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Quantum beam splitter as a controller of higher-order quantum coherence
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We propose a quantum beam splitter (QBS) with tunable reflection and transmission coefficients. More
importantly, our device based on a Hermitian parity-time (PT ) symmetric system enables the generation
and manipulation of asymmetric quantum coherence of the output photons. For the interference of two weak
coherent-state inputs, our QBS can produce antibunched photons from one output port and bunched photons
from the other, showcasing high parity asymmetry and strong coherence control capabilities. Beyond the
Hong-Ou-Mandel effect, perfect photon blockade with vanishing g(2)(0) is achievable in two-photon interference.
These striking effects of the QBS fundamentally arise from the parity-symmetry-breaking interaction and the
quantum interference between the photon scattering channels. Our results could inspire novel applications and
the development of innovative photonic devices for the manipulation of weak quantum light.
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I. INTRODUCTION

A conventional beam splitter (CBS), which separates input
light and transports its modes into two output ports, consti-
tutes one of the key components in optical interferometers
[1,2]. Following the development of its quantum theory [3–5],
the CBS has found widespread applications such as linear
optical quantum computing [6–8], quantum imaging [9–12],
and quantum sensing [13–15]. Usually the CBS responds
symmetrically to inputs from both sides, and its reflection
and transmission coefficients determined by single-photon
scattering processes remain fixed. Over the last decade, tun-
able polarization-independent beam splitters (BSs) [16], as
well as tunable polarization and frequency BSs [17–20], have
been developed for photonic quantum information processing.
However, the CBS, being a linear optical device, lacks the
capability to alter the statistical properties of the incident
light. To generate photons with nontrivial quantum statistics,
nonlinearity is required [21–28]. Based on media-induced
photon-photon interaction, photon-number-conserving [29]
and nonconserving [30,31] nonlinear BSs have been pro-
posed. The single-atom-based nonlinear BS has also been
employed to manipulate the Hong-Ou-Mandel (HOM) in-
terference [32,33]. Nevertheless, a BS with the capacity to
control asymmetric photon transport and manipulate quantum
coherence has not been fully explored.

In this paper we introduce a quantum beam splitter (QBS)
based on a Hermitian PT -symmetric system [34–36] that
preserves the reciprocity at the single-photon level [37]. How-
ever, the broken parity symmetry results in nonreciprocity
during multiphoton processes. The proposed QBS is designed
to control photon transport and manipulate the quantum
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coherence of output photons. The reflection and transmission
coefficients of the QBS can be finely tuned within a frequency
range constrained by the spontaneous decay rates of the sys-
tem. More importantly, antibunched and bunched photons can
emerge in opposite output ports in a well-controlled manner.
In the interference of two Fock-state photons, the PT sym-
metry of our QBS maintains equal output probabilities at the
two output ports, yet the broken parity symmetry leads to dis-
tinct statistics as characterized by the second-order correlation
function g(2)(τ ). Using state-of-the-art circuit QED technol-
ogy [38–41], our QBS possesses the potential for seamless
chip integration.

Over the past decade, substantial efforts have been ded-
icated to the development of lossless magnetic-field-free
nonreciprocal devices [42–48]. Prior works have primarily
focused on the nonreciprocal properties in the first-order co-
herence of photons, i.e., the nonreciprocal reflection and trans-
mission coefficients [49–52]. Recently, Doppler-effect-based
nonreciprocal second-order coherence of output photons has
started to receive attention [53–57], where photons input from
opposite directions experience different transition frequencies
of the scatters [58–60]. In contrast, both asymmetric single-
photon transport and asymmetric multiphoton correlations
in our QBS arise solely from the symmetry-breaking phase
of atom-atom interaction and quantum interference between
photon scattering channels [61–63]. This path-interference
mechanism can also be extended to manipulate the higher-
order coherence of photons. These findings have the potential
to stimulate novel experiments and the creation of innovative
nonreciprocal quantum devices.

The article is organized as follows. In Sec. II we present
the theoretical model of our proposed QBS. In Sec. III we
give the analytical results of the reflection and transmission
coefficients of the QBS. The controllable asymmetric second-
order coherence of output photons is demonstrated in Sec. IV.
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FIG. 1. (a) The quantum beam splitter comprises a one-
dimensional waveguide and two interacting atoms at a distance d .
The two-level atoms have a ground state |g〉 and an excited state
|e〉. When the atom-atom coupling phase φ is not integer mul-
tiples of π , both the parity and time-reversal symmetries of the
system are broken. This leads to distinct statistical characteristics
of the output photons from the left and right ports, representing a
substantial departure from the behavior of the conventional beam
splitters. (b) Quantum interference between two single-photon scat-
tering channels, where |±〉 = (|eg〉 ± |ge〉)/

√
2 are the positive and

negative parity single-excitation states. The interference between the
red-solid and dashed yellow single-photon scattering channels leads
to a phase difference in the forward and backward transmission co-
efficients. (c) Quantum interference between two double-excitation
channels. Similar interference also occurs between the de-excitation
channels (not shown). The interference between the red-solid and
dashed yellow two-photon scattering channels results in asymmetric
correlation functions for the two output ports.

We reveal the two-photon interference beyond the traditional
HOM effect in Sec. V. The implementation of our QBS and
conclusions are summarized in Sec. VI. The symmetry anal-
ysis of our system and the detailed multiphoton scattering
approach used to evaluate the relevant quantities are provided
in the Appendixes.

II. MODEL

Our QBS consists of a bidirectional waveguide and two
interacting two-level atoms as depicted in Fig. 1(a). In a ro-
tating frame with respect to the atomic transition frequency
ω0, the Hamiltonian of the whole system can be decomposed
into three parts Ĥ = Ĥa + Ĥp + Ĥint (see Appendix A). There
exists a direct interaction between the two atoms,

Ĥa = geiφσ̂
†
1 σ̂2 + ge−iφσ̂

†
2 σ̂1, (1)

with atomic ladder operator σ̂ = |g〉〈e| and tunable coupling
strength g and phase φ. The Hamiltonian of the wave-
guide photons is given by Ĥp = ∫

k(b̂†
k,r b̂k,r − b̂†

k,l b̂k,l ) dk

with bosonic operators b̂k,r and b̂k,l for right- and left-moving
modes with momentum k [64–66]. The atom-photon inter-
action Ĥint = ∑

i=1,2 η
∫

dkσ̂i[b̂
†
k,re−i(k0+k)xi + b̂†

k,l e
i(k0−k)xi ] +

H.c. is of Jaynes-Cummings type, where η is the interaction

strength, the wave number k0 corresponds to ω0, and the
positions of the two atoms are x1 = −d/2 and x2 = d/2.

The nonvanishing phase φ in interaction Ĥa breaks both the
parity and time-reversal symmetries of this Hermitian system
while preserving its PT symmetry (see Appendix A). This
symmetry-breaking atom-atom interaction can be achieved
in a circuit-QED system by modulating the qubit frequency
and qubit-qubit coupling coefficient, as demonstrated in
Appendix F. Phase-dependent atom-atom coupling has also
been utilized to achieve nonreciprocal single-photon trans-
port [67,68] and nonreciprocal single-photon blockade [69].
However, the PT symmetry of our BS maintains the reci-
procity of single-photon reflectance and transmittance [37].
The broken parity symmetry of the system, combined with the
later revealed quantum interference, gives rise to asymmetric
multiphoton scattering amplitudes and distinctive statistical
properties of the output photons.

When coherent inputs (i.e., two monochromatic laser driv-
ings) are applied to both sides, the reflectance, transmittance,
and multitime correlations of output photons can be obtained
from the master equation together with the input-output for-
malism (see Appendix B). Under the Markov limit [70], the
master equation for the density matrix ρa of the atoms is
given by

∂tρa = −i[Ĥ ′
a + Ĥdrive, ρa] +

∑
i j


i j (2σ̂iρaσ̂
†
j − {ρ, σ̂

†
j σ̂i}).

(2)

The waveguide photons induce the spontaneous decay of
atoms and modify the atomic coupling geiφ to geiφ + 
 sin θ

in Hamiltonian Ĥ ′
a (see Appendix B), where 
 = 2π |η|2, θ =

k0d , and 
i j = 
 cos[k0(xi − x j )]. The coherent drivings are
described by Ĥdrive = ∑

i[�r σ̂
†
i ei(k0+p)xi + �l σ̂

†
i e−i(k0−p)xi +

H.c.] with pumping amplitudes �r and �l for modes with
wave number k0 + p (right-moving) and −(k0 − p) (left-
moving), respectively. In the weak-driving limit, the master
equation can be related to few-photon scattering problems.
Consequently, the characteristics of the output photons can
be analytically assessed using the scattering method [70–72],
with the scattering matrix determined by an effective non-
Hermitian Hamiltonian Ĥeff = Ĥ ′

a − i
∑

i j 
i j σ̂
†
j σ̂i.

To reveal the interference between the scattering chan-
nels, we introduce single-excitation states |±〉 = (|eg〉 ±
|ge〉)/

√
2 with positive and negative parities, respectively.

Utilizing ladder operators σ̂± = (σ̂1 ± σ̂2)/
√

2, the effective
non-Hermitian Hamiltonian is reexpressed as

Ĥeff = −i(α+σ̂
†
+σ̂+ + α−σ̂

†
−σ̂−) − iβ(σ̂ †

+σ̂− − σ̂
†
−σ̂+), (3)

with α± = 
(1 ± eiθ ) ± igcos φ and β = g sin φ. The dissi-
pation terms are present only in the diagonal elements (see
Appendix C), causing photon emission from states |±〉. The
off-diagonal elements contain the parity-breaking term (odd
power of sin φ), which leads to coherent transitions between
states |±〉 and the interference of scattering channels, as de-
picted in Figs. 1(b) and 1(c). The phase φ can be used to
control these quantum interference processes, thereby manip-
ulating the transport and statistical properties of photons as
shown in the following.
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III. REFLECTION AND TRANSMISSION COEFFICIENTS

The CBS is fully characterized by its reflection and
transmission coefficients. These coefficients of our QBS
are determined by single-photon scattering processes and
can be measured via the output signal resulting from a
weak continuous-wave coherent pump in experiments. For
instance, the reflection and transmission coefficients for
the right-moving input with momentum k0 + p can be
obtained through the relations rr→l (p) = 〈b̂out,l (t )〉/〈b̂in,r (t )〉
and tr→r (p) = 〈b̂out,r (t )〉/〈b̂in,r (t )〉 in the steady state.
The input and output field operators are defined as
b̂in,λ(t ) = ∫

dke−iλk(t−ti )b̂k,λ(ti )/
√

2π and b̂out, λ (t ) = ∫
dke−iλk(t−ti )b̂k,λ(t f )/

√
2π [71] (also see Appendix B), where

ti � t + λxi � t f . We note that when λ is not subscripted,
λ = ±1 corresponding to right- and left-moving modes,
respectively.

Through symmetry analysis, some crucial properties of our
BS can be deduced even without performing detailed calcula-
tions (see Appendix A). The Hamiltonian of our BS remains
invariant under the P̂T̂ transformation. Consequently, the re-
flection coefficients for the input modes b̂−p,l and b̂p,r must be
equal [37], i.e., rl→r (−p) = rr→l (p). Even though the parity

symmetry of our system is broken, the Hamiltonian under the
space inversion transform simplifies as P̂−1Ĥ (φ)P̂ = Ĥ (−φ).
As a result, the transmission coefficients for the two modes
b̂p,r and b̂−p,l are not equal; nevertheless, they are connected
by the relation tr→r (p, φ) = tl→l (−p,−φ). Similar relations
also apply to multiphoton scattering processes and higher-
order correlation functions.

