is typically plagued by divergent
solutions to its stochastic equations [31,36,37], which are
likely due to the manner in which Hermiticity of the stochastic
variables is not maintained [36]. These concerns related to
the equations’ stability [38–44] partially explain the relatively
limited adoption of PPSEs as a numerical tool in quantum
optics [34]. Unproven remedies like the stochastic drift gauge
transformation [31] introduce distortions, marring the statisti-
cal accuracy of ASE modeling [36,45]. An attempt to enforce
Hermiticity and mitigate the divergence through perturbative
treatment of the stochastic component in the coherence Bloch
equation [36] contradicts PPSEs’ intrinsic diffusion gauge
criteria [31], neglecting the predominantly stochastic nature
of all the terms, including decay, in the spontaneous-emission-
dominant regime.

Another reduced theoretical model is the one-dimensional
(1D) factorized correlation function equations (FCFEs) [27],
which are derived by truncating the quantum Maxwell-
Bloch equations (QMBEs) through a targeted factorization
strategy. This approach results in a self-contained set of
differential equations renowned for their precision in predict-
ing spontaneous-emission intensity. However, the significant
computational requirements across all combinations of atomic
pairings, coupled with the neglect of the dynamics of sequen-
tial turns or the 3D diffraction effects, limit their effectiveness
for comprehensive XLO simulations.

Here, we propose another approximate approach based
on quantum mechanics with which modeling of multipass
ASE is straightforward [46]. This approach translates the
QMBEs into a set of difference equations, which we refer
to as stochastic Maxwell-Bloch equations (SMBEs), by in-
troducing stochastic c-number variables that take the place of
corresponding quantum operators. Three-dimensional effects
are incorporated via the paraxial approximation.
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A crucial aspect of developing a stochastic model for ASE
is determining how the stochastic nature is integrated into the
physical variables. This strategy is normally guided by the
quantum characteristics targeted for capture in the stochastic
framework, such as the intensity of spontaneous emission for
CMBEs and the master equation for PPSEs. For SMBEs, this
involves the atomic matrix identities.

SMBEs not only fulfill all the essential criteria for de-
scribing weakly correlated quantum systems but can also be
implemented in a numerically stable and efficient manner
and are, unlike other stochastic models, consistent with the
FCFEs. Using the SMBEs, we develop a simulation program
for the XLO that incorporates the physics of both ASE and
cavity propagation and present some simulation results for
parameters of current interest.

II. QUANTUM MAXWELL-BLOCH EQUATIONS

We consider the two-level atomic system with excited and
ground states denoted as |e〉(a) and |g〉(a), respectively, which
have an energy difference of h̄�. For simplicity, we assume
that the electric dipole transition-matrix element is real and
has a magnitude of μ, oriented in x̂. This direction is orthog-
onal to the propagation direction of the pump field, ẑ. The
Hamiltonian for the system is given by [28] (the superscripts
label atom a)

H =
∑

a

1

2
h̄�σ (a)

z +
∑
k,s

h̄ωka†
k,sak,s

− μ
∑

a

(σ (a)
+ E (a)

+ + E (a)
− σ

(a)
− ), (1)

where the positive-frequency electric field is

E (a)
+ (t ) =

∑
k,s

Ek,se
ik·ra ak,s(t ), (2)

with its conjugation E (a)
− (t ) = E (a)†

+ (t ). a†
k,s and ak,s are the

creation and annihilation operators for photons with wave
vector k, frequency ωk = ck, and polarization index s, and
ra is the position of atom a. Ek,s =

√
h̄ωk

2ε0V x̂ · êk,s, where êk,s

is the unit vector of the field’s k component for the s polar-
ization and V is the quantization volume. The notations of
[28] and SI units are used throughout this paper. The atomic
operators are

σ
(a)
+ = |e〉(a)〈g|(a), σ

(a)
− = |g〉(a)〈e|(a), (3)

σ (a)
ee = |e〉(a)〈e|(a) = σ

(a)
+ σ

(a)
− , (4)

σ (a)
gg = |g〉(a)〈g|(a) = σ

(a)
− σ

(a)
+ , (5)

σ (a)
z = σ (a)

ee − σ (a)
gg = 2σ (a)

ee − 1. (6)

Here, σ (a)
z , σ

(a)
+ , and σ

(a)
− are atom a’s operators for inversion,

raising, and lowering, respectively.
From the Hamiltonian in Eq. (1), with Eq. (2), we get the

following equation of motion for the annihilation operator:

dak,s

dt
= −iωkak,s(t ) + iμ

h̄
E ∗

k,s

∑
b

e−ik·rbσ
(b)
− (t ). (7)

Its integration, combined with Eq. (2), yields the electric field:

E (a)
+ (t ) =

∑
k,s

Ek,sak,s(0)e−iωkt+ik·ra

+
∑
k,s,b

iμ

h̄
|Ek,s|2

×
∫ t

0
dt ′ e−iωk (t−t ′ )+ik·(ra−rb)σ

(b)
− (t ′). (8)

The discrete sum over k is approximated by

∑
k

→ V

8π3

∫
d3k

→ V

8π3

∫ ∞

0
k2dk

∫ π

0
sin θdθ

∫ 2π

0
dϕ, (9)

where θ represents the polar angle and ϕ denotes the az-
imuthal angle of the vector k with respect to the z axis along
the medium’s length, and the position vector is written as r =
(x, z), where x = (x, y) is the transverse part. We introduce
λ� = 2π/k� and k� = �/c. Then we write k = k� + 
k and
note that for interactions near the atomic transition frequency
� the main contribution to the k integration comes from the
region 
k 	 k�, so we introduce a slowly varying envelope
description, Ẽ (a)

+ (τ ) = ei�τ E (a)
+ (τ ) and σ̃

(a)
− (τ ) = ei�τσ

(a)
− (τ ),

employing the retarded time τ = t − zb/c to account for the
propagation delay associated with the spatial positioning of
atom b [27].

