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Simultaneous nonreciprocal photon blockade via directional parametric amplification

Wei Zhang,1 Rui Hou,2 Tie Wang,2 Shutian Liu,1,* Shou Zhang ,2,† and Hong-Fu Wang 2,‡

1School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
2Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002, China

(Received 26 March 2024; accepted 12 August 2024; published 22 August 2024)

We propose a scheme to achieve the simultaneous nonreciprocal photon blockade of two microring resonators
in an all-optical system without any rotating parts. By unidirectionally parametrically pumping a χ (2)-nonlinear
resonator with a classical coherent field, the counterclockwise mode in the resonator is exposed to the parametric
amplification process when a forward signal field is input in another resonator, but not the case for a backward
signal field. This leads to different quantum interference effects among distinct excitation paths for two optical
modes, which is the essential reason for simultaneous nonreciprocal photon blockade. We analytically give the
optimal parameter conditions to achieve simultaneous strong photon blockade with the parametric amplification.
Furthermore, the nonreciprocity is simultaneously enhanced through tuning the amplitude of input signal. Our
work provides an avenue to realize simultaneous nonreciprocal single-photon devices without moving parts and
may have potential applications in many-body quantum information processing and quantum communication.
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I. INTRODUCTION

Schemes to create and enhance the photon blockade (PB)
effect have been extensively proposed in the past decades,
as it played an important role in generating single-photon
sources [1–4], which had potential applications in the demon-
stration of interferometers [5], single-photon transistors [6],
and nonclassical isolators [7,8]. Realizing the PB effect was
primarily attributed to two physical mechanisms. One was
originated from the anharmonic energy-level of the sys-
tem [1,9–11], causing the prevention of transitions to the
two-photon state when the single-photon state was excited,
which was known as the conventional photon blockade (CPB).
The CPB occurred under the demanding requirement of strong
nonlinearity [12,13], which was difficult to implement in
practice. To relax the restriction, the quantum destructive
interference [14–18] of different excitation pathways from
the one-photon state to two-photon state was proposed in
diverse systems, called the unconditional photon blockade
(UPB). The UPB provided a way to gain insights into quantum
correlations even in scenarios with weakly nonlinear cou-
pling [14,18–22].

Essentially, the PB is a process that converts classical
light into highly nonclassical light, characterized notably
by photon antibunching and sub-Poissonian photon-number
statistics [23]. The PB was first experimentally realized in an
optical cavity including a single two-level atom [24], mark-
ing a pivotal advancement in the realms of quantum optics
and laser science. Subsequently, the PB effect has garnered
considerable experimental and theoretical interest and made
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substantial progress in various systems, such as cavity or
circuit quantum electrodynamics [10,25,26], cavity optome-
chanics [11,27–29], magnomechanical systems [30–32], and
spinning resonators [33–35]. Specifically, the UPB has been
experimentally implemented in coupled optical [21] or super-
conducting resonators [22]. In addition, many systems have
been proven to exhibit the UPB with weak nonlinearities,
including two coupled cavities with second- or third-order
nonlinearity [36–40] and gain cavity [41].

Nonreciprocal devices, allowing the transmission of sig-
nals from one direction while inhibiting them in the
opposite direction, have significant applications in build-
ing information-processing networks, such as unidirectional
transmission [42,43], circulators [44], invisible sensing [45],
and noise-free information processing [46]. Thus, a vari-
ety of optical nonreciprocal devices have been demonstrated
in nonlinear optics [47,48], optomechanics [49,50], mag-
nomechanics [51], and non-Hermitian optics [52,53]. In
particular, nonreciprocal entanglement [54,55] and squeez-
ing [56], nonreciprocal phonon and magnon lasers [51,57–
61], and nonreciprocal photon blockade (NPB) have been
proposed based on various schemes. Among them, nonrecip-
rocal CPB (NCPB) [33] and nonreciprocal UPB (NUPB) [34]
were first achieved in a spinning resonator, respectively based
on the mechanisms of energy-level anharmonicity and quan-
tum destructive interference. Subsequently, NCPB [62,63]
and NUPB [63,64] occur in a spinning resonator coupled
to a two-level atom. In addition, NPBs were observed in a
two-mode cavity made of χ (2) nonlinear materials [65], a ro-
tating optomechanical system [34,66], and a driven dissipative
cavity featuring parametric amplification [67]. Very recently,
simultaneous NPB [68,69] of two resonators were proposed
attributing to the Fizeau drags of two spinning resonators.
However, utilizing the directional parametric amplification
to simultaneously generate NPB of two resonators has not
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yet been explored, which greatly simplifies its experimental
implementation.