Using the recently developed multiphoton scattering
method [70–72], we can express the reflection and trans-
mission coefficients in terms of the correlation functions of
atomic operators (see Appendix C)

rr→l (p) = −

∑

i j

eik0(xi+x j )〈gg|σ̂iM̂σ̂
†
j |gg〉, (4)

tr→r (p) = 1 − 

∑

i j

e−ik0(xi−x j )〈gg|σ̂iM̂σ̂
†
j |gg〉, (5)

with M̂=(iĤeff −ip)−1. From the matrix elements of the ef-
fective Hamiltonian Ĥeff in Eq. (C32), we see that the states
|±〉 determine the actual atomic decaying (photon emission)
channels. We now reexpress the scattering coefficients with
operators σ̂± and derive their analytical results

rr→l (p) = −2
〈gg|
(

σ̂+ cos
θ

2
− iσ̂− sin

θ

2

)
M̂

(
σ̂

†
+ cos

θ

2
− iσ̂ †

− sin
θ

2

)
|gg〉, (6)

= −


[
2

(
M22 cos2 θ

2
−M33 sin2 θ

2

)
−i(M23+M32) sin θ

]
= 2i



 sin θ + p cos θ + gcos φ

D(p)
, (7)

tr→r (p) = 1 − 2
〈gg|
(

σ̂+ cos
θ

2
+ iσ̂− sin

θ

2

)
M̂

(
σ̂

†
+ cos

θ

2
− iσ̂ †

− sin
θ

2

)
|gg〉, (8)

= 1 − 


[
2

(
M22 cos2 θ

2
+ M33 sin2 θ

2

)
− i(M23 − M32) sin θ

]
= g2 − p2 + 2g
e−iφ sin θ

D(p)
, (9)

where D(p) = (α+ − ip)(α− − ip) + β2 and the elements
Mi j are given in Eq. (C39). The other two scattering coeffi-
cients can be obtained similarly,

rl→r (−p) = rr→l (p), tl→l (−p) = g2 − p2 + 2g
eiφ sin θ

D(p)
.

(10)

The reflection and transmission coefficients satisfy two basic
identities

|rr→l (p)|2 + |tr→r (p)|2 = |rl→r (−p)|2 + |tl→l (−p)|2 = 1
(11)

and

r∗
r→l (p)tl→l (−p) + rl→r (−p)t∗

r→r (p) = 0 (12)

for lossless BSs due to the energy conservation law [73,74].
The analytical results above help us visualize the

quantum interference in single-photon scattering processes.
Equations (6) and (8) show that there exist four single-
photon scattering channels: (1) |gg〉 → |+〉 → |gg〉; (2)
|gg〉 → |−〉 → |gg〉; (3) |gg〉 → |+〉 → |−〉 → |gg〉; and (4)
|gg〉 → |−〉 → |+〉 → |gg〉. Due to M23 = −M32, a perfect

destructive interference occurs between path (3) and path (4)
as shown in Fig. 1(b). This results in the complete cancella-
tion of the parity-symmetry-breaking terms in the reflection
coefficients. Consequently, the single-photon reflection pro-
cesses are reciprocal [see Fig. 2(a)], as ensured by the PT

(a) (b)

FIG. 2. The reflectance R(θ, φ) ≡ |rr→l (p)|2 (a) and transmit-
tance T (θ, φ) ≡ |tr→r (p)|2 (b) as functions of θ = k0d and φ. We
consider the resonant input case with p = 0. In our numerical sim-
ulation, we have taken the spontaneous decay rate as the unit of the
frequency (
 = 1) and set the coupling strength as g = 
.
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FIG. 3. The output probability (a) and g(2)(0) function (b) of the photons from the left port for the interference of two resonant coherent-state
inputs as functions of atomic distance θ = k0d and phase φ. (c) Behavior of the g(2)(0) function for specific θ values. The output probability
and statistical characteristics for the right port can be obtained by substituting φ → −φ based on those of the left port.

symmetry. In contrast, a perfect constructive interference be-
tween these two paths arises in the transmission processes
resulting in asymmetric coefficients tr→r (p) 	= tl→l (−p).
Nevertheless, the reciprocity of the transmittance is pre-
served in adherence to the probability conservation law, i.e.,
|tr→r (p)|2 = |tl→l (−p)|2 [see Fig. 2(b)].

We now show that the symmetry-breaking phase φ can
be used to manipulate the output probabilities of our QBS.
Although the two reflection coefficients are identical, the
two complex transmission coefficients have the same mag-
nitude but different phases. Therefore, when considering the
interference of the QBS with two identical weak coherent-
state inputs, the output probability at its two ends Pλ =
〈b̂†

out,λ(t )b̂out,λ(t )〉/[〈b̂†
in,l (t )b̂in,l (t )〉 + 〈b̂†

in,r (t )b̂in,r (t )〉] could
be significantly different, yet they are connected by the
relationship Pl (p, φ) = Pr (p,−φ). These two output proba-
bilities can be expressed analytically as Pl (p) = |rr→l (p) +
tl→l (−p)|2 and Pr (p) = |rl→r (−p) + tr→r (p)|2, and they
can be continuously tuned in practical applications. The

probability Pl as a function of atomic distance θ and the phase
φ for resonant inputs with p = 0 is presented in Fig. 3(a).

IV. ASYMMETRIC g(2) FUNCTIONS

Different from the linear CBS, the coupling between light
and atoms in our QBS mediates interactions among the
incident photons, consequently altering their statistical char-
acteristics depicted by the second-order coherence in the
steady state

g(2)
λ (τ ) = 〈b̂†

out,λ(t )b̂†
out,λ(t + τ )b̂out,λ(t + τ )b̂out,λ(t )〉

〈b̂†
out,λ(t )b̂out,λ(t )〉〈b̂†

out,λ(t + τ )b̂out,λ(t + τ )〉 .
(13)

For the interference of two identical weak coherent-state in-
puts, the equal-time correlation of the photons exiting the left
port of our QBS can be characterized by (see Appendix D)

g(2)
l (0) = |ip[1 − 2rr→l (p) − 2tl→l (−p)] + 
[1 + tl→l (−p) − tr→r (p)]|2

|rr→l (p) + tl→l (−p)|4|
 − ip|2 . (14)

The g(2) function of the output photons from the right port
differs from Eq. (14), yet it can be determined using the re-
lation g(2)

r (0, φ) = g(2)
l (0,−φ). The interference between the

two double-excitation paths [depicted in Fig. 1(c)] plays a
key role in the asymmetric two-photon scattering processes,
leading to nonreciprocal g(2)(0) functions.

For the resonant input with p = 0, the correlation func-
tion g(2)(0) ranges from 10−1 to 103 as shown in Fig. 3(b),
corresponding to various output probabilities. Notably inter-
esting regions are demarcated by white dashed circles with
relatively large output probabilities and concurrently small
g(2)(0) 
 1. When θ = nπ with integer n, the g(2)(0) function
is the constant 1 for photons coming out from both the left and
right ports, as depicted in Fig. 3(c). When θ 	= nπ , the g(2)(0)
function can be finely tuned via the phase φ. Super-Poissonian

and sub-Poissonian photons can be obtained simultaneously
from the two respective output ports around φ = 0 for the case
with the atomic distance corresponding to θ = π/8.

A wider range of g(2)(0) can be obtained by adjusting the
atom-photon detuning δ (equivalently, the momentum p) as
shown in Fig. 4. In Fig. 4(a) the correlation function g(2)

l (0)
of photons exiting the left port is depicted against φ and δ

with fixed θ = π/8. For a more detailed illustration, we plot
g(2)

l (0) as a function of δ in Fig. 4(b) for φ = ±0.87π cor-
responding to the two vertical white dashed lines in Fig. 4(a).
To highlight the distinction in the photon statistics between the
outputs from the left and right ports, we plot g(2)

l (0) and g(2)
r (0)

with fixed δ = 0.2
 in Fig. 4(c). This confirms the identity
g(2)

l (0, φ) = g(2)
r (0,−φ) deduced from symmetry analysis. At

φ = −0.87π , the photons from the left port exhibit strong
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FIG. 4. (a) The influence of the detuning δ and phase φ on the
correlation function g(2)

l (0). (b) g(2)
r (0) as a function of detuning δ for

φ = ±0.87π . These two curves correspond to the two vertical white
dashed lines in panel (a). (c) The correlation functions for the left
and right output ports with δ = 0.2
 corresponding to the horizontal
white solid line in panel (a). We will examine the behavior of g(2)(τ )
for the parameters φ = −0.68π and φ = −0.87π indicated by the
two vertical dashed lines in Fig. 5. The atomic distance is set as
θ = π/8.

sub-Poissonian statistics with g(2)
l (0) ≈ 4.3 × 10−4 and out-

put probability Pl ≈ 83%, while those from the right port
display strong super-Poissonian behavior with g(2)

r (0) ≈ 17.9
and output probability Pr ≈ 17% [see Fig. 7(a) below]. This
signifies a difference of more than four orders of magnitude in
g(2)(0) for opposite directions. Unlike the previous approach
utilizing different detuning for left- and right-moving photons
[53], this giant asymmetry in our QBS is solely attributable to
quantum interference effects.

To further examine the quantum coherence of the output
photons, we investigate the g(2)(τ ) functions [74–76]. The
correlation functions of photons from the left and right output
ports are also linked by the relation g(2)

l (τ, φ) = g(2)
r (τ,−φ).

Consequently, g(2)
l (0) and g(2)

r (0) must intersect at φ = 0 and
φ = ±π as shown in Fig. 4(c), and their corresponding g(2)(τ )
functions also overlap completely (not shown). At other
points, the parity symmetry of the g(2)(τ ) functions is broken,
i.e., g(2)

l (τ ) 	= g(2)
r (τ ). For the accidental intersection point of

g(2)(0) [such as φ = −0.68π in Fig. 4(c)], the output photons
from both sides are bunched with g(2)(τ ) < g(2)(0) as shown
in Fig. 5(a). However, g(2)

l (τ ) differs from g(2)
r (τ ) slightly

due to the interference between the de-excitation channels
|ee〉 → |gg〉 (see Appendix D), which are the inverse pro-
cesses of Fig. 1(c). In Fig. 5(b) a more intriguing phenomenon
is observed at φ = −0.87π . The left outgoing sub-Poissionian
photons are antibunched [g(2)

l (τ ) > g(2)
l (0)], while the right

outgoing super-Poissionian photons are bunched [g(2)
r (τ ) <

g(2)
r (0)].

V. HOM INTERFERENCE

The two-photon HOM interference has important appli-
cations in quantum sensing and quantum state engineering.
When two identical photons encounter a balanced 50:50 CBS,
they unfailingly emerge together at the same output port [77].
The HOM effect also manifests in our QBS when Pr = Pl =

FIG. 5. Second-order correlation functions g(2)(τ ) of the output
photons from the left and right ports. Panels (a) and (b) depict the
g(2)(τ ) for the interference of two coherent-state inputs. A double
y-axis plot has been employed in (b). The left and right y axes
correspond to the functions g(2)

l and g(2)
r , respectively. Panels (c) and

(d) showcase the g(2)(τ ) for the Hong-Ou-Mandel interference in-
volving resonant and off-resonant input photons.