We decompose Eq. (8) into two components:

Ẽ (a)
+ (τ ) = ih̄

2μ
�spσ̃

(a)
− (τ ) + Ẽ (a)

+,ext (τ ). (10)

The first term is the self-field of atom a originating from the
b = a term in the atomic summation, which is computed with
the Weisskopf-Wigner approximation [28] (see the details in
Appendix A), where we introduced the spontaneous-emission
rate �sp ≡ μ2

3πε0 h̄ ( �
c )3. The remaining Ẽ (a)

+,ext (τ ) denotes the
external field acting on atom a, which is split into two parts:

Ẽ (a)
+,ext (τ ) = Ẽ (a)

+,seed(τ ) + Ẽ (a)
+,ind(τ ), (11)

where Ẽ (a)
+,seed(τ ) is the seed field containing ak,s(t = 0) and

Ẽ (a)
+,ind(τ ) is the field induced by the interactions with all other

atoms in the system, corresponding to the b �= a terms in
the sum.

We consider the case where an atomic medium is pumped
by XFEL radiation of narrow divergence around the z axis.
Thus, the interaction volume is a “thin pencil” of length L
and radius R satisfying λ� 	 R 	 L. To compute Ẽ (a)

+,ind(τ ),
we change the angular integration in Eq. (9) to that over
transverse angles φ = (φx, φy), which can be interpreted
as performing a Fourier transform from φ space at each
k value. In the thin-pencil configuration, significant con-
tributions to the integration arise only from region φR,
where |φ| 	 1; contributions from waves that significantly
deviate from or counterpropagate against the pump direc-
tion are negligible. This observation allows us to apply the
paraxial approximation, narrowing down the integration
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region to the φR as∫
d3k →

∫ ∞

0
k2dk

∫
φ∈φR

d2φ. (12)

Under the paraxial approximation, the wave vector k is ap-
proximated as k(φ, 1 − |φ|2/2). Ẽ (a)

+,ind(τ ) then becomes (see
the details in Appendix A)

Ẽ (a)
+,ind(τ ) = i

3h̄�sp

8πμ

∑
b<a

G(ra − rb)σ̃ (b)
− (τ ), (13)

where

G(r) =
∫ ∞

−∞
d2φ e

i �
c

(
φ·x− φ2

2 z
)

= λ�

iz
ei πx2

λ�z (14)

is the paraxial approximation of the far-field Green’s func-
tion [47]. Due to the particular way the approximation was
applied, the dependence on the longitudinal variable τ fac-
tors out, and the 3D equations have the same structure as
those in one dimension [27]. Equation (13) becomes the 1D
version obtained in [27] if we replace G by a constant solid
angle 
o [48].

The equations of motion for the atomic variables are

dσ
(a)
− (t )

dt
= −i�σ

(a)
− (t ) − iμ

h̄
σ (a)

z (t )E (a)
+ (t ), (15)

dσ (a)
z (t )

dt
= 2iμ

h̄
[σ (a)

+ (t )E (a)
+ (t ) − E (a)

− (t )σ (a)
− (t )]. (16)

With Eq. (10), the corresponding equations for the slowly
varying envelope become

d σ̃
(a)
− (τ )

dτ
= − �sp

2
σ̃

(a)
− − iμ

h̄
σ (a)

z Ẽ (a)
+,ext,

(17)

dσ (a)
ee (τ )

dτ
= − �spσ

(a)
ee + iμ

h̄

[
σ̃

(a)
+ Ẽ (a)

+,ext − Ẽ (a)
−,extσ̃

(a)
−

]
. (18)

The quantity σ (a)
z is slowly varying and does not need a tilde.

Equations (11), (13), (17), and (18) constitute the QMBEs.

III. FACTORIZED CORRELATION FUNCTION
EQUATIONS

If all operators in the QMBEs are replaced by their ensem-
ble averages, the QMBEs reduce to the CMBEs:

Ẽ (a)
+,ext → 〈

Ẽ (a)
+,ext

〉 = E (a)
+ , σ̃

(a)
+ → 〈σ̃ (a)

+ 〉 = ρ (a)
ge ,

σ (a)
ee → 〈

σ (a)
ee

〉 = ρ (a)
ee , σ (a)

z → 〈
σ (a)

z

〉 = ρ
(a)
inv . (19)

Here, ρ
(a)
inv = ρ (a)

ee − ρ (a)
gg , ρ

(a)
i j is the (i, j)th element of the

atomic density matrix ρ (a), and the off-diagonal elements ρ (a)
eg

and ρ (a)
ge are known as “coherence.” To model ASE within the

framework of the CMBEs, it is necessary to add an ad hoc
noise term as shown in [25] to mimic spontaneous emission.

A possible quantum-mechanical approach is to develop
equations for a hierarchy of multipoint correlation functions,
beginning with the ensemble average, denoted by angular

brackets, in Eq. (11):

E (a)
+ (τ ) ≡ 〈

Ẽ (a)
+,ext (τ )

〉
= E (a)

+,seed(τ )

+ i
3h̄�sp

8πμ

∑
b<a

G(ra − rb)〈σ̃ (b)
− (τ )〉, (20)

where E (a)
+,seed = 〈Ẽ (a)

+,seed〉 is the incoming seed field. The en-
semble averages of Eqs. (17) and (18) are〈

d σ̃
(a)
−

dτ

〉
= −�sp

2
〈σ̃ (a)

− 〉 − iμ

h̄

〈
σ (a)

z Ẽ (a)
+,ext

〉
, (21)

〈
dσ (a)

ee

dτ

〉
= −�sp

〈
σ (a)

ee

〉
+ iμ

h̄

〈
σ̃

(a)
+ Ẽ (a)

+,ext − Ẽ (a)
−,extσ̃

(a)
−

〉
.

(22)

Since the right-hand side of Eq. (22) contains two point cor-
relation functions 〈σ̃ (a)

+ σ̃
(b)
− 〉, for a �= b, we need to consider

their evolution equations, obtained with Eq. (17):〈
d (σ̃ (a)

+ σ̃
(b)
− )

dτ

〉
= −�sp〈σ̃ (a)

+ σ̃
(b)
− 〉

+ iμ

h̄

〈
Ẽ (a)

−,extσ
(a)
z σ̃

(b)
− − σ̃

(a)
+ σ (b)

z Ẽ (b)
+,ext

〉
.