In this paper, we consider an all-optical system consisting
of two coupled microring resonators and two nearby optical
waveguides to investigate simultaneous generation of NPB in
two optical modes. Our scheme exhibits notable differences
and advantages across various aspects in contrast to Ref. [69].
(i) The results of simultaneous NPB are completely different,
as the all-optical system with directional parametric ampli-
fication gives rise to different transition pathways, thereby
causing different physical mechanisms. (ii) The adjustment of
the nonreciprocity is easier, as it only requires adjusting the
gain and phase of parametric amplification, without involving
the radius and linear refractive index of resonator, and angular
velocities of spinning resonators. (iii) A better nonreciprocal
ratio (95 dB) for photon blockade of two modes can be re-
alized in our scheme with a smaller signal-field amplitude
under the condition of the optimal parametric amplification
and phase. (iv) The method of using directional parametric
amplification to generate simultaneous NPB requires fewer
experimental equipment and steps, which is easier to imple-
ment in experiments. Specifically, by coherently pumping a
resonator to induce a parametric amplification process in one
direction but not the other, different interference pathways
are induced for two distinct end inputs, leading to the occur-
rence or disappearance of quantum destructive interference
in excitation pathways to access the two-photon states. We
analytically derive the optimal conditions for achieving strong
photon antibunching in two resonators with the parametric
amplification and demonstrate that the analytical solutions
show a great agreement with the numerical simulations. Based
on these conditions, it is found that the simultaneous NPB
is significantly influenced by the coupling strength and input
signal-field strength. Our work offers a way for simultane-
ously achieving strong nonreciprocal single-photon devices in
multiple modes without the need for any rotating components,
which holds promise for applications in many-body quantum
information processing and quantum communication.

The paper is organized as follows. Section II details the
basic framework of an all-optical system under study, which
mainly consists of the corresponding Hamiltonian and master
equation. Section III derives the optimal parameter conditions
for simultaneous photon blockade in the presence of the para-
metric amplification. Section IV investigates the simultaneous
NPB of two resonators and discusses how to improve the
nonreciprocity. Finally, we give a conclusion in Sec. V.

II. SYSTEM MODEL AND THEORETICAL FRAMEWORK

As schematically shown in Fig. 1, we consider two coupled
microring resonators made of high-quality χ (2) nonlinear thin
film and two nearby optical waveguides. Due to the nonlinear
parametric amplification process supported by the resonators,
the counterclockwise (CCW) mode in resonator B (RB) b�
is exposed to the parametric interaction under the directional
phase-matching condition when RB is pumped from port 3 by
a coherent laser field with amplitude �p, frequency ωp, and
phase θp. However, the clockwise (CW) mode b� in RB is
decoupled due to the lack of the phase-matching condition. In
Fig. 1(a), a driving field with amplitude E and frequency ωl
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FIG. 1. Schematic of a coupled-resonators system generating si-
multaneous NPB, which consists of two microring resonators (RA

and RB) and two nearby optical waveguides. To achieve the simulta-
neous NPB of two optical modes, a coherent pump field is applied
to generate a CCW mode b� in RB. To eliminate the increased
dissipation brought by the pump field, a broadband squeezed-vacuum
field is used to drive RB. (a) A forward-input signal field excites the
CW mode a� in RA coupled to the CCW mode b� in RB. (b) A
backward-input signal field excites the CCW mode a� in RA, which
interacts with the CW mode b� in RB.