1/2. Unlike the scattering of a weak coherent-state input
from one side [70–72], the two-photon interference involving
Fock-state inputs from two ports differs from coherent driving
significantly. The master-equation approach cannot be applied
in this context. We address this case using scattering theory
and show that our QBS unveils intriguing effects beyond the
conventional HOM effect.

For HOM interference of two input photons in the Fock
state b̂†

r (p)b̂†
l (−p)|0〉, the g(2)(0) functions of the output pho-

tons from the two ports are always the same (see Appendix E):

g(2)
l (0) = g(2)

r (0) = 1

2

∣∣∣∣1 − 


(
 − ip)

∣∣∣∣
2

. (15)

This marks a significant difference from the interference
of two coherent-state photons. Specifically, for the resonant
inputs with δ = p = 0, the g2(0) function vanishes as depicted
in Fig. 5(c), showing perfect photon blockade in the output
photons [32]. In the nonresonant case shown in Fig. 5(d),
the photons from opposite ports have the same g(2)(0) value,
but their g(2)(τ ) functions behave differently. The photons
outgoing from the left port display antibunching, whereas
those from the right port exhibit a bunching effect within a
small timescale τ < 
−1. The two photons coexisting at one
of the output ports of a CBS due to the HOM interference
will exhibit a constant g(2)(τ ) = 1/2. This corresponds to the
large-τ limit in our QBS, where the two photons are scattered
independently.

VI. IMPLEMENTATION AND CONCLUSION

The circuit QED system could be a promising platform
to realize the symmetry-breaking atom-atom interaction Ĥa

in Eq. (1) with the continuously adjustable phase φ [78,79].
As illustrated in Fig. 6, two transmon qubits (artificial atoms)
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FIG. 6. Schematic of the experimental implementation. The fre-
quency of qubit 1 is ω0. The frequency ω2 = ω0 + � − A cos �t of
qubit 2 and the qubit-qubit interaction g′ cos(� + φ′) are modulated
by two microwaves. The two qubits are coupled to the waveguide
with strengths η1 and η2.

are coupled to a coplanar waveguide. The typical resonant
transition frequency of the qubits is a few gigahertz, such
as ω0/2π = 4.9 GHz [78]. The detuning � of the two
qubits can be tuned via flux bias or Josephson inductance
[80,81]. A tunable coupler is employed to achieve the di-
rect interaction between the two qubits [82]. The frequency
of qubit 2 and the qubit-qubit coupling are modulated by
two microwaves with identical frequency �/2π = 200 MHz
and tunable phase difference φ′ [82–84]. Under the con-
dition � � A, g′, our proposed model Hamiltonian can
be realized with η1 = η2J1(A/�) = η and g′[J0(A/�)eiφ′ +
J2(A/�)e−iφ′

]/2 ≡ gexp(iφ) (see Appendix F), where Jn(x)
is the nth Bessel function of the first kind and the phase
φ can be tuned on demand. The experimentally accessible
parameters are chosen as g/2π = γ /2π = 3.2 MHz [78].

We introduce an innovative QBS composed of a Hermi-
tian PT -symmetric system. Our QBS enables fine control
of the reflection and transmission coefficients, as well as the
quantum coherence of output photons [85–87]. To achieve
a four-port BS with distinct input and output ports, we can
replace the two-way waveguide with two separate unidirec-
tional waveguides [88,89]. The basic concepts underlying
this study can be extended to multiatom systems, enabling
manipulations of higher-order photon coherence. Our results
could open up new avenues for leveraging asymmetric higher-
order quantum coherence in the development of nonreciprocal
quantum devices [90–94].
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APPENDIX A: SYMMETRY ANALYSIS OF THE SYSTEM

In this Appendix we introduce the model of our system.
The Hamiltonian of our quantum beam splitter contains three
parts Ĥ = Ĥa + Ĥp + Ĥint . The Hamiltonian

Ĥa = ω0(σ̂ †
1 σ̂1 + σ̂

†
2 σ̂2) + geiφσ̂

†
1 σ̂2 + ge−iφσ̂1σ̂

†
2 (A1)

describes the two atoms with direct coupling and σi = |gi〉〈ei|.
The phase φ in the coupling is a tunable parameter. The

Hamiltonian of the waveguide photons is given by

Ĥp =
∫

dk
∑
λ=r,l

ωk,λb̂†
k,λ

b̂k,λ, (A2)

where the subscripts λ = r, l denote the left- and right-
propagating modes, respectively. The frequencies of the
waveguide modes can be expanded around atomic transition
frequency as ωk,λ ≈ ω0 + λvgk = vg(k0 + λk), where vg =
ω0/k0 is the group velocity of the photons at the center wave
number k0. For convenience, we take vg = 1 in the following.
The coupling between the atoms and photons follows the
Jaynes-Cumming form

Ĥint =
∑
i=1,2

η

∫
dkσ̂i

[
b̂†

k,re−i(k0+k)xi + b̂†
k,l e

i(k0−k)xi
] + H.c.,

(A3)

where η denotes the coupling strength. In the following, we
will let x1 = −d/2, x2 = d/2, and d is the separation of the
two atoms, and we perform the calculation in the rotating
frame with respect to ω0(σ̂ †

1 σ̂1 + σ̂
†
2 σ̂2 + ∫

dk
∑

λ b̂†
k,λ

b̂k,λ).
The free Hamiltonian of the atoms and photons changes to

Ĥ0 = Ĥa + Ĥp

= geiφσ̂
†
1 σ̂2 + ge−iφσ̂

†
2 σ̂1 +

∫
dk

∑
λ

λkb̂†
k,λ

b̂k,λ. (A4)

In this section we give the symmetry analysis of the system
and reveal the symmetry relations of the photon scattering
amplitudes. Under the space inversion operation P̂, then we
have the following relations for the photonic operators:

P̂−1b̂k,l P̂ = b̂−k,r, P̂−1b̂k,rP̂ = b̂−k,l . (A5)

We also need to perform the transformation for the coor-
dinates x → −x, and interchange the indices 1 ↔ 2 of the
atoms. We can verify that apart from the direct coupling term
between the two atoms, all the other terms remain invariant
under space inversion. Consequently, the overall system’s par-
ity symmetry is broken, and we obtain the following relation:

P̂−1Ĥ (φ)P̂ = Ĥ (−φ). (A6)

Similarly, under the time-reversal operation T̂ , we have

T̂−1b̂k,l T̂ = b̂−k,r, T̂−1b̂k,rT̂ = b̂−k,l . (A7)

We also need to take the complex conjugate of the
Hamiltonian, i.e., Ĥ → Ĥ∗. We can confirm that the direct
atomic coupling term also breaks the time-reversal symmetry,

T̂−1Ĥ (φ)T̂ = Ĥ (−φ). (A8)

Although both parity and time-reversal symmetries have
been broken, the parity-time (PT ) symmetry of the system is
preserved:

T̂−1P̂−1Ĥ (φ)P̂T̂ = Ĥ (φ). (A9)
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Through symmetry analysis, we can directly derive useful
scattering identities, such as

Ar→l (−p, k) = 〈gg|〈0|b̂−p,l Ŝb̂†
k,r |0〉|gg〉

= 〈gg|〈0|b̂k,r Ŝb̂†
−p,l |0〉|gg〉 = Al→r (k,−p),

(A10)

where |0〉 is the vacuum state of the photons and Ŝ =
exp(iĤ0t f ) exp(iĤT ) exp(−iĤ0ti ) is the scattering matrix (see
Sec. C 4). Energy conservation law brings a delta function
δ(k − p) in these two scattering amplitudes. Hence, at the
single-photon level, the reflection amplitudes for right- and
left-moving incident photons are the same. Consequently, the
transmission probabilities for these two situations are also the
same. Namely, the single-photon scattering process is recip-
rocal. However, this does not hold for multiphoton scattering.
For instance, the PT symmetry gives the following equality
for the two-photon reflection amplitudes:

〈gg|〈0|b̂−p2,l b̂−p1,l Ŝb̂†
k2,r

b̂†
k1,r

|0〉|gg〉
= 〈gg|〈0|b̂k2,r b̂k1,r Ŝb̂†

−p2,l
b†

−p1,l
|0〉|gg〉 (A11)

along with the energy conservation condition δ(k1 + k2 −
p1 − p2). However, this condition does not guarantee that
the two-photon reflection process is reciprocal, i.e., {k1, k2} =
{p1, p2}. This nonreciprocity is illustrated not only in the
reflection probability, but also in the higher-order correlation
functions.

Using the parity inversion relations (A5) and (A6), we can
also obtain very useful relations for our system, such as

〈gg|〈0|b̂k f ,λ f Ŝ(φ)b̂†
ki,λi

|0〉|gg〉
= 〈gg|〈0|P̂−1b̂k f ,λ f P̂Ŝ(−φ)P̂−1b̂†

ki,λi
P̂|0〉|gg〉. (A12)

This identity can be readily extended to multiphoton scat-
tering scenarios. Such scattering relations can significantly
simplify calculations. For instance, the transmission ampli-
tude for a single incident right-moving photon can be obtained
by substituting φ with −φ in the transmission amplitude for a
left-moving incident photon:

〈gg|〈0|b̂k,r Ŝ(φ)b̂†
p,r |0〉|gg〉 = 〈gg|〈0|b̂−k,l Ŝ(−φ)b̂†

−p,l |0〉|gg〉.

APPENDIX B: INPUT-OUTPUT RELATIONS AND
QUANTUM REGRESSION THEOREM

In this Appendix we introduce the theoretical tools em-
ployed in the main text and outline a numerical approach for
calculating photonic correlation functions.

1. Input-output relation

The Heisenberg equations for the ladder operators of atoms
and photons are given by

d

dt
b̂k,λ(t ) = −iλkb̂k,λ(t ) − iη

∑
i

σ̂i(t )e−i(λk0+k)xi , (B1)

d

dt
σ̂i(t ) = i[Ĥa, σ̂i(t )] − iη

∑
λ

∫
dkb̂k,λ(t )ei(λk0+k)xi . (B2)

To derive the standard input-output relations, we give the
formal solution of b̂k,λ(t ) with both initial conditions and final
output conditions

b̂k,λ(t ) = b̂k,λ(ti )e
−iλk(t−ti ) − iη

∑
i

∫ t

ti

dt ′σ̂i(t
′)

× e−iλk(t−t ′ )e−i(λk0+k)xi , (B3)

b̂k,λ(t ) = b̂k,λ(t f )e−iλk(t−t f ) + iη
∑

i

∫ t f

t
dt ′σ̂i(t

′)

× e−iλk(t−t ′ )e−i(λk0+k)xi , (B4)

with ti < t < t f . Subtracting Eq. (B4) from Eq. (B3) and
integrating over k, we obtain the input-output relation under
the Markov approximation

b̂out,λ(t ) = b̂in,λ(t ) − iη√
2π

∫
dk

∫ t f

ti

dt ′

×
∑

i

σ̂i(t
′)e−iλk(t−t ′ )e−i(λk0+k)xi

≈ b̂in,λ(t ) − i
√



∑

i

σ̂i(t )

× �(t + λxi − ti )�(t f − t − λxi )e
−iλk0xi , (B5)

where 
 = 2πη2 and the step functions come from ti � t ′ =
t + λxi � t f . The input and output operators are defined as

b̂in,λ(t ) = 1√
2π

∫
dke−iλk(t−ti )b̂k,λ(ti ), (B6)

b̂out,λ(t ) = 1√
2π

∫
dke−iλk(t−t f )b̂k,λ(t f ). (B7)

In the following, we focus solely on the statistical properties
of the far fields. Consequently, we take the limits of ti → −∞
and t f → ∞, while omitting the step functions in Eq. (B5).