(23)

The right-hand side of this equation now contains three-point
correlation functions ad infinitum, reflecting the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy of reduced density-
matrix equations [27,49]. To close the system with a finite
number of correlation functions, the following factorization
ansatz may be imposed for a �= b:〈

σ (a)
z σ̃

(b)
±

〉 → 〈
σ (a)

z

〉〈σ̃ (b)
± 〉, (24)

〈
σ̃

(c)
+ σ (a)

z σ̃
(b)
−

〉 → 〈
σ (a)

z

〉〈σ̃ (c)
+ σ̃

(b)
− 〉, a �= c. (25)

Assuming that the seed field factorizes, the system of equa-
tions (20)–(23), referred to as FCFEs, is now closed for the
quantities 〈σ (a)

z 〉, 〈σ̃ (a)
± 〉, and 〈σ̃ (a)

+ σ̃
(b)
− 〉 and provides an ap-

proximate description of the quantum-mechanical evolution
of ASE. For an interaction volume containing N atoms, there
are N2 + N quantities to compute. The 1D FCFEs were intro-
duced and studied in [27].

Within the framework of FCFEs, ensemble averages
〈Ẽ (a)

+,ext (τ )〉 and 〈Ẽ (a)
−,ext (τ )Ẽ (a)

+,ext (τ )〉 are computed instead of
the field operator Ẽ (a)

+,ext (τ ). To model a multipass ASE such
as an XLO, however, the field operator at the end of a pass is
necessary to serve as the input for the next pass. Therefore,
FCFEs cannot be the basis for modeling XLO.

IV. STOCHASTIC MAXWELL-BLOCH EQUATIONS

In our pursuit of a refined model for simulating multipass
ASE, we introduce a set of SMBEs. These equations enhance
the CMBEs by incorporating certain quantum dynamics that
are encoded in the QMBEs but typically lost in the transition
to CMBEs.

We begin by noting that the positive-frequency far-field
operator of spontaneous emission from an isolated atom b is
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proportional to σ
(b)
− [28,47]. The intensity of the spontaneous

emission is then proportional to

〈σ̃ (b)
+ σ̃

(b)
− 〉 = 〈

σ (b)
ee

〉
. (26)

Here, we used the operator identity (4). Equation (26) implies
that the term 〈σ̃ (c)

+ σ̃
(b)
− 〉 in Eq. (25) cannot be factorized as

〈σ̃ (c)
+ 〉〈σ̃ (b)

− 〉 because c can be equal to b.
The basic insight in SMBEs is that it is possible to modify

the CMBEs so that the structure of Eq. (26) is preserved by
adding a stochastic term to the coherence. Since the phase of
the stochastic term changes abruptly from one instant to the
next, a precise formulation of SMBEs is only possible with
discrete time steps τn = n
τ . At each time step for each atom,
we assign a random phase �

(a)
(n), which can take any value in

the interval (0, 2π ]. The probability distributions at different
time steps and for different atoms are independent. Therefore,

exp
(
i�(a)

(n) − i�(b)
(m)

) = δabδnm, (27)

where the bar denotes averaging over all possible phases.
The SMBEs are formulated inductively as follows: assume

that ρ
(a)
ge(n), ρ

(a)
eg(n), ρ

(a)
ee(n), and ρ

(a)
gg(n) are given at n for all a. The

stochastic coherence is defined by (the stacked notation in this
paper’s equations succinctly represents two related but distinct
equations; the upper elements denote one set of equations,
while the lower elements denote another set)

ρ̂
(a)
ge
eg(n)

= ρ
(a)
ge
eg(n)

+ ξ
(a)
ge
eg(n)

, (28)

where the stochastic terms are

ξ
(a)
ge
eg(n)

=
√

ρ
(a)
ee(n) − ρ

(a)
ge(n)ρ

(a)
eg(n)e

±i�(a)
(n) . (29)

It follows from Eqs. (28) and (29) that

ρ̂
(c)
ge(n)ρ̂

(b)
eg(n)

{n}
= ρ

(c)
ge(n)ρ

(b)
eg(n) + δcb

(
ρ

(b)
ee(n) − ρ

(b)
ge(n)ρ

(b)
eg(n)

)
. (30)

The qualifier {n} at the end of the bar signifies that the averag-
ing is only for the phases at the time step n. Complying with
Eq. (13), we write

Ê (a)
+(n) = E (a)

+,seed(n) + i
3h̄�sp

8πμ

∑
b<a

G(ra − rb)ρ̂ (b)
eg(n),

Ê (a)
−(n) = E (a)

−,seed(n) − i
3h̄�sp

8πμ

∑
b<a

G(rb − ra)ρ̂ (b)
ge(n). (31)

The stochastic quantities Ê (a)
±(n) correspond to the electric field

operators Ẽ (a)
±,ext (τn).

Quantities for the next time step n + 1 are determined by
converting the QMBEs to difference equations. In doing this,
we interpret an equation of the form dO

dτ
= U (τ ) as

(O(n+1) − O(n) )
{n+1} = 
τ U(n)

{n+1}
. (32)

This averaging does not affect quantities at time step n, but

ρ̂
(a)
ge
eg(n+1)

{n+1}
= ρ

(a)
ge
eg(n+1)

. We obtain

ρ
(a)
ee(n+1) = ρ

(a)
ee(n) + {

r (a)
e(n) − �

(a)
ee(n)ρ

(a)
ee(n) + iμ

h̄

[
ρ̂

(a)
ge(n)Ê

(a)
+(n) − Ê (a)

−(n)ρ̂
(a)
eg(n)

]}

τ,

ρ
(a)
gg(n+1) = ρ

(a)
gg(n) + {

r (a)
g(n) + (

�sp + γn
)
ρ

(a)
ee(n) − γ

(a)
g(n)ρ

(a)
gg(n) − iμ

h̄

[
ρ̂

(a)
ge(n)Ê

(a)
+(n) − Ê (a)

−(n)ρ̂
(a)
eg(n)

]}

τ,

ρ
(a)
ge
eg(n+1)

= ρ̂
(a)
ge
eg(n)

+
[
−�

(a)
(n)

2
ρ̂

(a)
ge
eg(n)

± iμ

h̄
Ê (a)

∓(n)ρ
(a)
inv(n)

]

τ. (33)

Above, we have incorporated incoherent processes using
the Lindblad superoperator method, introducing the fol-
lowing rates [27]: �(a)(τ ) ≡ �(a)

ee (τ ) + γ (a)
g (τ ) + q(a)(τ ) and

�(a)
ee (τ ) ≡ �sp + γ (a)

e (τ ) + γn, where γn is the nonradiative
decay rate, q is the rate for atom decoherence, re and rg are the
pumping rates for the excited and ground states, and γe and
γg are the depletion rates. The incoherent processes act dif-
ferently on ρ (a)

ee and ρ (a)
gg , and we need separate equations for

them. The inductive procedure is finally completed by deter-
mining ρ̂

(a)
ge(n+1), ρ̂

(a)
eg(n+1), Ê

(a)
+(n+1), and Ê (a)