loaded from port 1 excites the CW mode a� in resonator A
(RA), which couples to b� with the hopping strength of g. In
this case, the system Hamiltonian with the respect to the frame
rotating at frequency ωp/2 is expressed as (h̄ = 1)

H1 = �aa†
�a� + �bb†

�b� + g(a†
�b� + a�b†

�)

+E (a†
� + a�) + �p(e−iθpb†2

� + eiθpb2
�), (1)

where a� (a†
�) and b� (b†

�) represent the annihilation (cre-
ation) operators of the CW mode in RA and the CCW mode
in RB, respectively. �a,b = ωa,b − ωp/2, with ωa,b being the
frequencies of RA and RB. Here we assume ωp = 2ωl . When
the driving field is input from port 2 as shown in Fig. 1(b), the
CCW mode a� in RA is excited and couples to CW mode b�
in RB. In this situation, the system Hamiltonian is written as

H2 = �aa†
�a� + �bb†

�b� + g(a†
�b� + a�b†

�)

+ E (a†
� + a�). (2)

Next we will demonstrate that, owing to the directional para-
metric amplification, the simultaneous NPB of two resonators
can be achieved when the driving field is loaded from port 1 or
port 2. Via considering the dissipation terms of two resonators,
the dynamics of the hybrid system can be characterized by the
following master equation:

ρ̇ = −i[Hζ , ρ] + κaL[aζ ]ρ + κbL[bζ ]ρ, (3)

where ρ is the system density operator, L[o]ρ = oρo† −
(o†oρ + ρo†o)/2 (o = aζ , bζ ) is the Lindblad superoperator
for operator o. κa (κb) is the total decay rate of RA (RB).
For the sake of simplicity, it is taken to be κa = κb hereafter.
ζ = 1, 2 indicates the driving-field inputs from ports 1 and 2,
respectively. a1 (b1) denotes a� (b�), and a2 (b2) represents
a� (b�). For the two situations where the driving field is
input from ports 1 and 2, the photon blockade effect of two
resonators can be quantified by the equal-time second-order
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correlation function

g(2)
aζ

(0) =
〈
a†2

ζ a2
ζ

〉
〈a†

ζ aζ 〉2
= Tr

(
ρssa

†2
ζ a2

ζ

)
[Tr(ρssa

†
ζ aζ )]2

,

g(2)
bζ

(0) =
〈
b†2

ζ b2
ζ

〉
〈b†

ζ bζ 〉2
= Tr

(
ρssb

†2
ζ b2

ζ

)
[Tr(ρssb

†
ζ bζ )]2

, (4)

where ρss is the steady-state density operator of master equa-
tion (5) by taking ρ̇ = 0. Generally, the value of g(2)

o (0)
signifies the probability of observing two photons at the same
time. Typically, g(2)

o (0) < 1 implies that the photon is detected
one by one, corresponding to the photon antibunching effect.
However, g(2)

o (0) > 1 describes the photon bunching effect,
meaning that two photons can be simultaneously detected.

III. OPTIMAL CONDITIONS FOR PHOTON BLOCKADE
WITH PARAMETRIC AMPLIFICATION

In this part, we are mainly interested in the optimal con-
ditions for photon blockade of the two resonators with the
parametric amplification when the RA is weakly driven. Before
giving a full discussion of the simultaneous NPB, we first
derive the analytical solutions by solving the Schrödinger
equation i∂|ψ〉/∂t = Hnon|ψ〉, where

Hnon = H1 − i
κa

2
a†

1a1 − i
κb

2
b†

1b1, (5)

and |ψ〉 is the wave function of the system, which can be
truncated to two excitation subspaces in the weak driving field
limit (E ,�p � κa, κb). In the truncated space, the steady-state
wave function can be written as the form

|ψ〉 = C00|00〉 + C10|10〉 + C01|01〉
+C20|20〉 + C11|11〉 + C02|02〉, (6)