We can readily verify that the defined input and output
operators satisfy the following commutation relation:

[b̂in,λ(t ), b̂†
in,λ′ (t ′)] = δλλ′δ(t − t ′), (B8)

[b̂out,λ(t ), b̂†
out,λ′ (t ′)] = δλλ′δ(t − t ′). (B9)

Due to the causality relation, we have the following commuta-
tion relations between an arbitrary atomic operator Ô and the
input and output fields [95,96]:

[Ô(t ), b̂in,λ(t ′)] = 0, for t ′ > t, (B10)

[Ô(t ), b̂out,λ(t ′)] = 0, for t ′ < t . (B11)

2. Initial state of the waveguide modes under coherent drivings

In the following, we will examine the statistical properties
of the output photons from our beam splitter when subjected
to two weak coherent-state inputs. In experiments, two ex-
tremely long pulses will be utilized. In this scenario, the
initial state of the waveguide photons can be described by
|�(ti )〉 = |αl〉 ⊗ |αr〉, where

|αλ〉 = e−|αλ|2 eαλB̂†
λ |0〉. (B12)

023722-7



LI-PING YANG AND YUE CHANG PHYSICAL REVIEW A 110, 023722 (2024)

Here we have introduced a single-photon wave-packet cre-
ation operator

B̂†
λ ≡

∫
dkξλ(k)b̂†

k,λ
, (B13)

with normalized amplitude
∫

dk|ξλ(k)|2 = 1 and commuta-
tion relation [B̂λ, B̂†

λ] = 1. We have the following relation:

b̂k,λ|αλ〉 = αλξ (k)|αλ〉. (B14)

In cases involving near-continuous-wave laser drivings in
the modes bp,r and b−p,l , the corresponding amplitude func-
tion approaches a delta function ξλ(k) ∝ δ(k − λp). For the
sake of simplicity, we employ an extremely narrow Gaussian
function to model the amplitude

ξλ(k) =
(

1

2πσ 2

)1/4

exp

[
− (k − λp)2

4σ 2

]
, (B15)

where σ is a small positive number. Then the single-photon
wave-packet creation B̂†

λ ≈ √
εb̂†

λp,λ, with factor ε = 2
√

2πσ .
The corresponding wave packet functions of two driving
pulses

ξ̃ (x) = 1√
2π

∫
dkeiλ(k0+λk)xξλ(k)

= √
ε exp [−σ 2x2 + iλ(k0 + p)x] (B16)

could be approximated as plane waves with amplitude
√

ε.

3. Master equation for atoms and quantum regression theorem

To study the statistics of the output photons, we need
to evaluate their wave function and higher-order correlation
functions. By utilizing the input-output relations and the com-
mutation relations mentioned in the previous subsection, the
multitime photon correlation functions can be transformed
into atomic correlations. The atomic correlations can be eval-
uated using the master equation and the quantum regression
theorem [70–72].

In addition to the Heisenberg equations, the dynamics of
the atoms can also be described by the standard quantum
master equation for coherent-state input cases. The density
matrix of the whole system satisfies the Liouville–von Neu-
mann equation

∂tρ(t ) = ∂t [e
−iĤtρ(0)eiĤt ] = −i[Ĥ, ρ(t )]. (B17)

To obtain a standard master equation for the atoms, we can
take the initial of all the waveguide modes as the vacuum
state and treat the coherent-state inputs as classical drivings
[70,97,98]. By eliminating the waveguide modes, we obtain
the master equation of the atoms with drivings

∂tρa(t ) ≡ Lρa(t )

= −i[Ĥ ′
a, ρa] +

∑
i, j


i j[2σ̂iρaσ̂
†
j − ρaσ̂

†
i σ̂ j − σ̂

†
i σ̂ jρa].

(B18)

The waveguide modes lead to the decoherence of the atoms
with decay rates


i j = 
 cos k0(xi − x j ). (B19)

The atom-photon interaction also induces a coherent dipole-
dipole interaction between the two atoms. As a result, the
Hamiltonian of the atoms changes to

Ĥ ′
a = geff σ̂

†
1 σ̂2 + g∗

eff σ̂1σ̂
†
2 + Ĥdrive, (B20)

with effective coupling strength

geff = geiφ + 
 sin θ (B21)

and θ = k0|x1 − x2| = k0d . The coherent-state pumpings
from the two sides of the waveguide are effectively described
by adding coherent driving terms to the atomic Hamiltonian

Ĥdrive = �r

∑
i

σ̂
†
i ei(k0+pr )xi e−ipr (t−ti )

+ �l

∑
i

σ̂
†
i e−i(k0−pl )xi eipl (t−ti ) + H.c., (B22)

where k0 + λpλ are the wave numbers of the input modes and
�λ = √

ε
αλ are the pumping amplitudes. In the following,
we focus more on the case with pl = pr = p, i.e., the interfer-
ence of two beams with the same frequency.

Similar to the density matrix ρa(t ) of the atoms, the
dynamics of an arbitrary operator Q̂(t ) satisfying the von
Newmann–Liouville equation ∂t Q̂(t ) = −i[Ĥ, Q̂(t )] could
also be described by an effective master equation

∂t TrBQ̂(t ) = LTrBQ̂(t ) (B23)

or

TrBQ̂(t ) = eLt TrBQ̂(0). (B24)

Then we can obtain the quantum regression theorem for ar-
bitrary system operators Ôi ordered by time [95]. We take a
three-time correlation function with t3 > t2 > t1, for example,

Tr[Ô3(t3)Ô2(t2)Ô1(t1)ρ(0)]

= Tra
{
Ô3eL(t3−t2 )Ô2eL(t2−t1 )Ô1eLt1 TrBρ(0)

}
. (B25)

4. Numerical method for photonic correlation functions

All the relevant properties of the output photons can be
obtained from multitime correlation functions, which can be
numerically evaluated by combining the input-output relation
and the quantum regression theorem. Here we illustrate the
key idea by considering examples of the first- and second-
order correlation functions with delay τ � 0,

G(1)
λ (τ ) = 〈gg| ⊗ 〈�(ti )|ψ̂†

λ (X, t f )ψ̂λ

× (X + λτ, t f )|�(ti)〉 ⊗ |gg〉, (B26)

G(2)
λ (τ ) = 〈gg| ⊗ 〈�(ti )|ψ̂†

λ (X, t f )ψ̂†
λ (X + λτ, t f )ψ̂λ′

× (X + λτ, t f )ψ̂λ(X, t f )|�(ti )〉 ⊗ |gg〉, (B27)

where we consider only the correlation of photons at the same
output port and

ψ̂λ(X, t f ) = 1√
2π

∫
dkbk,λ(t f )eiλ(k0+λk)X (B28)

is the field operator of the output photon in the Heisenberg
picture and |�(ti)〉 is the initial state of the waveguide photons
including the coherent-state inputs.
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The presented method can be readily applied to more general cases. Utilizing the input-output relation, we have

G(1)
λ (τ ) = 1

2π

∫
dke−iλ(k0+λk)X

∫
d peiλ(k0+λp)(X+τ )〈gg| ⊗ 〈�(ti )|b̂†

k,λ
(t f )b̂p,λ(t f )|�(ti)〉 ⊗ |gg〉 (B29)

= eiλk0τ 〈gg| ⊗ 〈�(ti )|b̂†
out,λ(t f − λX )b̂out,λ(t f − λX − τ )|�(ti)〉 ⊗ |gg〉 (B30)

≈ eiλk0τ 〈gg| ⊗ 〈�(ti )|
[
√

εα∗
λeiλp(T −λX ) + i


∑
i

σ̂
†
i (t f − λX )eiλk0xi

]

×
⎡
⎣√

εαλe−iλp(T −λX−τ ) − i

∑

j

σ̂ j (t f − λX − τ )e−iλk0x j

⎤
⎦|�(ti)〉 ⊗ |gg〉, (B31)

where T = t f − ti and the step function in the third step has been omitted for the far fields with λX � |xi|. The mean value of
the atomic operators can be evaluated via the master equation (B18) and the quantum regression theorem numerically, e.g.,

〈gg| ⊗ 〈�(ti )|σ̂ †
i (t f − λX )|�(ti)〉 ⊗ |gg〉 = Tra

[
σ̂

†
i eL(T −λX )|gg〉〈gg|], (B32)

〈gg| ⊗ 〈�(ti )|σ̂ †
i (t f − λX )σ̂ †

j (t f − λX − τ )|�(ti )〉 ⊗ |gg〉 = Tra
[
σ̂

†
i eLτ σ̂ je

L(T −λX )|gg〉〈gg|]. (B33)

For τ = 0 the first-order correlation function gives the mean photon number density of λ-output port

G(1)
λ (0) = Tra

[
Ôλ(T − λX )eL(T −λX )|gg〉〈gg|Ô†

λ (T − λX )
]
, (B34)

where we have introduced an output operator for atoms

Ôλ(t ) ≡ √
εαλe−iλpt − i


∑
i

e−iλk0xi σ̂i. (B35)

To simplify the simulation, we can eliminate the oscillating phase factor exp(−iλpt ) in the operator Ôλ(t ) and the driving
Hamiltonian (B22) by selecting an appropriate rotating frame as shown in the main text. To obtain the reflectance and
transmittance of right-moving photons incident from the left port, we can let αl = 0 and rescale the output photon intensity
with ε|αr |2:

|rr→l (p)|2 = G(1)
l (0)

ε|αr |2 , |tr→r (p)|2 = G(1)
r (0)

ε|αr |2 , (B36)

where rr→l (p) and tr→r (p) are the reflection and transmission coefficients, respectively. The reflectance and transmittance of
left-moving photons incident from the right port can be obtained similarly.

Similarly, the second-order correlation function of the output photon in the case of weak coherent-state drivings can be
approximated as

G(2)
λ (τ ) = 〈gg| ⊗ 〈�(ti )|b̂†

out,λ(t f − λX )b̂†
out,λ(t f − λX − τ )b̂out,λ(t f − λX − τ )b̂out,λ(t f − λX )|�(ti )〉 ⊗ |gg〉 (B37)

= Tr[b̂out,λ(t f − λX )b̂out,λ(t f − λX − τ )|�(ti)〉 ⊗ |gg〉〈gg| ⊗ 〈�(ti )|b̂†
out,λ(t f − λX − τ )b̂†

out,λ(t f − λX )] (B38)

= Tra
{
Ôλ(T − λX )eLτ

[
Ôλ(T − λX − τ )eL(T −λX−τ )(|gg〉〈gg|)Ô†

λ (T − λX − τ )
]
Ô†

λ (T − λX )
}
, (B39)

where we reorder the output operators according to time in the
second step. The coherence function g(2)(τ ) can be obtained
by rescaling the correlation function G(2)

λ (τ ) with its steady
value G(2)

λ (∞), which is equal to the square of the steady value
of G(1)(0). Next, we show how to obtain the properties of the
output photon via the scattering method.