−(n+1) by replacing n
by n + 1 in Eqs. (28) and (31), respectively, and introducing
new random phases �

(a)
(n+1) for all atoms a. Equations (28),

(31), and (33) constitute SMBEs.
The variables ρ̂

(a)
ge(n), ρ̂

(a)
eg(n), ρ

(a)
ee(n), and ρ

(a)
gg(n) are the

stochastic c numbers corresponding to the quantum operators
σ̃

(a)
+ (τn), σ̃

(a)
− (τn), σ (a)

ee (τn), and σ (a)
gg (τn), respectively. They

are used to compute the ensemble average of operators and
normally ordered second-order operator products in terms of
the coherence [28]. The ensemble average in the framework
of the SMBEs is obtained by averaging over all stochastic

phases. Thus, for example,

〈
σ

(a)
ee(n)

〉 = ρ
(a)
ee(n),

〈
σ̃

(a)
+(n)σ̃

(b)
−(n)

〉 = ρ̂
(a)
ge(n)ρ̂

(b)
eg(n). (34)

Equation (26) then follows from Eq. (30), as promised:

〈
σ̃

(a)
+(n)σ̃

(a)
−(n)

〉 = ρ̂
(a)
ge(n)ρ̂

(a)
eg(n) = ρ

(a)
ee(n) = 〈

σ
(a)
ee(n)

〉
. (35)

Note the stochastic variables are not to be used to compute
the ensemble average of reverse-ordered second-order prod-

ucts. Thus, for example, ρ̂
(a)
eg(n)ρ̂

(b)
ge(n) does not correspond to

〈σ̃ (a)
−(n)σ̃

(b)
+(n)〉. SMBEs can be extended to multilevel atoms, as

explained in Appendix B.
Another key characteristic of the field is its spectral profile,

which is derived from the Fourier transform of the temporal

field correlation function. Since SMBEs determine the ρ̂
(a)
eg
ge(n)

,

they also govern the correlation, according to the quantum
regression theorem [28].
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The SMBEs lead to an approximate factorization that re-

sembles Eqs. (24) and (25) in the sense that ρ
(a)
inv(n)ρ̂

(b)
ge(n)

{n}
=

ρ
(a)
inv(n)ρ̂

(b)
ge(n)

{n}
and ρ

(a)
inv(n)ρ̂

(b)
ge(n)ρ̂

(c)
eg(n)

{n}
= ρ

(a)
inv(n)ρ̂

(b)
ge(n)ρ̂

(c)
eg(n)

{n}

for a �= b, c. However, ρ
(a)
inv(n) contains a term ρ̂

(d )
eg(m), and

ρ̂
(b)
ge(n) contains a term ρ̂

(d )
ge(m) for m < n. After averaging over

all phases, these two terms will contract to ρ
(d )
ee(m) in view

of Eq. (35). Therefore, the factorization ansatz adopted in
FCFEs, Eqs. (24) and (25), does not hold for the SMBEs; nev-
ertheless, the closed set of differential equations of FCFEs in
terms of the atomic variables can be derived from the SMBEs
by forcefully applying this ansatz, as shown in Appendix C.

For SMBEs, preserving the second-order atomic matrix
identities in Eq. (35), which are also maintained by FCFEs,
is crucial for obtaining the closed set of equations of FCFEs,
as shown in Appendix C. In contrast, CMBEs and PPSEs
do not demonstrate consistency with FCFEs in preserving
these identities. Unlike SMBEs, PPSEs use distinct stochastic
variables for atomic coherence and field source terms, leading
to nonzero stochastic sources even in the absence of atoms.
In the spontaneous-emission-dominant regime, such PPSEs
result in vanishing ensemble averages of atomic coherence
products from an atom [31], thus not preserving Eq. (35). The
inability of CMBEs and PPSEs with the stochastic drift gauge
transformation to correctly predict the intensity of sponta-
neous emission, as given by the closed set of equations of
FCFEs, implies an inconsistency with the closed set.

The simple case of a single atom without the incom-
ing field and other incoherent processes, except for the
pumping and spontaneous emission, is instructive. We may
suppress the atomic label and set Ê±(n) = 0. The initial
values are ρge

eg(0), ρee(0), ρ̂ge
eg(0) = ρge

eg(0) + ξge
eg(0), and ξge

eg(0) =
√

ρee(0) − ρge(0)ρeg(0)e±i�(0) . For n � 1, we find

ρee(n) =
n∑

m=1

X n−mre(m−1)
τ + X nρee(0), (36)

ρ̂ge
eg(n) =

n∑
m=1

X n−m
h ξge

eg(m) + X n
h ρ̂ge

eg(0), (37)

ξge(m)ξeg(m) = re(m−1)
τ, m � 1. (38)

Here, X = 1 − �sp
τ ≈ e−�sp
τ , and Xh = 1 − 1
2�sp
τ ≈

e−�sp
τ/2 for a small time step 
τ 	 �−1
sp . The excited-state

population ρee and the stochastic coherence ρ̂ge
eg

decay ex-

ponentially as e−�spτ and e−�spτ/2, respectively, the former
replenished by pumping and the latter by the stochastic term
ξge

eg(m). The temporal correlation for l � n is

ρ̂ge(n)ρ̂eg(l ) = ρee(n)e
− �sp

2 (l−n)
τ , (39)

in agreement with 〈σ̃+(τn)σ̃−(τl )〉, as expected. The positive-
frequency far field is proportional to ρ̂eg(n). By computing
its Poynting vector [28], one can check that the number of
photons emitted is equal to the initial excitation ρee(0) in the
absence of pumping.

V. NUMERICAL EXAMPLES

We shall present some numerical simulations with SMBEs.
An XLO simulation starts by setting the ASE initial conditions

E (a)
±,seed(0) = 0 and ρ

(a)
ge
eg(0)

= 0. Subsequently, the simulation

computes Ê (a)
±(n) with a given set of phases {�(c)

(m)} for all atoms
and all time steps in the first pass. The output is then used as
the input to the next round of the XLO calculation.

