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We investigate the coherent interactions mediated by the coupled resonator waveguide between two types
of giant atoms. We find that the effective coupling and collective dissipation can be controlled on demand by
adjusting the configuration of the giant atoms. As a result, the external driving gives birth to a substantial steady-
state entanglement between two giant atoms, which exhibits a Rabi splitting character. In the three-giant-atom
setup, we find that the nonzero next neighbor atomic entanglement can surpass the neighbor ones and is able
to be adjusted by tuning the driving phase, which serves as an artificial magnetic field. The enhancement of
next neighbor atomic entanglement cannot be realized in the small-atom setup. We hope these controllable
interactions in giant-atom arrays are useful applications in the quantum information process.
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I. INTRODUCTION

The light-matter interaction plays a crucial role in funda-
mental science, supporting the rapid development of quantum
technology [1,2]. In the conventional treatment for the light-
matter interactions, the atoms are usually viewed as the
point-shaped dipoles [3]. However, the realization of coupling
between the superconducting transmon and the surface acous-
tic wave (SAW) has promoted the size of the matter (i.e., the
transmon) to be comparable to the wavelength of the SAW
[4] and the dipole approximation is broken [4–10]. Such a
paradigm is subsequently named “giant atom,” to differ from
the traditional “small atom.” The nonlocal coupling between
the giant atom and the waveguide promises to observe a
lot of fascinating phenomena, such as frequency-dependent
atomic relaxation rates and Lamb shifts [11–13], nonexponen-
tial atomic decay [14–16], exotic atom-photon bound states
[17–21], non-Markovian decay dynamics [22–26], and chiral
light-matter interactions [27–31]. Experimentally, the giant-
atom structures have also been realized in superconducting
quantum circuits [32,33], coupled waveguide arrays [34], and
ferromagnetic spin systems [35]. Besides, there are some the-
oretical proposals in cold atoms within the optical lattices [36]
as well as the synthetic frequency dimensions [37,38].

As for the multiple giant atoms, the waveguide can serve
as a data bus, to induce the coherent interaction [39], where
the geometrical configuration of the giant atom serves as a
sensitive controller. For the two-giant-atom setup, the braided
coupling [27,33,40], nested coupling [41,42] has been pre-
dicted to be useful in some quantum information processing
by constructing the decoherence-free interaction [42–44] and
generating robust entanglement [11,45–49].

*Contact author: wangzh761@nenu.edu.cn

In the viewpoint of the open quantum system, the wide
energy band structure of the coupled resonator waveguide
supplies an environment for the giant atom, to introduce the
possible individual and collective atomic dissipation. One of
the actionable concerned topics is the nonequilibrium dy-
namics of the open system which is subject to the external
driven and dissipation [50–55]. In this community, great ef-
forts have been made to realize steady-state entanglement
between quantum emitters for various quantum information
processing. For example, the remote multiple entanglement
scheme in two separated channels which are simultaneously
driven by parametric down-conversion processes is proposed
for the quantum network [56,57]. Moreover, the remote en-
tanglement has also been investigated in the giant-atom setup,
where the nonlocal coupling takes great roles [47,49,58,59].
In the above works, the “remote” usually refers to the fact
that the entangled emitters are distant from each other, but
leave the inside space empty. However, a more realistic need
in the quantum network is to realize the entanglement between
target nodes which are separated by other nodes, that is, the
non-nearest quantum nodes.

In this paper, we tackle the above issues by considering an
array of giant atoms which couple to the coupled resonator
waveguide. After tracing out the degree of freedom of the
waveguide, we reach three cases of effective interaction and
collective dissipation among the giant atoms. By controlling
the strength and the phase of the driving fields, we find that
the steady-state entanglement can be engineered on demand.
More interestingly, we find that there is the cyclic energy
diagram in the three-giant-atom setup. This allows the phase
of the external driving which serves as the artificial gauge field
[60–66] to enhance the next neighbor atomic entanglement
so as to surpass the neighbor atomic entanglement. It is not
possible in the small-atom counterpart.

The rest of the paper is organized as follows. In Sec. II,
we describe our model and discuss the controllable effective
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FIG. 1. Sketch of giant atoms coupled to a 1D coupled-resonator
waveguide, where two types of giant atoms are arranged alternately.
The odd (even) number of giant atoms are labeled as A (B) repre-
sented by an orange ball (yellow ball).

coupling and collective dissipation induced by the waveg-
uide. In Sec. III, we discuss the dynamic behavior and the
steady-state entanglement of the system in the two-giant-atom
configuration. In Sec. IV, we generalize to the three-giant-
atom setup and the steady-state entanglement behavior of
the system was discussed in comparison with the small-atom
configuration. In Sec. V, we discuss the manipulation of the
steady state entanglement by tuning the driving phase. In
Sec. VI, we provide a short summary and discussion. Some
detailed derivations of the master equation for giant atoms and
small atoms are given in the Appendixes.

II. MODEL AND MASTER EQUATION

We consider an array of two-level giant atoms which in-
teracts with a one-dimensional coupled-resonator waveguide
as sketched in Fig. 1. The giant atomic array is composed
of two types of giant atoms (labeled A and B in Fig. 1)
which are arranged alternately with numbers being N and M,
respectively, and each giant atom couples to the waveguide
at two sites. The Hamiltonian of the system is written as
H = Hc + Ha + HI (h̄ = 1),

Hc = ωc

∑
j

a†
j a j − ξ

∑
j

(a†
j+1a j + a†

j a j+1), (1)

Ha = �

2

∑
n

σ (n)
z + �

2

∑
m

�(m)
z , (2)

HI = g
∑

n

[(
a†

xn
+ a†

xn+tA

)
σ

(n)
− + H.c.