where |Cab|2 represents the probability of the occupation stay-
ing in state |ab〉. |ab〉 = |a〉 ⊗ |b〉 is a direct product state,
which means that there are a photons of CW mode in RA and
b photons of CCW mode in RB. It is worth mentioning that
Eq. (6) is a hypothesis describing the evolution of the system.
We will further demonstrate the validity of the hypothesis by
the numerical simulations in the next section. Substituting the
non-Hermitian Hamiltonian (5) and wave function (6) into
the Schrödinger equation, a set of dynamical equations of the
occupying probabilities can be obtained as

iĊ00 = EC10 +
√

2�peiθpC02,

iĊ10 = �̃aC10 + gC01 + EC00 +
√

2EC20,

iĊ01 = �̃bC01 + gC10 + EC11,

iĊ20 = 2�̃aC20 +
√

2gC11 +
√

2EC10,

iĊ11 = (�̃a + �̃b)C11 +
√

2g(C20 + C02) + EC01,

iĊ02 = 2�̃bC02 +
√

2gC11 +
√

2�pe−iθpC00, (7)

where �̃a(b) = �a(b) − iκa(b). By setting Ċab = 0, all proba-
bility amplitudes in the steady state can be solved. To obtain
a perfect photon blockade in two resonators, the two-photon
probability amplitudes in two modes are equal to zero. Thus

2g

g2E

E

E

00

10

20

01

11 02

2g

2 p

FIG. 2. Energy-level diagram of the system in the forward input
case, showing the zero-, one-, and two-photon states (horizontal
black lines without arrows) and the corresponding transition path-
ways (color lines with arrows) leading to the destructive interference
for preventing the two-photon occupation.

we consider C20 = 0 and C02 = 0, and further arrive at

�̃aC10 + gC01 + EC00 = 0,

�̃bC01 + gC10 + EC11 = 0,
√

2gC11 +
√

2EC10 = 0,

(�̃a + �̃b)C11 + EC01 = 0,√
2gC11 +

√
2�pe−iθpC00 = 0. (8)

It is worth noting that, in the absence of the parametric ampli-
fication, i.e., �p = 0, no nontrivial solution can be obtained
from Eq. (8). This may imply that the parametric amplifi-
cation plays an essential role in generating the simultaneous
NPB. Utilizing these equations, we can derive the optimal
conditions, which are necessary but insufficient. Specifically,
we use C11 to represent C10,C01, and C00 of the third, fourth,
and fifth equations above, and then introduce C10,C01, and
C00 into the first equation of Eq. (8). Thus, we can obtain
�pe−iθp = − E2

2�̃a+�̃b
, which is equivalent to the following two

equations:

�opt
p = Abs

[
− E2

2�̃a + �̃b

]
, θopt

p = −Arg

[
− E2

2�̃a + �̃b

]
.

(9)

Therefore, we derive the optimal equations required for pho-
ton blockade in the two modes. The conditions in Eq. (9)
ensure that C20 = 0 and C02 = 0 are simultaneously satisfied.
This indicates that the two-photon states |20〉 and |02〉 can
be simultaneously eliminated due to the quantum destructive
interference between different transition pathways. Specifi-
cally, as shown in Fig. 2, there are three excitation paths
to access the two-photon state |20〉: one direct excitation

in Fig. 2(a) |10〉
√

2E−−→ |20〉, and two indirect excitations in

Figs. 2(b) |10〉 g−→ |01〉 E−→ |11〉
√

2g−−→ |20〉 and 2(c) |00〉
√

2�p−−−→
|02〉

√
2g−−→ |11〉

√
2g−−→ |20〉. Likewise, there are one direct exci-

tation and two indirect excitations to reach the two-photon

state |02〉: [Fig. 2(a)] |00〉
√

2�p−−−→ |02〉, [Fig. 2(b)] |10〉 g−→
|01〉 E−→ |11〉

√
2g−−→ |02〉, and [Fig. 2(c)] |10〉

√
2E−−→ |20〉

√
2g−−→
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|11〉
√

2g−−→ |02〉. As analytically calculated above, C20 = 0 and
C02 = 0 guarantee strong simultaneous photon blockade in
two modes under the optimal parametric amplification �

opt
p

and phase θ
opt
p since the two-photon states can be completely

inhibited through the destructive interference.
Next we derive the optimal expressions for driving detun-

ings �a and �b based on the optimal conditions in Eq. (9) and
further give the analytical expressions for second-order cor-
relation functions. With the condition C00 � 1 	 C10,C01 	
C11,C20,C02, and neglecting the terms of C20 and C11 of the
second and third equations in Eq. (7), single excitation and
two excitation coefficients in the steady state can be solved as