For numerical calculations, we adopted the continuous
description that offers advantages by replacing the discrete
atomic label with the average position of atoms r within a
small volume 
V surrounding the atom. This is mathemati-
cally represented as

ρ
(r)
(n) ≡ 1

nv
V

∑
a∈
V

ρ
(a)
(n) . (40)

Here, nv denotes the 3D number density of the atoms. In
this framework, field calculations at position r are carried out
using the differential form of Eq. (31), with detailed explana-
tions provided in Appendix D. The transition to continuous
representation for the difference equations is achieved by
substituting the discrete atomic label with the continuous po-
sition variable in the discrete difference equations in Eq. (33).
Additional details of the continuous noise representation,
Eqs. (E6) and (E7), which starts with an inductive formula for
Eq. (29) designed to mitigate potential numerical instabilities
associated with its exact form and facilitate the transition to
the continuous representation, are elaborated in Appendix E.
We implemented the Runge-Kutta fourth-order method for the
difference equations. Details on the equations governing the
pumping rate are provided in Appendix F.

We have verified that the radiation intensity from 1D
SMBEs obtained by substituting G with the solid angle 
o =
πR2/L2 closely aligns with the corresponding intensity plot
from the 1D FCFEs presented in Fig. 3(a) of [27], using the
parameters specified therein. This close match may suggest
that the factorization ansatz applied in the FCFEs introduces
minimal distortions in this scenario.

To compare our SMBE simulations with those that use
either the CMBEs with a 3D ad hoc noise term [25,50] or the
PPSEs [31], we adopt simulation parameters close to those
of the XLO designed in [12]. In this case the lasing medium
was chosen to be a jet of cupric nitrate, while the transition is
given by the copper’s Kα1 decay channel that is created when
the XFEL pump creates a 1s core hole. Detailed parameters
are λ� = 0.154 nm, �−1

sp = 1.10 fs, γ −1
e = 0.70 fs, γ −1

g =
1.18 fs, L = 270 µm, nv = 4.2 × 1027 m−3, rg = q = γn = 0,
photoionization cross section of pumping to the excited state
σabs = 32.4 kb, and a 9-keV pump pulse with Gaussian longi-
tudinal (στ = 8.49 fs) and transverse (focused for σr of 0.1 µm
at the waist, situated at the midpoint of medium) profiles.
Numerical resolutions in the medium are 
τ = 43 as in a
60-fs grid, 
x = 
y = 16.7 nm in a 1 × 1 µm2 grid, and

z = 0.54 µm.

A. Spontaneous emission

Before conducting simulations for the designed laser, we
initially simulated the spontaneous emission to assess the
accuracy of the three different models in depicting the tem-
poral intensity profile. For this test, we disabled all incoherent
processes except for spontaneous emission. The atoms were
initially set to a fully excited state, and the simulations were
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FIG. 1. Temporal intensity profile of spontaneous emission, av-
eraged over 103 sets of phase samples and normalized to the initial
intensity of SMBEs.

carried out at z � 0, where the effect of stimulated emission
is negligible. The results are presented in Fig. 1.

The SMBE curve correctly exhibits the expected expo-
nential decay as e−�spτ , confirming its suitability for these
conditions. In contrast, the CMBE curve displays the incorrect
decay pattern, �spτe−�spτ , as previously noted [24,27]. The
PPSE curve also shows some inaccuracies at early times,
which we primarily attribute to the way that the stochastic drift
gauge transformation is used to control divergent trajectories
when there is a population inversion in the medium.

B. Single-pass laser

Using the parameters set for the designed machine, our
next step was to simulate the single-pass case. In Figs. 2 and
3, where the pump is centered at 30 fs, we plot the SMBEs’
radiation intensity profiles with the pump pulse delivering

FIG. 2. SMBEs’ radiation intensity profiles from a set of phase
samples in the laser, normalized to the maximum at each z.

FIG. 3. SMBEs’ radiation intensity profiles in the laser, averaged
over 103 sets of phase samples and normalized to the overall maxi-
mum (the black dots represent the maximum at each z).

1.3 × 1012 photons. Figure 2, which is not phase averaged,
shows the fluctuation of spontaneous emission at smaller z
values, which diminishes as z increases into the stimulated-
emission-dominant regime. Figure 3, averaged over 103 sets
of phase samples, clearly delineates the transition from the
spontaneous-emission-dominant regime to the stimulated-
emission-dominant regime.

Figure 4, also averaged over 103 sets of phase samples,
distinctly illustrates the varying model predictions under low-
intensity pumping conditions, indicated by solid lines. This
highlights how the inaccuracies in the other models regarding
the modeling of spontaneous-emission intensity, as elaborated
in Sec. V A, contribute to the discrepancies in representing
the behavior of actual lasers compared to our SMBEs. In
the case of PPSEs, under conditions of population inversion
where the stochastic drift gauge transformation distorts radi-
ation intensity, lasing is significant, which may explain the
notable discrepancy. In scenarios of high-intensity pumping,
represented by dashed lines, although the models initially
present distinct predictions at the medium’s entrance, they

FIG. 4. Radiated photon numbers for pump pulse with 2.0 ×
1011 (solid lines) and 1.3 × 1012 (dashed lines) photons in the laser.
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FIG. 5. Outline of the cavity for XLO.

tend to converge due to the predominant influence of stimu-
lated emission towards the medium’s end.

C. Multipass XLO

The next simulation we conducted is the multipass XLO.
Considering the cavity design in [12], we implemented a
four-bounce bow-tie cavity configuration (+ − −+) [51]
using Si(444) crystals, as illustrated in Fig. 5, in the sim-
ulation. Each crystal with a Bragg angle of 79.3◦ at the
resonance energy exhibits 1% loss, with Gaussian Bragg
FWHM values of 31.6 µrad and 48.1 meV. The cavity includes
the pump, the atomic jet, and compound refractive lenses
(CRLs) with a focal length of 1.29 cm and measures 50 cm in
length. The jet’s center is positioned at the center of the upper
horizontal branch where the transverse mode size is aligned
with the pump size. CRL1 is placed 1.4 cm away from the
jet’s center, before the first crystal, C1, to reduce the angular
divergence.