APPENDIX C: SCATTERING METHOD FOR
DETERMINING REFLECTION AND

TRANSMISSION COEFFICIENTS

In the case of weak input, the mean photon numbers at
the two output ports of the beam splitter are determined

by the reflectance and transmittance, which are predom-
inantly determined by the single-photon scattering pro-
cesses in the weak driving case. In the following sec-
tions, we will employ the scattering method to derive
analytical expressions for the reflection and transmission
coefficients.

1. Scattering coefficients for a right-moving
single-photon input

We consider the scenario where a right-moving plane-
wave single photon with a wave number k0 + p is incident
from the left side of the waveguide. The scattering amplitude
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in the left-moving mode with a wave number −k0 − k is given by

Ar→l (−k, p) = 〈gg| ⊗ 〈0|b̂−k,l e
iĤ0t f e−iĤT e−iĤ0ti b̂†

p,r |0〉 ⊗ |gg〉 (C1)

= 1

2π
ei(kt f −pti )

∫ t f

ti

dt2eik(t2−t f )
∫ t f

ti

dt1e−ip(t1−ti )〈gg| ⊗ 〈0|b̂out,l (t2)b̂†
in,r (t1)|0〉 ⊗ |gg〉 (C2)

= −


2π
ei(kt f −pti )

∑
i j

eik0(xi+x j )
∫ t f

ti

dt2eik(t2−t f )
∫ t2

ti

dt1e−ip(t1−ti )〈gg| ⊗ 〈0|σ̂i(t2)σ̂ †
j (t1)|0〉 ⊗ |gg〉 (C3)

= −


2π
ei(kt f −pti )

∑
i j

eik0(xi+x j )
∫ t f

ti

dt2eik(t2−t f )
∫ t2

ti

dt1e−ip(t1−ti )Tra
[
σ̂ie
L(t2−t1 )σ̂

†
j |gg〉〈gg|], (C4)

where T = t f − ti is the evolution time. We have used the
input-output relation and the commutation relations (B10) and
(B11) in the third step and the fact eLt |gg〉〈gg| = |gg〉〈gg| in
the last step.

The time evolution of the atomic operators σ̂
†
j |gg〉〈gg| can

be evaluated using the master equation (B18). It is important
to note that, unlike the numerical method in Sec. B 4, the
pumping effect has already been considered in the input oper-
ator, and the photonic state is the vacuum state for the atomic
correlation function in Eq. (C3). Consequently, we need to
set the pumping strength αλ in the driving Hamiltonian (B22)
to zero. We now show that the jumping terms in the master
equation do not contribute to the scattering amplitude [70,71]:

Tra[σ̂ie
Lτ σ̂

†
j |gg〉〈gg|] = Tra

[
σ̂i

{
1 + (L0 +LJ )τ

+ 1

2!
(L0 +LJ )2τ 2 + · · ·

}
σ̂

†
j |gg〉〈gg|

]
,

(C5)

with

L0σ̂
†
j |gg〉〈gg| = −i(Ĥeff σ̂

†
j |gg〉〈gg| − σ̂

†
j |gg〉〈gg|Ĥ†

eff ), (C6)

LJ σ̂
†
j |gg〉〈gg| =

∑
lm

2
lmσ̂l σ̂
†
j |gg〉〈gg|σ̂ †

m. (C7)

Here the effective non-Hermitian Hamiltonian is given by

Ĥeff = geff σ̂
†
1 σ̂2 + g∗

eff σ̂
†
2 σ̂1 − i

∑
i j


i j σ̂
†
i σ̂ j (C8)

with effective coupling strength in Eq. (B21) and decay rates
in Eq. (B19). It can be verified that L0 preserves the excita-
tion numbers in the atom, while LJ decreases the excitation
numbers. Thus, any term in Eq. (C5) containing LJ vanishes.
As a result, the time evolution of an atomic operator Ô in the
photon scattering amplitude could be evaluated via

eLt Ô = e−iĤeff t ÔeiĤ†
eff t . (C9)

Finally, we obtain the scattering amplitude

Ar→l (−k, p) = δ(k − p)rr→l (p), (C10)

where

rr→l (p) = 

∑

i j

eik0(xi+x j )〈gg|σ̂i
i

Ĥeff − p
σ̂

†
j |gg〉 (C11)

is the reflection coefficient. In evaluating the atomic correla-
tion function, we have utilized the fact 〈gg| exp(iĤ†

efft ) = 〈gg|
and the relation∫ t2

ti

dt1e−ip(t1−ti )Tra
[
σ̂ie
L(t2−t1 )σ̂

†
j |gg〉〈gg|]

=
∫ t2

ti

dt1e−ip(t1−ti )Tra
[
σ̂ie

−iĤeff (t2−t1 )σ̂
†
j |gg〉〈gg|eiĤ†

eff (t2−t1 )
]

= 〈gg|σ̂i
e−ip(t2−ti )

iĤeff − ip
σ̂

†
j |gg〉, (C12)

where a term related to exp[−iĤeff (t2 − ti )] in the integral
has been neglected, as it decays to zero for ti → −∞. The
corresponding wave function for X < xi of the output photon
is given by

�
(1)
r→l (X, p, T ) = 〈gg| ⊗ 〈0|ψ̂l (X )eiĤ0t f e−iĤT

× e−iĤ0ti b̂†
p,r |0〉 ⊗ |gg〉

= 1√
2π

e−i(k0+p)X rr→l (p). (C13)

The output field is a plane wave photon with the same fre-
quency as the input mode.

Similarly, we can obtain the scattering amplitude in the
left-moving mode with wave number k0 + k as

Ar→r (k, p) = 〈gg| ⊗ 〈0|b̂k,reiĤ0t f e−iĤT e−iĤ0ti b̂p,r |0〉 ⊗ |gg〉
= δ(k − p)tr→r (p) (C14)

with transmission coefficient

tr→r (p) = 1 + 

∑

i j

e−ik0(xi−x j )〈gg|σ̂i
i

Ĥeff − p
σ̂

†
j |gg〉.

(C15)

The wave function of the output plane single-photon for
X > xi is given by

� (1)
r→r (X, p, T ) = 〈gg| ⊗ 〈0|ψ̂r (X )eiĤ0t f e−iĤT

× e−iĤ0ti b̂†
p,r (t )|0〉 ⊗ |gg〉

= 1√
2π

e−i(k0+p)X tr→r (p). (C16)
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2. Scattering coefficients for a left-moving single-photon input

In this section we consider the case where a left-moving plane-wave single photon with a wave number −k0 − p is incident
from the right side of the waveguide. The scattering amplitude in the right-moving mode with a wave number k0 + k is given by

Al→r (k,−p) = 〈gg| ⊗ 〈0|b̂k,reiĤ0t f e−iĤT e−iĤ0ti b̂†
−p,l |0〉 ⊗ |gg〉

= δ(k − p)rl→r (−p), (C17)

with reflection coefficient

rl→r (−p) = 

∑

i j

e−ik0 (xi+x j )〈gg|σ̂i
i

Ĥeff − p
σ̂

†
j |gg〉. (C18)

The corresponding wave function for X > xi reads

�
(1)
l→r (X,−p, T ) = 〈gg| ⊗ 〈0|ψ̂r (X )eiĤ0t f e−iĤT e−iĤ0ti b̂†

−p,l |0〉 ⊗ |gg〉

= 1√
2π

ei(k0+p)X e−ipT rl→r (−p). (C19)

The scattering amplitude in the left-moving mode with a wave number −k0 − k is given by

Al→l (−k,−p) = 〈gg| ⊗ 〈0|b̂−k,l e
iĤ0t f e−iĤT e−iĤ0ti b̂†

−p,l |0〉 ⊗ |gg〉
= δ(k − p)tl→l (−p), (C20)

with transmission coefficient

tl→l (−p) = 1 + 

∑

i j

eik0(xi−x j )〈gg|σ̂i
i

Ĥeff − p
σ̂

†
j |gg〉. (C21)

The corresponding wave function for X < xi reads

�
(1)
l→l (X,−p, T ) = 〈gg| ⊗ 〈0|ψ̂l (X )eiĤ0t f e−iĤT e−iĤ0ti b̂†

−p,l |0〉 ⊗ |gg〉

= 1√
2π

e−i(k0+p)X tl→l (−p). (C22)

3. Output probabilities for two coherent inputs

When the inputs of our beam splitter are weak coherent-state long pulses (|αλ| 
 1), we can treat the pulses as quasi-single-
mode pulses and expand the coherent states with low-excitation states [see Eq. (B12)]:

|αl (−p)〉 ≈ e|αl |2/2
[
1 + √

εαl b
†
−p,l + 1

2 (
√

εαl )
2b†

−p,l b
†
−p,l + o

(
α3

l

)]|0〉,
|αr (p)〉 ≈ e|αr |2/2

[
1 + √

εαrb†
p,r + 1

2 (
√

εαr )2b†
p,rb†

p,r + o
(
α3

r

)]|0〉.
As shown in Sec. II, the two complex transmission coefficients have different arguments. Consequently, even when the
amplitudes of the two coherent-state inputs are the same (αr = αl = α), the output probabilities at the two ports are different in
most cases as shown in the main text.

The mean photon numbers of the left and right output ports for |X | > xi up to the order of |α|2 are given by

〈ψ̂†
l (X )ψ̂l (X )〉 ≈ ε|α|2∣∣� (1)

r→l (X, p, T ) + �
(1)
l→l (X,−p, T )

∣∣2 = ε|α|2|rr→l (p) + tl→l (−p)|2, (C23)

〈ψ̂†
r (X )ψ̂r (X )〉 ≈ ε|α|2∣∣� (1)

l→r (X,−p, T ) + � (1)
r→r (X, p, T )

∣∣2 = ε|α|2|rl→r (−p) + tr→r (p)|2. (C24)

The normalized output probabilities are

Pl (p) = 〈ψ̂†
l (X )ψ̂l (X )〉

2ε|α|2 =
∣∣∣∣2i
(
 sin θ + p cos θ + gcos φ) + g2 − p2 + 2g
eiφ sin θ

D(p)

∣∣∣∣
2

, (C25)

Pr (p) = 〈ψ̂†
r (X )ψ̂r (X )〉

2ε|α|2 =
∣∣∣∣2i
(
 sin θ + p cos θ + gcos φ) + g2 − p2 + 2g
e−iφ sin θ

D(p)

∣∣∣∣
2

. (C26)
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4. Scattering channels analysis

In the previous sections, we demonstrated that the reflec-
tion and transmission coefficients are primarily determined
by the effective Hamiltonian Ĥeff of the atoms, as given in
Eq. (C8). Here we provide a detailed analysis of Ĥeff and the
scattering channels. To begin, we introduce two new single-
excitation states:

|±〉 = 1√
2

(|eg〉 ± |ge〉) (C27)

with positive and negative parity, respectively. We can also
define the corresponding ladder operators

σ̂± = 1√
2

(σ̂1 ± σ̂2), σ̂
†
± = 1√

2
(σ̂ †

1 ± σ̂
†
2 ). (C28)

Their actions on the double-excitation state are slightly differ-
ent from σ̂i in the original representation:

(σ̂ †
+)2|gg〉 = |ee〉, (σ̂ †

−)2|gg〉 = −|ee〉, (C29)

σ̂
†
+σ̂

†
−|gg〉 = σ̂

†
−σ̂

†
+|gg〉 = 0, (C30)

σ̂+|ee〉 = |+〉, σ̂−|ee〉 = −|−〉. (C31)

The matrix elements of the effective Hamiltonian in the
basis {|ee〉, |+〉, |−〉, |gg〉} are given by

Heff =

⎡
⎢⎢⎣

−2i
 0 0 0
0 −iα+ −iβ 0
0 iβ −iα− 0
0 0 0 0

⎤
⎥⎥⎦, (C32)

with

α+ = 
(1 + eiθ ) + igcos φ, (C33)

α− = 
(1 − eiθ ) − igcos φ, (C34)

β = g sin φ. (C35)

The Hamiltonian Ĥeff has not been diagonalized with the
|±〉 states. However, the dissipation terms exist only in the
diagonal elements. Thus, states |±〉 determine the decay chan-
nels and the off-diagonal terms induce coherent interaction
between these channels.