C10 = �̃bE

g2 − �̃a�̃b
,

C01 = −gE

g2 − �̃a�̃b
,

C20 = �̃2
b(�̃a + �̃b)E2 + g2(g2 − �̃a�̃b)�pe−iθp

Z
,

C11 =
√

2g

Z
[�̃a(�̃a�̃b − g2)�pe−iθp − �̃b(�̃a + �̃b)E2],

C02 = 1

Z
{(�̃a + �̃b)g2E2 − (g2 − �̃a�̃b)

× [g2 − �̃a(�̃a + �̃b)]�pe−iθp}, (10)

where Z = √
2(�̃a + �̃b)(g2 − �̃a�̃b)2. Hence the statistical

characteristic of two-photon modes can be analytically ex-
pressed via the steady-state probability amplitudes as

g(2)
aζ

(0) = 2|C20|2
(|C10|2 + 2|C20|2 + |C11|2)2

≈ 2|C20|2
|C10|4 ,

g(2)
bζ

(0) = 2|C02|2
(|C01|2 + 2|C02|2 + |C11|2)2

≈ 2|C02|2
|C01|4 . (11)

Then, the realization of g(2)
aζ

(0) −→ 0 and and g(2)
bζ

(0) −→ 0
requires C20 = 0 and C02 = 0, respectively. Introducing the
optimal �

opt
p and θ

opt
p of Eq. (9), one can obtain the optimal

detuning expression for the strong blockade in mode a1 under
the condition of �a,�b 	 κa, κb,

(�a + �b)(2�a + �b)�2
b − g2(g2 − �a�b) = 0. (12)

In a similar manner, we set C02 = 0 and introduce �
opt
p and

θ
opt
p . Then we obtain the optimal condition for strong blockade

in mode b1

(�a + �b)(2�a + �b)g2 − (g2 − �a�b)

× [g2 − �a(�a + �b)] = 0. (13)

It is worth pointing out that the optimal detunings are re-
quired for C20 = 0 and C02 = 0. For a fixed g,�opt

a and
�

opt
b in strong photon antibunching for a1 and b1 can be

obtained from Eqs. (12) and (13). However, the solutions
are too cumbersome to be shown here. In other words, the
strong photon antibunching can be simultaneously achieved
in two resonators under the optimal parameter condition
(�opt

p , θ
opt
p ,�

opt
a ,�

opt
b ). In the following section, we discuss

FIG. 3. Second-order correlation function on a logarithmic scale
log10[g(2)

o (0)] as a function of �a/κ and �b/κ for the forward input
cases (a) and (b), and the backward input cases (c) and (d). In the unit
of κ , we take g = 10κ and E = 0.1κ . �p and θp are taken according
to Eq. (9).

the effect of different parameters on simultaneous NPB when
the driving field is from distinct port inputs.

IV. SIMULTANEOUS NPB IN TWO RESONATORS

In this section, we demonstrate how the simultaneous NPB
in two modes are realized when the input of the driving field
converts from port 1 to port 2, implying that the parametric
amplification changes from presence to absence. The photon
statistics are characterized by the correlations as given in
Eq. (4), which can be achieved by numerically solving the
master equation (3) utilizing the PYTHON package QUTIP [70].