In Fig. 6, we present the results showing the radiated pho-
ton number as a function of the turn number [52,53], averaged
over 30 sets of phase samples. In the high-intensity pump-
ing case, represented by the dashed lines, the profiles of the
SMBEs and CMBEs are practically indistinguishable, while
PPSEs show a slightly reduced net cavity gain per turn and
saturation power. Hence, in this case all models predict a gain

FIG. 6. Number of radiated photons in XLO (after cavity propa-
gation, before entering the jet) for the low-intensity (solid line) and
high-intensity (dashed lines) pumpings.

and saturation power that is close to that of the Maxwell-Bloch
equations and further show similar levels of initial seeding
by ASE.

On the other hand, the three models have rather distinct
photon-number predictions in the low-intensity pumping case,
plotted as solid lines. Nevertheless, the gain and saturation
power of the SMBEs and CMBEs are quite similar in this sce-
nario. The main difference between the SMBEs’ and CMBEs’
predictions is in regard to the photon number produced in the
initial passes, which results from the differing treatment of the
spontaneous emission that serves to seed the oscillator. Hence,
while the SMBEs and CMBEs would lead to similar predic-
tions regarding the steady-state performance of an XLO, they
may provide differing conclusions for the feasibility of an
XLO driven by a small number of pump pulses. The PPSEs
yield entirely different predictions in the low-intensity pump-
ing case, with its solid line showing no effective gain. Hence,
it appears that the PPSEs predict a reduction in the small-
signal gain from that of SMBEs or perhaps that the sponta-
neous emission otherwise modifies the stimulated emission.

To summarize, Fig. 6 shows that all three models give
similar results when the pumping is strong and spontaneous
emission is relatively unimportant, while they yield increas-
ingly different predictions as the pump becomes weaker and
the role of spontaneous emission becomes correspondingly
stronger. In our opinion, the agreement between SMBEs and
FCFEs, as demonstrated in Appendix C and the 1D simulation
comparison mentioned above, lends increased confidence to
the SMBEs’ results. Moreover, it is unlikely that CMBEs
and PPSEs, which cannot correctly describe the experimen-
tally observed exponential decay of spontaneous emission,
can be reliable when these discrepancies in predictions are
pronounced.

VI. CONCLUSION

We introduced an approach to ASE using the stochas-
tic Maxwell-Bloch equations, which establish a connection
between stochastic dynamic variables and the quantum op-
erators of the Maxwell-Bloch system. We showed how to
incorporate second-order atomic matrix identities into the
SMBEs, thereby ensuring numerical stability and accurate
predictions of first-order field correlations for ASE. This
makes the SMBEs an effective tool for precisely modeling
general atomic systems within the paraxial approximation for
both single- and multipass configurations. In contrast, the
existing stochastic models, which do not correctly incorporate
the second-order identities, struggle to model ASE accurately
in the spontaneous-emission-dominant regime, which can be
crucial for multiturn configurations. Even when a system is
assumed to be in the stimulated-emission-dominant regime,
these models may need to reference predictions from an ac-
curate theory to verify the transition to the regime from the
spontaneous-emission-dominant regime and the resulting im-
proved accuracy, which may limit their practicality.

In systems with a large number of emitters, such as
XLO, the second-order atomic matrix identities primarily
govern higher-order correlations of the field. Consequently,
the SMBEs may accurately capture also these higher-order
correlations in large systems, which is relevant to leveraging
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quantum features such as intensity interferometry. This con-
trasts with smaller systems, in which the quantum behavior
of individual emitters becomes more significant and relevant
to quantum technologies. Future refinements of SMBEs, fo-
cusing on integrating higher-order atomic matrix identities,
have the potential to enhance the accuracy of these equations,
particularly for the smaller systems [54].

This stochastic framework, which aligns with Heisenberg’s
matrix mechanics, could find applications for a variety of
quantum phenomena. By integrating critical quantum ma-
trix identities into a stochastic framework, it provides a tool
whose numerical requirements scale linearly with the size
of the system. This simplification may help foster innovative
methodologies and deepen the understanding of quantum me-
chanics across other fields beyond quantum optics.
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APPENDIX A: SELF-FIELD AND Ẽ (a)
+,ind(τ )

COMPUTATIONS

The self-field, the first term on the right-hand side of
Eq. (10), is from the b = a term in the summation of Eq. (8):∑

k,s

i
μ

h̄
|Ek,s|2

×
∫ τ+ za

c

0
dτ ′ei�τ−iωk(τ+ za

c −τ ′)σ (b)
−

(
τ ′ − za

c

)

= iμ

16π3ε0

∫ π

0

∫ 2π

0
(cos2 ϕ + cos2θ sin2 ϕ)dϕ sin θdθ

×
∫ τ

− za
c

dτ ′
∫ ∞

0
e−i(ωk−�)(τ−τ ′ )σ̃

(a)
− (τ ′)ωkk2dk

= iμ

3πε0

(
�

c

)3 ∫ τ

− za
c

δ(τ − τ ′)σ̃ (a)
− (τ ′)dτ ′

= ih̄

2μ
�spσ̃

(a)
− (τ ). (A1)

Here, we used êk,1 ‖ (cos ϕ, sin ϕ, 0) and êk,2 ‖
(− sin ϕ cos θ, cos ϕ cos θ, sin θ ). Arriving at the second-
to-last equality, we used the approximation typically done
in the Weisskopf-Wigner approach and introduced the
spontaneous-emission rate �sp ≡ μ2

3πε0 h̄ ( �
c )3.