In deriving the analytical expression of the scattering coef-
ficients and multitime correlation function of photons, we also
need the following three operators:

M̂ ≡ −i

Ĥeff − p
, (C36)

Û (τ ) ≡ exp(−iĤeffτ ), (C37)

N̂ (τ ) ≡ exp(−iĤeffτ )
−i

Ĥeff − p
. (C38)

Their matrix elements in the basis {|ee〉, |+〉, |−〉, |gg〉} are
given by

M =

⎡
⎢⎢⎢⎢⎢⎣

1
2
−ip 0 0 0

0 α−−ip
D(p)

−β

D(p) 0

0 β

D(p)
α+−ip
D(p) 0

0 0 0 i
p

⎤
⎥⎥⎥⎥⎥⎦, (C39)

U (τ ) =

⎡
⎢⎢⎢⎢⎣

e−2
τ 0 0 0

0 U22(τ ) U23(τ ) 0

0 U32(τ ) U33(τ ) 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦, (C40)

N (τ ) =

⎡
⎢⎢⎢⎢⎢⎣

1

−ipe−2
τ 0 0 0

0 N22(τ ) N23(τ ) 0

0 N32(τ ) N33(τ ) 0

0 0 0 i
p

⎤
⎥⎥⎥⎥⎥⎦, (C41)

where

D(p) = (α+ − ip)(α− − ip) + β2 (C42)

is the determinant of the matrix iH − ip. The rest elements of
U and N are given by

U22(τ ) =
[

α− − α+√
�

sin

(√
�

2
τ

)
+ cos

(√
�

2
τ

)]
e−
τ ,

(C43)

U33(τ ) =
[
−α− − α+√

�
sin

(√
�

2
τ

)
+ cos

(√
�

2
τ

)]
e−
τ ,

(C44)

U23(τ ) = −U32(τ ) = − 2β√
�

sin

(√
�

2
τ

)
e−
τ , (C45)

N22(τ ) = (α− − ip)
√

� cos
(√

�
2 τ

) − [(α+ − α−)(α− − ip) + 2β2] sin
(√

�
2 τ

)
√

�D(p)
e−
τ , (C46)

N33(τ ) = (α+ − ip)
√

� cos
(√

�
2 τ

) − [(α+ − α−)(α+ − ip) + 2β2] sin
(√

�
2 τ

)
√

�D(p)
e−
τ , (C47)

N23 = −N32 = −β
[√

� cos
(√

�τ
2

) + (α+ + α− − 2ip) sin
(√

�τ
2

)]
√

�D(p)
e−
τ , (C48)
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where

� = −(α− − α+)2 + 4β2 = 4(gcos φ − i
eiθ )2 + 4g sin2 φ

(C49)

is the discriminant of the quadratic eigenvalue equation of the
matrix Heff .

All four matrices Heff , M, U , and N share the property that
their off-diagonal elements are antisymmetric, specifically,
O23 = −O32. As demonstrated later, this results in perfect
destructive (constructive) interference between the scattering
channels for the reflection (transmission) coefficient. It is im-
portant to note that only the off-diagonal elements of these
four matrices contain the parity symmetry-breaking term, i.e.,
the odd powers of β = g sin φ.

APPENDIX D: TWO-PHOTON SCATTERING PROCESSES FOR TWO COHERENT INPUTS

In this Appendix we study the statistical properties of the output photons. We mainly focus on the g(2) function, which is
defined as

g(2)
λ (τ ) = 〈ψ̂†

λ (X )ψ̂†
λ (X + λτ )ψ̂λ(X + λτ )ψ̂λ(X )〉

〈ψ̂†
λ (X )ψ̂λ(X )〉〈ψ̂†

λ (X + λτ )ψ̂λ(X + λτ )〉 . (D1)

For two weak coherent-state inputs [|αl (−p)〉 ⊗ |αr (p)〉], only the three two-photon components

∝ [
b†

p,rb†
−p,l + 1

2 b†
−p,l b

†
−p,l + 1

2 b†
p,rb†

p,r

]|0〉 (D2)

will contribute to the second-order coherence function. Next, we use the scattering method to evaluate the two-photon wave
functions corresponding to the three input states separately.

1. Two photons incident from the left

In this section we examine the scattering of two right-moving photons incident from the left side of the beam splitter. There
are three possible output states: (1) two reflected photons coming out from the left side of the waveguide, (2) two transmitted
photons coming out from the right side of the waveguide, and (3) one reflected and one transmitted photon coming out from both
ends of the waveguide. The third case will not contribute to the g(2) function of the output, and we will neglect it in the following
discussion.

a. Wave function of two left-moving photons

The wave function of the left-moving two photons with X < xi and τ � 0 in the limit T = t f − ti → ∞ is obtained:

�
(2)
r→l (X − τ, X ) = 〈gg, 0|ψ̂l (X )ψ̂l (X − τ )eiĤ0t f e−iĤT e−iĤ0ti b̂†

p,r b̂†
p,r |gg, 0〉 (D3)

= 1

2π
e−i(k0+p)(2X−τ )
2

∑
i jmn

2eik0(xi+x j+xm+xn )

[
〈gg|σ̂ie

−iĤeff τ σ̂ j
1

iĤeff − 2ip
σ̂ †

m

1

iĤeff − ip
σ̂ †

n |gg〉

+ 〈gg|σ̂i(e
−ipτ − e−iĤeff τ )

1

iĤeff − ip
σ̂ †

m|gg〉〈gg|σ̂ j
1

iĤeff − ip
σ̂ †

n |gg〉
]
, (D4)

where we have used the input-output relation and the quantum regression theorem. In the following, we first consider two
special cases with τ = 0 and τ → ∞, respectively. The two-photon wave function is exchange symmetric �

(2)
r→l (X − τ, X ) =

�
(2)
r→l (X, X − τ ), since two field operators ψ̂l (X ) and ψ̂l (X − τ ) commute.
For τ = 0, the second term in Eq. (D4) vanishes, and the two-photon wave function reads

�
(2)
r→l (X − τ, X )

∣∣
τ=0 = 1

2π
e−2i(k0+p)X 2



 − ip
[1 − tr→r (p)], (D5)

where we have used

〈gg|σ̂ie
−iĤeff τ σ̂ j

1

iĤeff − 2ip
σ̂ †

m

1

iĤeff − ip
σ̂ †

n |gg〉 = 〈gg|σ̂ie
−iĤeff τ σ̂ j

1

iĤeff − 2ip
|ee〉〈ee|σ̂ †

m

1

iĤeff − ip
σ̂ †

n |gg〉, (D6)



∑
mn

eik0(xm+xn )〈ee|σ̂ †
m

1

iĤeff − ip
σ̂ †

n |gg〉 = 2
〈ee|
(

σ̂
†
+ cos

θ

2
− iσ̂− sin

θ

2

)
M

(
σ̂

†
+ cos

θ

2
− iσ̂ †

− sin
θ

2

)
|gg〉 (D7)

= 


[
2

(
M22 cos2 θ

2
+ M33 sin2 θ

2

)
− i(M23 − M32) sin θ

]
= [1 − tr→r (p)].

(D8)

We see that perfect constructive interference (the M23 − M32 term) between the double-excitation channels |gg〉 → |+〉 →
|−〉 → |ee〉 and |gg〉 → |−〉 → |+〉 → |ee〉 occurs. For the case τ → ∞, the terms containing exp(−iĤeffτ ) decay to zero
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exponentially. Only the term which describes the two photons reflected separately by the atoms contributes to the wave function

�
(2)
r→l (X − τ, X )

∣∣
τ→∞ = 1

2π
e−i(k0+p)(2X−τ )−2ipT × 2r2

r→l (p). (D9)

The wave function of the two reflected photons for an arbitrary τ is given by

�
(2)
r→l (X − τ, X ) = 1

2π
e−i(k0+p)(2X−τ )

{
2e−ipτ r2

r→l (p) + 



 − ip

[
2

(
U22 cos2 θ

2
+ U33 sin2 θ

2

)
+ i(U23 − U32) sin θ

]
[1 − tr→r (p)]

+ 2


[
2

(
N22 cos2 θ

2
− N33 sin2 θ

2

)
− i(N23 + N32) sin θ

]
rr→l (p)

}
(D10)

= 1

2π
e−i(k0+p)(2X−τ )

{




 − ip

[
2 cos

(√
�

2
τ

)
+ 2(α− − α+) cos θ − 4iβ sin θ√

�
sin

(√
�

2
τ

)]
[1 − tr→r (p)]e−
τ

− 2

[
rr→l (p) cos

(√
�τ

2

)
− 2


(α− − α+)(
 − ip) − � cos θ√
�D(p)

sin

(√
�τ

2

)]
rr→l (p)e−
τ + 2e−ipτ r2

r→l (p)

}
.

(D11)

Here we see that perfect constructive interference (the U23 − U32 term) between the scattering channels occurs between the de-
excitation channels |ee〉 → |+〉 → |−〉 → |gg〉 and |ee〉 → |−〉 → |+〉 → |gg〉 and perfect destructive interference (the N23 +
N32 term) occurs between the single-photon scattering channels |gg〉 → |+〉 → |−〉 → |gg〉 and |gg〉 → |−〉 → |+〉 → |gg〉. The
existing perfect constructive interference will break the parity of both the g(2)(0) and g(2)(τ ) functions.

b. Wave function of two right-moving photons

The wave function of the right-moving two photons with xi < X and τ � 0 in the limit T → ∞ is given by

� (2)
r→r (X + τ, X ) = 〈gg, 0|ψ̂r (X )ψ̂r (X + τ )eiĤ0t f e−iĤT e−iĤ0ti b̂†

p,r (ti )b̂
†
p,r (ti)|gg, 0〉

= 1

2π
ei(k0+p)(2X+τ )

{
2e−ipτ − 4


∑
i j

e−ik0(xi−x j )−ipτ 〈gg|σ̂i
1

iĤeff − ip
σ̂

†
j |gg〉 (D12)

+ 2
2
∑
i jmn

e−ik0(xi+x j−xm−xn )

[
〈gg|σ̂ie

−iĤeff τ σ̂ j
1

iĤeff − 2ip
σ̂ †

m

1

iĤeff − ip
σ̂ †

n |gg〉

+ 〈gg|σ̂i(e
−ipτ − e−iĤeff τ )

1

iĤeff − ip
σ̂ †

n |gg〉〈gg|σ̂ j
1

iĤeff − ip
σ̂ †

m|gg〉
]}

. (D13)

For the case τ = 0, we have

� (2)
r→r (X + τ, X )|τ=0 = 1

2π
e2i(k0+p)X × 2

[
2tr→r (p) − 1 + 



 − ip
[1 − tr→r (p)]

]
. (D14)

For the case τ → ∞, we have

� (2)
r→r (X + τ, X )|τ→∞ = 1

2π
ei(k0+p)(2X+τ ) × 2t2

r→r (p), (D15)

describing the fact that two photons are transmitted independently.
For an arbitrary τ , we have

� (2)
r→r (X + τ, X ) = 1

2π
ei(k0+p)(2X+τ )

{
2e−ipτ t2

r→r (p) + 
[1 − tr→r (p)]


 − ip

[
2

(
U22 cos2 θ

2
+ U33 sin2 θ

2

)
− i(U23 − U32) sin θ

]

− 2


[
2

(
N22 cos2 θ

2
+ N33 sin2 θ

2

)
− i(N23 − N32) sin θ

]
[1 − tr→r (p)]

}
(D16)
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= 1

2π
ei(k0+p)(2X+τ )

{
2e−ipτ t2

r→r (p) + 
[1 − tr→r (p)]


 − ip

[
2 cos

(√
�

2
τ

)

+ 2(α− − α+) cos θ + 4iβ sin θ√
�

sin

(√
�

2
τ

)]
e−
τ

− 2

[
[1 − tr→r (p)] cos

(√
�τ

2

)
+ 2


[(α− − α+) cos θ + 2iβ sin θ ](
 − ip) − �√
�D(p)

]
[1 − tr→r (p)]e−
τ

}
.