To check the validity of the above analytical derivation,
we plot the steady-state logarithmic equal-time second-order
correlation function log10g(2)

a1
(0) and log10g(2)

b1
(0) as a function

of �a/κ and �b/κ in Figs. 3(a) and 3(b) for the case of input
from port 1, respectively. In the unit of κ , we take g = 10κ and
E = 0.1κ . It can be observed that under the optimal detuning
condition given by Eqs. (12) and (13), the simultaneous strong
photon blockade for two resonators appears in the blue areas.
The white and cyan dashed curves correspond to the two
solutions according to Eq. (12), and the black dashed curves
represent the two solutions according to Eq. (13). We find that
a part of the white and cyan curves occur in the same areas
as the black curves, implying the simultaneous strong PB.
When the driving field is input from port 2 in which the two-
photon driving applied to the RB is absent, log10g(2)

a2
(0) and

log10g(2)
b2

(0) as a function of �a/κ and �b/κ are respectively
plotted in Figs. 3(c) and 3(d). It can be seen that log10g(2)

a2
(0) >

0 and log10g(2)
b2

(0) > 0 in almost the entire parameter regions.
That is to say, when the driving field is input from different
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FIG. 4. Second-order correlation function on a logarithmic scale
log10[g(2)

a1
(0)] and log10[g(2)

b1
(0)] as a function of �a/κ in (a) with

�b/κ = 10 and in (b) with �b/κ = −10. log10[Pjk] is plotted in
(c) with �b/κ = 10 and in (d) with �b/κ = −10. The other param-
eters are the same as given in Fig. 3.

ports 1 or 2, the directional parametric amplification holds a
significant responsibility for the simultaneous NPB.

To make a clearer illustration, we depict the second-
order correlation functions log10g(2)

a1
(0) and log10g(2)

b1
(0) as a

function of �a/κ for �b = 10κ in Fig. 4(a) and for �b =
−10κ in Fig. 4(b). For input from distinct ports, resulting in
the presence or absence of the parametric amplification, the
correlation functions for modes a and b are simultaneously
nonreciprocal [log10g(2)

a2
(0) = 0 and log10g(2)

b2
(0) = 0, which

are not shown here]. It is inferred that the lack of �p leads
to the absence of perfect destructive interference among the
transition paths. When the optimal parameter conditions �

opt
p

and θ
opt
p are taken according to Eq. (9), we observe that the

two optical modes show a simultaneous strong antibunch-
ing effect at optimal detuning �a/κ = −20 in Fig. 4(a).
In addition, we find that there is another optimal detuning
�a/κ ≈ 0 for a strong antibunching effect in the CW mode
a1. In Fig. 4(b), the optimal detunings locate at �a/κ =
0, 20 due to the variation of �b/κ , which is required by
the optimal condition based on Eqs. (12) and (13). Further-
more, the state occupations Pjk = |〈 jk|ψ〉|2 ( j, k = 0, 1, 2)
are plotted in Fig. 4(c) for �b/κ = 10 and in Fig. 4(d) for
�b/κ = −10. It is seen that �a/κ = −20 in Fig. 4(c) and
�a/κ = 20 in Fig. 4(d) are the dips of states |20〉 and |02〉,
which accounts for �a/κ = −20 in Fig. 4(a) and �a/κ = 20
in Fig. 4(b) are the optimal detunings for the photon anti-
bunching. In addition, the curve trends of P20 and P02 are the
same as those of log10g(2)

a1
(0) and log10g(2)

b1
(0), respectively.

This demonstrates that the generated strong photon antibunch-
ing effect originates from quantum destructive interference
between different transition paths to reach the states |20〉
and |02〉.

To further investigate the anticorrelation effect between
photons and photons, in Fig. 5, we plot the second-order

FIG. 5. Cross-correlation functions log10g(2)
a1b1

(0) (a) and

log10g(2)
a2b2

(0) (b) as a function of �a/κ and �b/κ under the

condition of Eq. (9). (c) log10g(2)
a1b1

(0) as a function of �p/κ and
θp/π when �a/κ = 10 and �b = −�a/3 are taken. The other
parameters are the same as given in Fig. 3.

cross-correlation function g(2)
aζ bζ

(0), which is defined as

g(2)
aζ bζ

(0) = 〈a†
ζ b†

ζ bζ aζ 〉
〈a†

ζ aζ 〉〈b†
ζ bζ 〉

= Tr(ρssa
†
ζ b†

ζ bζ aζ )

[Tr(ρssa
†
ζ aζ )][Tr(ρssb

†
ζ bζ )]

.