Next, we compute Ẽ (a)
+,ind(τ ) in Eq. (11), with the paraxial

approximation:

Ẽ (a)
+,ind(τ ) =

∑
k,s

i
μ

h̄
|Ek,s|2

∑
b�=a

∫ τ+ za−zb
c

− zb
c

dτb

× e−ic
kTab+i�ab σ̃
(b)
− (τb)

� icμ

16π3ε0

∫ ∞

0
k3dk

∫
φ∈φR

d2φ
∑
b�=a

×
∫ τ+ za−zb

c

− zb
c

dτb e−ic
kTab+i�ab σ̃
(b)
− (τb), (A2)

where

Tab = τ − τb − φ · xa − xb

c
, (A3)

�ab = −k�

|φ|2
2

(za − zb) + k�φ · (xa − xb). (A4)

We note that the phase in Eq. (A2) varies rapidly and
the integration is approximately zero unless 
k � 0. Hence,
we proceed in a manner similar to the Weisskopf-Wigner
approximation by replacing k with k� everywhere except for
in the fast-oscillating term and by extending the limits of the
k integration to be from −∞ to ∞. Then, the k integration
results in a δ function, and Eq. (A2) becomes

Ẽ (a)
+,ind(τ ) � iμk3

�

8π2ε0

∑
b�=a

∫
φ∈φR

d2φ ei�ab

×
∫ τ+ za−zb

c

− zb
c

dτb σ̃
(b)
− (τb)δ(Tab). (A5)

We approximate the argument of a δ function, Tab � τ − τb,
with the following condition that usually holds for a numerical
computation with z resolution of 
z:

|φ| 	 min

(
za − zb

|xa − xb|
)

∼ 
z

2R
. (A6)

Then Eq. (A5) is approximated as

Ẽ (a)
+,ind(τ ) = i

3h̄�sp

8πμ

∫
φ∈φR

d2φ
∑
b<a

σ̃
(b)
− (τ )

× eik�[φ·(xa−xb)− φ2

2 (za−zb)],

(A7)

where b < a is shorthand notation for zb < za. The summation
over xb with the same zb can be regarded as the transverse
integration. Then approximately only integrands for |φ| 	 λ�

2R
contribute substantially to the φ integration. Therefore, ap-
proximately, we can change the limits of the φ integration to
be from −∞ to ∞; then Ẽ (a)

+,ind(τ ) becomes Eq. (13).

APPENDIX B: SMBEs FOR MULTILEVEL SYSTEMS

SMBEs can be effectively adapted to accommodate mul-
tilevel atomic systems. Each interacting pair of two energy
levels is designated by an index α, labeling the corresponding
upper |eα〉 and lower |gα〉 energy states and the atomic opera-
tors. Similar to the matrix identity in Eq. (26) for the two-level
system, an analogous identity exists for the ordered set of
(α, β ) pairs that governs the spontaneous-emission intensity.
This identity, represented by Eq. (B1), should therefore be
preserved by the stochastic coherences ρ̂gαeα

and ρ̂eβ gβ
:〈

σ̃
(b)
+α

σ̃
(b)
−β

〉 = δgαgβ

〈
σ̃ (b)

eβeα

〉
, (B1)
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where σ (b)
eβeα

= |eα〉(b)〈eβ |(b) and δgαgβ
is 1 if the two lower-energy states coincide and 0 otherwise. The noise terms satisfying this

are

ξ
(a)
gαeα (n) =

∑
β

√
δgαgβ

ρ
(a)
eβeα (n) − ρ

(a)
gαeα (n)ρ

(a)
eβ gβ (n)e

i�(a)
αβ(n) ,

ξ
(a)
eαgα (n) =

∑
β

√
δgαgβ

ρ
(a)
eαeβ (n) − ρ

(a)
gβ eβ (n)ρ

(a)
eαgα (n)e

−i�(a)
βα(n) , (B2)

where the random phases satisfy

exp
(
i�(a)

αβ(n) − i�(b)
α′β ′(m)

) = δabδnmδαα′δββ ′ . (B3)

Limiting the summation in Eq. (B2) to the β = α term as
an approximation is justifiable because, in the spontaneous-
emission-dominant regime where the field is negligible and

noise plays a significant role, this approach preserves the
required identity of the SMBEs corresponding to Eq. (B1).

APPENDIX C: THE CLOSED SET OF DIFFERENTIAL
EQUATIONS OF FCFEs OBTAINED FROM SMBEs

From the SMBEs’ difference equation in Eq. (33) and with
the noise factors from Eq. (29), we derive the following for
distinct atoms a �= b:

ρ̂
(a)
ge(n+1)ρ̂

(b)
eg(n+1) = (

ρ̂
(a)
ge(n) + ξ

(a)
ge(n+1)

)(
ρ̂

(b)
eg(n) + ξ

(b)
eg(n+1)

) + (
ρ̂

(a)
ge(n) + ξ

(a)
ge(n+1)

)(−�
(b)
(n)

2
ρ̂

(b)
eg(n) − iμ

h̄
Ê (b)

+(n)ρ
(b)
inv(n)

)

τ

+ (
ρ̂

(b)
eg(n) + ξ

(b)
eg(n+1)

)(−�
(a)
(n)

2
ρ̂

(a)
ge(n) + iμ

h̄
Ê (a)

−(n)ρ
(a)
inv(n)

)

τ. (C1)

Upon averaging over all phases, with the inclusion of the field equation, Eq. (31), the expression simplifies to

ρ̂
(a)
ge(n+1)ρ̂

(b)
eg(n+1) = ρ̂

(a)
ge(n)ρ̂

(b)
eg(n) − �

(a)
(n) + �

(b)
(n)

2
ρ̂

(a)
ge(n)ρ̂

(b)
eg(n)
τ

− iμ

h̄

(
ρ̂

(a)
ge(n)E

(b)
+,seed(n)ρ

(b)
inv(n) − ρ̂

(b)
eg(n)E

(a)
−,seed(n)ρ

(a)
inv(n)

)

τ

+ 3�sp

8π

(∑
c<b

G(rb − rc)ρ̂ (a)
ge(n)ρ̂

(c)
eg(n)ρ

(b)
inv(n) +

∑
c<a

G(rc − ra)ρ̂ (b)
eg(n)ρ̂

(c)
ge(n)ρ

(a)
inv(n)

)

τ. (C2)

If we enforce the factorizations

ρ̂
(a)
ge(n)E

(b)
+,seed(n)ρ

(b)
inv(n) = ρ̂

(a)
ge(n) E

(b)
+,seed(n) ρ

(b)
inv(n), ρ̂

(c)
ge(n)ρ̂

(b)
eg(n)ρ

(a)
inv(n) = ρ̂

(c)
ge(n)ρ̂

(b)
eg(n) ρ

(a)
inv(n), a �= c, (C3)

which align with FCFEs’ factorizations in Eqs. (24) and (25), the resulting equations mirror those for 〈σ̃ (a)
+ σ̃

(b)
− 〉 in FCFEs [27].

Similarly, the difference equations for ρ
(a)
inv , ρ̂

(a)
eg , and ρ̂

(a)
ge also mirror the corresponding difference equations in FCFEs. FCFEs

identify that the b = c term, ρ̂
(b)
ge(n)ρ̂

(b)
eg(n) = ρ

(b)
ee(n), is crucial for accurately describing spontaneous emission.