(D17)

Here we see that two perfect constructive interferences U23 − U32 and N23 − N32 occur.

2. Two photons incident from the right

In this section we check the scattering of two left-moving photons incident from the right end of the waveguide. The scattering
processes are similar to Sec. D 1. We list only the final results.

a. Wave function of two left-moving photons

The wave function of the right-moving two photons with X < xi and τ � 0 is given by

�
(2)
l→l (X − τ, X ) = 〈gg, 0|ψ̂r (X )ψ̂r (X − τ )eiĤ0t f e−iĤT e−iĤ0ti b̂†

−p,l b̂
†
−p,l |gg, 0〉 (D18)

= 1

2π
e−i(k0+p)(2X−τ )−2ipT

{
2e−ipτ t2

l→l (−p) + 
[1 − tl→l (−p)]


 − ip

[
2 cos

(√
�

2
τ

)

+ 2(α− − α+) cos φ − 4iβ sin θ√
�

sin

(√
�

2
τ

)]
e−
τ − 2

[
[1 − tl→l (−p)] cos

(√
�τ

2

)

+

[(α− − α+) cos θ − 2iβ sin θ ](α+ + α− − 2ip) − �√

�D(p)
sin

(√
�τ

2

)]
[1 − tl→l (−p)]e−
τ

}
. (D19)

For the case τ = 0

�
(2)
l→l (X − τ, X )

∣∣
τ=0 = 1

2π
e−2i(k0+p)X × 2

[
2tl→l (−p) − 1 + 



 − ip
[1 − tl→l (−p)]

]
. (D20)

For the case τ → ∞, we have

�
(2)
l→l (X − τ, X )

∣∣
τ→∞ = 1

2π
e−i(k0+p)(2X−τ ) × 2t2

l→l (p). (D21)

b. Wave function of two right-moving photons

The wave function of the right-moving two photons with X > xi and τ � 0 is given by

�
(2)
l→r (X + τ, X ) = 〈gg, 0|ψ̂l (X )ψ̂l (X + τ )eiĤ0t f e−iĤT e−iĤ0ti b̂†

−p,l b̂
†
−p,l |gg, 0〉 (D22)

= 1

2π
ei(k0+p)(2X+τ )

{
2e−ipτ r2

l→r (−p) + 
[1 − tl→l (−p)]


 − ip

×
[

2 cos

(√
�

2
τ

)
+ 2(α− − α+) cos θ + 4iβ sin θ√

�
sin

(√
�

2
τ

)]
e−
τ

− 2

[
rl→r (−p) cos

(√
�τ

2

)
− 2


(α− − α+)(
 − ip) − � cos θ√
�D(p)

sin

(√
�τ

2

)]
rl→r (−p)e−
τ

}
. (D23)

For the case τ = 0, we have

�
(2)
l→r (X + τ, X )

∣∣
τ=0 = 1

2π
e2i(k0+p)X 2



 − ip
[1 − tl→l (−p)]. (D24)
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For the case τ → ∞, we have

�
(2)
l→r (X + τ, X )

∣∣
τ→∞ = 1

2π
ei(k0+p)(2X+τ ) × 2r2

r→r (−p). (D25)

3. Two photons incident from two ends

When two photons are incident from the two ends of the waveguide, we also consider only the cases with two photons coming
out from the same output port.

a. Wave function of two left-moving photons

The wave function of the left-moving two photons with X < xi and τ � 0 is obtained:

�
(2)
TS→l (X − τ, X ) = 〈gg, 0|ψ̂l (X )ψ̂l (X − τ )eiĤ0t f e−iĤT e−iĤ0ti b̂†

−p,l b̂
†
p,r |gg, 0〉 (D26)

= 1

2π
e−i(k0+p)(2X−τ )

{
2e−ipτ rr→l (p)tl→l (−p) + 2[1 − tl→l (−p)]rr→l (p) cos

(√
�τ

2

)
e−
τ

− 



 − ip

[
2 cos

(√
�

2
τ

)
+ 2(α− − α+) cos θ − 4iβ sin θ√

�
sin

(√
�

2
τ

)]
rr→l (p)e−
τ

+ 2

[(α− − α+) cos θ − 2iβ sin θ ](
 − ip) − �√

�D(p)
sin

(√
�τ

2

)
rr→l (p)e−
τ

− 2

(α− − α+)(
 − ip) − � cos θ√

�D(p)
sin

(√
�τ

2

)
[1 − tl→l (−p)]e−
τ . (D27)

For the case τ = 0, we have

�
(2)
TS→l

∣∣
τ=0 = 1

2π
e−2i(k0+p)X

[
2 − 2


(
 − ip)

]
rr→l (p). (D28)

For the case τ → ∞, we have

�
(2)
TS→l

∣∣
τ→∞ = 1

2π
e−i(k0+p)(2X−τ ) × 2rr→l (p)tl→l (−p). (D29)

b. Wave function of two right-moving photons

The wave function of the right-moving two photons with X < xi and τ � 0 is given by

�
(2)
TS→r (X + τ, X ) = 〈G, 0|ψ̂r (X )ψ̂r (X + τ )eiĤ0t f e−iĤT e−iĤ0ti b̂†

−p,l b̂
†
p,r |G, 0〉 (D30)

= 1

2π
ei(k0+p)(2X+τ )

{
2e−ipτ rl→r (−p)tr→r (p) + 2rl→r (−p)[1 − tr→r (p)] cos

(√
�τ

2

)
e−
τ

− 



 − ip

[
2 cos

(√
�

2
τ

)
+ 2(α− − α+) cos θ + 4iβ sin θ√

�
sin

(√
�

2
τ

)]
rl→r (−p)e−
τ

+ 2

[(α− − α+) cos θ + 2iβ sin θ ](
 − ip) − �√

�D(p)
sin

(√
�τ

2

)
rl→r (−p)e−
τ

− 2

(α− − α+)(
 − ip) − � cos θ√

�D(p)
sin

(√
�τ

2

)
[1 − tr→r (p)]e−
τ

}
. (D31)

For the case τ = 0, we have

�
(2)
TS→r (X + τ, X )

∣∣
τ=0 = 1

2π
e2i(k0+p)X

[
2 − 2


(
 − ip)

]
rl→r (−p). (D32)

For the case τ → ∞, we have

�
(2)
TS→r (X + τ, X )

∣∣
τ=0 = 1

2π
ei(k0+p)(2X+τ ) × 2rl→r (−p)tr→r (p). (D33)
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4. Second-order coherence function

When two weak coherent-state drivings are applied to the two ends of our beam splitter, only the two-photon components
contribute to the g(2) function. Consequently, the analytical results of the coherence functions can be obtained with the output
two-photon wave functions

g(2)
l (τ ) = (2π )2|� (2)

l (X − τ, X )|2
|rr→l (p) + tl→l (−p)|4 , g(2)

r (τ ) = (2π )2|� (2)
r (X + τ, X )|2

|rl→r (−p) + tr→(p)|4 , (D34)

where

�
(2)
l (X − τ, X ) = �

(2)
TS→l (X − τ, X ) + 1

2
�

(2)
r→l (X − τ, X ) + 1

2
�

(2)
l→l (X − τ, X ) (D35)

= 1

2π
e−i(k0+p)(2X−τ )

{
[rr→l (p) + tl→l (−p)]2e−ipτ + [2rr→l (p) + 2tl→l (−p) − 1 − [rr→l (p) + tl→l (−p)]2]

× cos

(√
�τ

2

)
e−
τ + 



 − ip
[2 − 2rr→l (p) − tl→l (−p) − tr→r (p)]

×
[

cos

(√
�

2
τ

)
+ (α− − α+) cos θ − 2iβ sin θ√

�
sin

(√
�

2
τ

)]
e−
τ

+ 2

[β2 + i(α− − α+)p − 2
α−](1 + cos θ ) + 2i(
 − ip)β sin θ√

�D(p)

× sin

(√
�τ

2

)
[1 − rr→l (p) − tl→l (−p)]e−
τ

}
(D36)

is the superposition of the three two-photon functions for left-moving photons and

� (2)
r (X, X + τ ) = �

(2)
TS→r (X, X + τ ) + 1

2
�

(2)
l→r (X, X + τ ) + 1

2
� (2)

r→r (X, X + τ ) (D37)

= 1

2π
ei(k0+p)(2X+τ )

{
[rl→r (−p) + tr→r (p)]2e−ipτ + [2rl→r (−p) + 2tr→r (p) − 1 − [rl→r (−p) + tr→r (p)]2]

× cos

(√
�τ

2

)
e−
τ + 



 − ip
[2 − 2rl→r (−p) − tl→l (−p) − tr→r (p)]

×
[

cos

(√
�

2
τ

)
− (α− − α+) cos θ + 2iβ sin θ√

�
sin

(√
�

2
τ

)]
e−
τ

+ 2

[β2 + i(α− − α+)p − 2
α−](1 + cos θ ) − 2i(
 − ip)β sin θ√

�D(p)

× sin

(√
�τ

2

)
[1 − rl→r (−p) − tl→l (−p)]e−
τ

}
(D38)

is the superposition of the three two-photon functions for right-moving photons. Using that tl→l (φ) = tr→r (−φ), we can verify
that

g(2)
l (τ, φ) = g(2)

r (τ,−φ). (D39)

For the case τ = 0, the g(2) functions reduce to

g(2)
l (0) = |−ip[2rr→l (p) + 2tl→l (−p) − 1] + 
[1 + tl→l (−p) − tr→r (p)]|2

|rr→l (p) + tl→l (−p)|4|
 − ip|2 , (D40)

g(2)
r (0) = |−ip[2rl→r (−p) + 2tr→r (p) − 1] + 
[1 + tr→r (p) − tl→l (−p)]|2

|rl→r (−p) + tr→r (p)|4|
 − ip|2 . (D41)
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Specifically, for the resonant inputs with p = 0, we have

g(2)
l (0) = |D(0)|2|D(0) + 4ig
 sin φ sin θ |2

|g2 + 2g
eiφ sin θ + 2i
(gcos φ + 
 sin θ )|4 , (D42)

g(2)
r (0) = |D(0)|2|D(0) − 4ig
 sin φ sin θ |2

|g2 + 2g
e−iφ sin θ + 2i
(gcos φ + 
 sin θ )|4 , (D43)

with

D(0) = g2 + (1 − e2iθ )
2 − 2ig
eiθ cos φ. (D44)

We can verify that g(2)
λ (0) → 1 when g → 0 for resonant drivings with p = 0.