(14)

g(2)
aζ bζ

(0) < 1 indicates that one photon in mode a and one
photon in mode b cannot exist simultaneously, which is called
the anticorrelation of the photon and photon. On the contrary,
g(2)

aζ bζ
(0) > 1 implies that the photon in mode a and photon

in mode b tend to bunch together. In Figs. 5(a) and 5(b),
log10g(2)

a1b1
(0) and log10g(2)

a2b2
(0) are plotted under the condition

of Eq. (9), respectively. It can be found that the cross-
correlation functions exhibit a strong nonreciprocal feature,
where log10g(2)

a1b1
(0) < 0 and log10g(2)

a2b2
(0) > 0 occur in the

same parameter area. Furthermore, we find that the parameter
region of log10g(2)

a1b1
(0) < 0 is the region of log10g(2)

a1
(0) >

0 and log10g(2)
b1

(0) > 0, which demonstrates that the cross
correlation between the modes exhibits strong antibunching
while there is bunching in modes a1 and b1. In contrast,
the parameter region of log10g(2)

a1b1
(0) > 0 is the region of

log10g(2)
a1

(0) < 0 and log10g(2)
b1

(0) < 0, which shows that the
cross correlation between the modes exhibits bunching while
there is strong antibunching in modes a1 and b1. In Fig. 5(c),
we investigate the influence of �p and θp on log10g(2)

a1b1
(0). The

results show that the absence of the parametric amplification
implies no anticorrelation effect under the current parameter
condition. Additionally, a stronger antibunching effect ap-
pears around �p/κ = 2 × 10−3 and θp = nπ (n being even),
corresponding to the cross-correlation function value of
log10g(2)

a1b1
(0) ≈ 10−3.
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FIG. 6. Second-order correlation function on a logarithmic scale
log10[g(2)

o (0)] as a function of �a/κ and g/κ for the forward input
cases (a) and (b), and the backward input cases (c) and (d). In all the
plots, �b = −�a/3 is used. The other parameters are the same as
given in Fig. 3.

Next, we give the optimal parameter condition for simul-
taneous strong photon blockade from another perspective.
Based on the third equation in Eq. (10), we directly set C20 =
0 and introduce the optimal �p and θp. Thus we obtain

(2�̃a + �̃b)(�̃a + �̃b)�̃2
b − g2(g2 − �̃a�̃b) = 0. (15)

By decomposing both the real and imaginary parts equal to
zero, we can obtain the solutions of the above equation

�a = ± 3
2

√
2g2 − κ2, �b = − 1

3�a. (16)

The conditions in Eq. (16) are also valid for C02 =
0. In the following discussion, we validate the consis-
tency of analytical solution and numerical simulation.
Figures 6(a) and 6(b) show the equal-time second-order
correlation function log10[g(2)

a1
(0)] and log10[g(2)

b1
(0)] as a func-

tion of the detuning �a/κ and coupling g/κ , respectively.
The white dashed lines denote �a = ±3/2

√
2g2 − κ2 occur-

ring in the areas of strong photon antibunching, which proves
that the analytical optimal condition in Eq. (16) is in great
agreement with the numerical results. As expected, when �p

is absent due to the input from port 2, there is no photon
blockade phenomenon in two modes, as shown in Figs. 6(c)
and 6(d), which shows a good nonreciprocity for the two
modes.

To clearly demonstrate the superiority of Eq. (16),
log10[g(2)

o (0)] and log10[Pjk] are plotted as a function of �a/κ

in Figs. 7(a) to 7(c) and Figs. 7(d) to 7(f), respectively. Here
�b = −�a/3 is taken in Figs. 7(a) and 7(d), �b = −�a/2
is taken Figs. 7(b) and 7(e), and �b = −�a/4 is taken in
Figs. 7(c) and 7(f). Compared with the results in Figs. 7(b)
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FIG. 7. (a)–(c) Second-order correlation function on a logarith-
mic scale log10[g(2)

a1
(0)] and log10[g(2)

b1
(0)], and (d)–(f) log10[Pjk] as a

function of �a/κ . �b/κ = −�a/3, �b = −�a/2, and �b = −�a/4
are taken in (a) and (d), (b) and (e), (c) and (f), respectively. The other
parameters are the same as given in Fig. 3.