APPENDIX D: DIFFERENTIAL FIELD EQUATIONS IN THE CONTINUOUS POSITION REPRESENTATION

The field equations from Eq. (31) are translated into their differential forms in continuous space as follows [15]:

∂ Ê (r)
+(n)

∂z
= −κ (r)

2
Ê (r)

+(n) + ic

2�
∇2

⊥Ê
(r)
+(n) + i�

2ε0c
μnvρ̂

(r)
eg(n),

∂ Ê (r)
−(n)

∂z
= −κ (r)

2
Ê (r)

−(n) − ic

2�
∇2

⊥Ê
(r)
−(n) − i�

2ε0c
μnvρ̂

(r)
ge(n). (D1)

In this formulation, κ (r) represents the spatially dependent absorption coefficient, which is introduced to account for the
attenuation of radiation as it propagates through the medium.

023724-9



PARK, KIM, AND LINDBERG PHYSICAL REVIEW A 110, 023724 (2024)

APPENDIX E: THE NOISE TERMS IN THE CONTINUOUS POSITION REPRESENTATION

Before proceeding to derive the continuous position representation for the noise terms, we first need to establish an inductive
formula for the noise term specified in Eq. (29). Starting with the values of ρ

(a)
ee(n), ρ

(a)
gg(n), ρ̂

(a)
eg(n), and ρ̂

(a)
ge(n) for all a, which dictate

the unhatted values at the next time step n + 1 via Eq. (33) and fulfill the noise requirement in Eq. (35) at time step n, we derive
a ξ

(a)
ge
eg(n+1)

that meets the noise requirement at the next time step n + 1 as follows, with Eqs. (29) and (33):

ξ
(a)
ge
eg(n+1)

=
√[

ρee(1 − �ee
τ ) − ρ̂geρ̂eg(1 − �
τ ) + re
τ + iμ

h̄
(1 + ρinv)

(
Ê+ρ̂ge − Ê−ρ̂eg

)

τ

](a)

(n)

e±i�(a)
(n+1) . (E1)

After replacing ρ̂
(a)
ge(n)ρ̂

(a)
eg(n) with ρ

(a)
ee(n), which maintains the invariant ξ

(a)
ge(n+1)ξ

(a)
eg(n+1) and, consequently, ρ̂

(a)
ge(n+1)ρ̂

(a)
eg(n+1), the

simplified expression is

ξ
(a)
ge
eg(n+1)

=
√[

re + ρee
(
γg + q

) + iμ

h̄
(1 + ρinv)

(
Ê+ρ̂ge − Ê−ρ̂eg

)](a)

(n)


τe±i�(a)
(n+1) . (E2)

This formula allows inductive calculation of subsequent values, preserving the noise requirement at each time step.
For the transition to continuous representation, first, we perform the transition inside the square root, which maintains the

noise requirement at time step n + 1 due to the relationships specified below:

ρ
(a)
ee(n) = ρ

(r)
ee(n), ρ

(a)
inv(n)ρ̂

(a)
eg(n)ρ̂

(b)
ge(n) = ρ

(r)
inv(n)ρ̂

(r)
eg(n)ρ̂

(r′ )
ge(n), (E3)

where r′ denotes the continuous spatial position corresponding to an atom b �= a outside the volume 
V . Then Eq. (E2) becomes

ξ
(a)
ge
eg(n+1)

=
√[

re + ρee
(
γg + q

) + iμ

h̄
(1 + ρinv)

(
Ê+ρ̂ge − Ê−ρ̂eg

)](r)

(n)


τe±i�(a)
(n+1) . (E4)

Then, according to Eq. (40), the continuous position representation is

ξ
(r)
ge
eg(n+1)

=
√[

re + ρee
(
γg + q

) + iμ

h̄
(1 + ρinv)

(
Ê+ρ̂ge − Ê−ρ̂eg

)](r)

(n)


τ
∑

a∈
V

e±i�(a)
(n+1)

nv
V
. (E5)

This can be modified as follows, which leaves ξ
(r)
ge(n+1)ξ

(r)
eg(n+1) invariant:

ξ
(r)
ge
eg(n+1)

=
√[

re + ρee
(
γg + q

) + iμ

h̄
(1 + ρinv)

(
Ê+ρ̂ge − Ê−ρ̂eg

)](r)

(n)


τ
e±i�(r)

(n+1)

√
nv
V

. (E6)

The random phase �
(r)
(n) adheres to the property ei(�(r)

(n)−�
(r′ )
(m) ) = δrr′δnm.

For the simulations presented in this paper, we initialize the system under conditions of no coherence. Accordingly, we use
the following expression for the initial time step:

ξ
(r)
ge
eg(0)

=
√

ρ
(r)
ee(0)

e±i�(r)
(0)

√
nv
V

, (E7)

as specified by Eq. (29). For subsequent time steps, Eq. (E6) is utilized.

APPENDIX F: THE RATE OF PUMPING BY XFEL

Here, we provide the detailed equation for re, the pumping rate for the excited state, as follows [16]:

ρ
(r)
xx(n+1) = ρ

(r)
xx(n)

(
1 − σabsJ

(r)
(n)
τ

)
, (F1)

∂E (r)
p,+(n)

∂z
= i

c

2�p
∇2

⊥E
(r)
p,+(n) − σabsnv

2
ρ

(r)
xx(n)E

(r)
p,+(n), (F2)

r (r)
e(n) = σabsρ

(r)
xx(n)J

(r)
(n) , (F3)

where ρ
(r)
xx(n) represents the population of the energy level from which the atoms are excited by the pump. σabs denotes the

photoionization cross section of the pumping process, and �p is the angular frequency of the pump field. J (r)
(n) = 2 cε0

h̄�p
|E (r)

p,+(n)|2
denotes the pump photon number per unit area per unit time, where E (r)

p,+(n) denotes the slowly varying envelope of the pump’s
positive-frequency field.
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N. Rohringer, Stochastic modeling of x-ray superfluorescence,
Phys. Rev. A 109, 033725 (2024).

[32] P. D. Drummond and M. G. Raymer, Quantum theory of prop-
agation of nonclassical radiation in a near-resonant medium,
Phys. Rev. A 44, 2072 (1991).
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