The numerical simulation of the g(2) function is presented in the main text. In Fig. 7(a) we display only the output probabilities
of the two ends for the two lines shown in Fig. 4(c). The output probabilities for the left and right ports at φ = −0.87π are around
Pl ≈ 83% and Pr ≈ 17%, respectively. For φ = 0, the two output probabilities are the same, i.e., Pl = Pr = 50%.

APPENDIX E: HONG-OU-MANDEL INTERFERENCE

In this Appendix we investigate two-photon interference.
Specifically, for the Hong-Ou-Mandel (HOM) interference,
two incident photons will always exit from the same port
for 50:50 beam splitters. Traditional linear beam splitters
do not alter the statistical properties of the input pho-
tons. However, this is not the case for our quantum beam
splitter.

For a two-photon interference, there are three types of
output states: (1) two photons both come out from the left
output port, (2) two photons both come out from the right
output port, and (3) two photons come out from two differ-
ent ports. The output probabilities are determined by output
two-photon wave function � (2)(X, X + τ ) with X � 
−1 and
τ → ∞. The output two-photon functions for the first two
cases have been obtained in Sec. D 3. In evaluating the two-
photon function � (2)(X1, X2), we have assumed |X1| > |X2|.
Our obtained two-photon wave functions are exchange sym-
metric, i.e., �

(2)
TS→λ(X1, X2) = �

(2)
TS→λ(X2, X1). Thus, to obtain

correct output probabilities, an extra factor 1/
√

2 should be
added due to the identity principle. The probabilities of the
three output cases are determined by the following wave

FIG. 7. (a) The output probabilities of the left port (red solid
curve) and the right port (blue dotted curve) for the two lines in
Fig. 4(c). (b) The effective g(2)(0) function for the Hong-Ou-Mandel
interference case p = 0.5
.

functions:

�̃TS→l (X − τ, X )|τ→∞ = e−i(k0+p)(2X−τ )

2π

√
2rr→l (p)tl→l (−p),

(E1)

�̃TS→r (X + τ, X )|τ→∞ = ei(k0+p)(2X+τ )

2π

√
2rl→r (−p)tr→r (p),

(E2)

and the wave function for the third case

�̃TS→TS(X + τ, X )|τ→∞

= 1

2π
ei(k0+p)τ [rr→l (p)rl→r (−p) + tl→l (−p)tr→r (p)].

(E3)

Using the relations (11) and (12) between the scattering coef-
ficients, we can verify the normalization condition,

|
√

2rr→l (p)tl→l (−p)|2 + |
√

2rl→r (−p)tr→r (p)|2

+ |rr→l (p)rl→r (−p) + tl→l (−p)tr→r (p)|2 = 1. (E4)

For HOM interference, both the reflection and transmission
rates are 50%. In this case, we can verify that the third term in
Eq. (E4) vanishes, and two photons always come out from the
same port.

The denominator of the g(2) function is characterized by the
weighted average of the square of the photon numbers

N2
l = 22|

√
2rr→l (p)tl→l (p)|2 + |rr→l (p)rl→r (−p)

+ tl→l (−p)tr→r (p)|2, (E5)

N2
r = 22|

√
2rl→r (−p)tr→r (p)|2 + |rr→l (p)rl→r (−p)

+ tl→l (−p)tr→r (p)|2. (E6)

The statistical properties of the two output photons can be
characterized by an effective g(2) function

g(2)
λ (τ ) = |�TS→λ(X, X + λτ )|2

N2
λ /(2π )2

. (E7)
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For τ = 0, we have

g(2)
l (0) = |1 − 
/(
 − ip)|2|rr→l (p)|2

N2
l

, (E8)

g(2)
r (0) = |1 − 
/(
 − ip)|2|rl→r (−p)|2

N2
r

. (E9)

Here we observe that the function g(2)(0) is parity sym-
metric as shown in Fig. 7(b), i.e., g(2)

l (0, φ) = g(2)
r (0, φ) =

g(2)
l (0,−φ). Furthermore, for resonant two-photon inter-

ference with p = 0, the output photons are always sub-
Poissonian with g(2)(0) = 0. However, the g(2)(τ ) functions
of the photons from the left and right ports behave differently.
Consequently, the parity symmetry of the g(2)(τ ) function has
been broken.

APPENDIX F: EXPERIMENTAL IMPLEMENTATION

In this Appendix we provide detailed insights into imple-
menting our proposed theoretical model within circuit QED
systems. Without loss of generality, we consider two planar
transmon qubits coupling to a coplanar waveguide [78,79].
The Hamiltonian governing the entire system is represented
by Ĥ ′ = Ĥ ′

a + Ĥp + Ĥ ′
int. Two artificial atoms under modula-

tion are described by

Ĥ ′
a = ω0σ̂

†
1 σ̂1 + (ω0 + � − A cos �t )σ̂ †

2 σ̂2

+ g′ cos(�t + φ′)(σ̂ †
1 σ̂2 + H.c.), (F1)

where � is the frequency difference between two qubits. To
achieve the parity-symmetry breaking atom-atom interaction
(1), we employ two phase-locked microwave drives operating
at the identical frequency � and tunable phase difference
φ′ to modulate the frequency of qubit 2 and the qubit-qubit
coupling, respectively. The frequency and coupling modu-
lation methods have been routinely used in circuit systems
[82–84,99]. The waveguide photon Hamiltonian is the same
as Ĥp = ∫

dk(ω0 + λk)b̂†
k,λ

b̂k,λ. The coupling of the qubits to

the waveguide is described by

Ĥ ′
int =

∑
i

ηiσ̂i

∫
dk

[
b̂†

k,re−i(k0+k)xi + b̂†
k,l e

i(k0−k)xi
]
, (F2)

where the strengths are denoted by η1 and η2 respectively.
Under the condition |�| � A, g′, we can simplify the

system Hamiltonian. In the rotating frame with respect to
ω0σ̂

†
1 σ̂1 + (ω0 + � − A cos �t )σ̂ †

2 σ̂2 + ω0
∫

dkb̂†
k,λ

b̂k,λ, we
have [93,100,101]

Ĥ ′
a = g′ cos(�t + φ′)

[
σ̂

†
1 σ̂2 exp

(
−i�t + i

A

�
sin �t

)
+ H.c.

]

≈ 1

2
g′

[
J0

(
A

�

)
eiφ′ + J2

(
A

�

)
e−iφ′

]
σ̂

†
1 σ̂2 + H.c. (F3)

≡ geiφσ̂
†
1 σ̂2 + H.c., (F4)

where Jn(x) is the nth Bessel function of the first kind,
g and φ are the modulus and argument of g′[J0( A

�
)eiφ′ +

J2( A
�

)e−iφ′
]/2, respectively, and we have used the Jacobi-

Anger expansion and neglected nonresonant terms in the
second step. Here we have successfully achieved the nonsym-
metric atom-atom coupling we aimed for. Both its strength g
and phase φ can be finely tuned in experiments.

The coupling between atom 1 and the waveguide photon
remains unchanged. However, the coupling between atom 2
and the photons undergoes changes:

Ĥ ′
int,2 = η2 exp

(
−i�t + i

A

�
sin �t

)

×
∫

dkσ̂2
[
b̂†

k,re−i(k0+k)x2 + b̂†
k,l e

i(k0−k)x2
]

(F5)

≈ η2J1

(
A

�

) ∫
dkσ̂2

[
b̂†

k,re−i(k0+k)x2 + b̂†
k,l e

i(k0−k)x2
]
.

(F6)

By tuning A and �, such that η2J1(A/�) = η1 = η, the inter-
action Hamiltonian Ĥ ′

int is reduced to Ĥint in Eq. (1).
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electro-optic frequency shifters and beam splitters, Nature
(London) 599, 587 (2021).

[20] K.-F. Chang, T.-P. Wang, C.-Y. Chen, Y.-H. Chen, Y.-S. Wang,
Y.-F. Chen, Y.-C. Chen, and I. A. Yu, Low-loss high-fidelity
frequency beam splitter with tunable split ratio based on
electromagnetically induced transparency, Phys. Rev. Res. 3,
013096 (2021).

[21] L. Tian and H. J. Carmichael, Quantum trajectory simulations
of two-state behavior in an optical cavity containing one atom,
Phys. Rev. A 46, R6801 (1992).
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A. Alù, and J. Vučković, Inverse-designed non-reciprocal
pulse router for chip-based LiDAR, Nat. Photon. 14, 369
(2020).

[92] N. T. Otterstrom, S. Gertler, E. A. Kittlaus, M. Gehl, A. L.
Starbuck, C. M. Dallo, A. T. Pomerene, D. C. Trotter, P. T.
Rakich, P. S. Davids, and A. L. Lentine, Nonreciprocal fre-
quency domain beam splitter, Phys. Rev. Lett. 127, 253603
(2021).

[93] L. Zhou, L.-P. Yang, Y. Li, and C. P. Sun, Quantum routing
of single photons with a cyclic three-level system, Phys. Rev.
Lett. 111, 103604 (2013).

[94] B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and
H. Kimble, A photon turnstile dynamically regulated by one
atom, Science 319, 1062 (2008).

[95] H. J. Carmichael, Statistical Methods in Quantum Optics 1:
Master Equations and Fokker-Planck Equations (Springer Sci-
ence & Business Media, New York, 2009), Chap. 1.

[96] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Methods
with Applications to Quantum Optics (Springer Science &
Business Media, New York, 2004).

[97] Z.-L. Zhang and L.-P. Yang, Limits of single-photon storage
in a single �-type atom, Phys. Rev. A 107, 063704 (2023).

[98] K. M. Gheri, K. Ellinger, T. Pellizzari, and P. Zoller, Photon-
wavepackets as flying quantum bits, Fortschr. Phys. 46, 401
(1998).

[99] M. Roth, M. Ganzhorn, N. Moll, S. Filipp, G. Salis,
and S. Schmidt, Analysis of a parametrically driven
exchange-type gate and a two-photon excitation gate be-
tween superconducting qubits, Phys. Rev. A 96, 062323
(2017).

[100] S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori, Two-
level systems driven by large-amplitude fields, Phys. Rev. A
75, 063414 (2007).

[101] A. Clerk, Introduction to quantum non-reciprocal interac-
tions: From non-Hermitian Hamiltonians to quantum master
equations and quantum feedforward schemes, SciPost Phys.
Lecture Notes 44 (2022).

023722-22

https://doi.org/10.1103/PhysRevLett.126.023603
https://doi.org/10.1126/science.1257671
https://doi.org/10.1103/PhysRevB.100.035311
https://doi.org/10.1103/PhysRevLett.130.013601
https://doi.org/10.1038/s41566-020-0606-0
https://doi.org/10.1103/PhysRevLett.127.253603
https://doi.org/10.1103/PhysRevLett.111.103604
https://doi.org/10.1126/science.1152261
https://doi.org/10.1103/PhysRevA.107.063704
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<401::AID-PROP401>3.0.CO;2-W
https://doi.org/10.1103/PhysRevA.96.062323
https://doi.org/10.1103/PhysRevA.75.063414
https://doi.org/10.21468/SciPostPhysLectNotes.44