and 7(c), log10[g(2)
o (0)] is largely decreased by approximately

one order of magnitude with �b = −�a/3. In addition,
the optimal detunings are determined by the first equa-
tion in Eq. (16). Moreover, we find that with �b = −�a/4,
there exists log10[g(2)

b1
(0)] < log10[g(2)

a1
(0)], which means that

a stronger antibunching effect for mode b can be achieved by
tuning the parameters.

To quantitatively measure the NPB of two modes, we de-
fine the nonreciprocal ratio for mode o as

Io = −10log10

⎡
⎣g(2)

o,�p �=0(0)

g(2)
o,�p=0(0)

⎤
⎦. (17)

It provides the ratio of photon correlation functions from
two distinct input ends, which means that the ratio of pho-
ton correlation functions under the presence and absence of
the parametric amplification �p. The utilization of the ratio
stems from the characteristics of photon statistics under the
optimal parameters discussed above, i.e., g(2)

o (0) � 1 with
�

opt
p and g(2)

o (0) ∼ 1 without �p. From Fig. 8(a), we see
that a larger coupling strength g generates a better nonre-
ciprocity for both modes, where we use Io,opt to represent the
nonreciprocal ratio under the optimal parameters. This is
because that a large g involved in key excitation paths can
enhance the quantum destructive interference, leading to a
smaller g(2)

a1
(0) and g(2)

b1
(0). However, this is not sufficient to

demonstrate the nonreciprocity, to do this, we display the
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FIG. 8. The nonreciprocal ratio Io,opt (o = a, b) as a function of
(a) coupling strength g/κ and (b) driving field amplitude E/κ . The
inset in (a) plots the second-order correlation functions g(2)

o (0) as a
function of g/κ . �a and �b are taken according to Eq. (16). The
other parameters are the same as given in Fig. 3.

dependence of photon correlation functions g(2)
o (0) on g under

the same conditions. When �
opt
p and θ

opt
p are utilized, g(2)

a1
(0)

and g(2)
b1

(0) are nearly zero over the entire range of g/κ . When

�p is absent, g(2)
a1

(0) and g(2)
b1

(0) remain one across the whole
range of g/κ . This shows that the NPB in two optical modes
emerges for a wide range of g/κ .

In Fig. 8(b), it can be found that the optimal nonreciprocity
Io,opt is linearly dependent on the logarithm of the signal-field
amplitude E . Smaller signal-field amplitude generates a better
nonreciprocity for photon blockade in two modes. The reason
is that a large driving strength notably increases the probabil-
ity occupation of the two-photon states |20〉 and |02〉, which
weakens the photon antibunching. Under the parameters we
propose, the nonreciprocal ratio of the two resonators achieves
approximately 40 dB, indicating a good nonreciprocal
blockade effect.

V. CONCLUSION

In conclusion, we investigated the simultaneously strong
NPB in two microring resonators in an all-optical system,
without the need for any rotating components. This is ac-
complished by unidirectionally parametrically pumping a
χ (2)-nonlinear resonator using a classical coherent field. The
counterclockwise mode in the resonator undergoes paramet-
ric amplification when a forward signal field is introduced
into another resonator, while the amplification process does
not occur for a backward signal field. As a result, distinct
quantum interference effects emerge among different exci-
tation paths for the two optical modes, which serves as the
fundamental reason behind the simultaneous NPB. With the
parametric amplification, we provide the optimal parameter
conditions for simultaneously achieving strong PB of the
two modes, which exhibits a good agreement with numerical
results. Based on the analytical solutions, we find that the
simultaneous NPB is controllable and enhanced by adjusting
the driving field amplitude. Our work presents a promising
approach to develop simultaneous nonreciprocal single-
photon devices in multiple modes without any moving parts,
making it easily implementable in experimental platforms,
which holds potential applications in many-body quantum
information processing.
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