]
+ f

∑
m

[(
a†

ym
+ a†

ym+tB

)
�

(m)
− + H.c.

]
. (3)

Here ωc is the frequency of the resonators, a j is the annihila-
tion operator on site j, and ξ refers to the neighbor coupling
strength. The spacing between all neighboring resonators in
the coupled-resonator waveguide is set as the unit of length.
σ±(�±) are the Pauli operators of the giant atom A(B); �

is the transition frequency of the giant atom between the
ground state |g〉 and the excited state |e〉. Note that g, f
are the coupling strengths of A and B giant atoms with the
waveguide, respectively. tA(tB) characterizes the size of the
giant atom A(B). Giant atom A in the nth cell is coupled
to the waveguide at site xn and xn + tA, n = 1, 2, . . . , N .
Similarly, the coupling site of the B giant atom within the

same cell is ym and ym + tB, m = 1, 2, . . . , M. yi = xi + tA +
tI and xi = yi−1 + tB + tJ with the parameter tI , tJ being the
intracell atomic distance and the extra-cell atomic distance,
respectively.

Considering the length of the waveguide Nc → ∞, we can
rewrite the Hamiltonian of the system in momentum space. By
introducing the Fourier transformation aj = ∑

k akeik j/
√

Nc,
the Hamiltonian Hc becomes Hk = ∑

k ωka†
kak with the dis-

persion relation being given by ωk = ωc − 2ξ cos k. There-
fore, the waveguide supports a single-photon continual band
with center frequency ωc and a bandwidth 4ξ . In the momen-
tum space, the atom-waveguide coupling Hamiltonian HI is
expressed as

HI = g√
Nc

∑
n,k

[a†
k (e−ikxn + e−ik(xn+tA ) )σ (n)

− + H.c.]

+ f√
Nc

∑
m,k

[a†
k (e−ikym + e−ik(ym+tB ) )�(m)

− + H.c.]. (4)

Let us first consider the weak-coupling or broadband
limit g, f � ξ . In this regime, the waveguide modes can
be eliminated by adopting the Born-Markov approximation.
To obtain the master equation for the density matrix of the
giant atoms, we work in the momentum representation and
the interaction picture. Then, the interaction Hamiltonian HI

becomes [67]

HI = g
∑

n

[σ (n)
+ E (xn, t )ei�t + σ

(n)
+ E (xn + tA, t )ei�t + H.c.]

+ f
∑

m

[�(m)
+ E (ym, t )ei�t + �

(m)
+ E (ym + tB, t )ei�t

+ H.c.], (5)

where E (X, t ) = 1√
Nc

∑
k

e−iωkt eikX ak is the field operator at site

X and the master equation is formally written as [68]

d

dt
ρ(t ) = −

∫ ∞

0
dτ Trc{[HI (t ), [HI (t − τ ), ρc ⊗ ρ(t )]]}.

(6)
In what follows, we will consider that the giant atoms

are resonant with the bare resonator, that is, � = ωc. As a
result, we obtain a master equation for the reduced density
operator of the giant atoms (the detailed calculations are given
in Appendix A) as

·
ρ = −i[H, ρ]

+
∑
n,m

[
g2U (n,m)

11 (2σ
(n)
− ρσ

(m)
+ − σ

(m)
+ σ

(n)
− ρ − ρσ

(n)
+ σ

(m)
− )

+ f 2U (n,m)
22 (2�

(n)
− ρ�

(m)
+ − �
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+ �

(m)
− ρ − ρ�

(n)
+ �

(m)
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+ gf U (n,m)
12 (2σ

(n)
− ρ�

(m)
+ − σ

(n)
+ �

(m)
− ρ − ρσ
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+ gf U (n,m)
21 (2�

(n)
− ρσ
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+ − �

(n)
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(n)
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]
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(7)
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FIG. 2. Effective couplings and dissipations for three different cases. The first line is the schematic illustration of different systems of
the odd (even) number of atoms labeled as A (B) and represented by an orange (yellow) ball. The second line corresponds to a schematic
diagram of the corresponding effective coherent interaction, that is, the neighbor interaction (red solid line), the next neighbor interaction (blue
solid line), and the secondary neighbor interaction (green solid line). The third line shows the diagram of collective dissipation, in which the
dissipation between A atoms is represented by the red dashed line, the dissipation between B atoms is represented by the blue dashed line,
and the collective dissipation between A − B atoms is represented by the green dashed line. The red wave line is the independent dissipation
induced by the waveguide. The last line is the Lamb shift induced by the waveguide. J = g2/ξ with g = f being the coupling strength between
the giant atoms and the waveguide.

where the coherent coupling between the atoms is described
by the Hamiltonian

H =
∑
n,m

(
�

2
σ (n)

z + �

2
�(m)

z

)

+
∑
n,m

[g2I11σ
(n)
+ σ

(m)
− + f 2I22�

(n)
+ �

(m)
− ]

+
∑
n,m

[gf (I12σ
(n)
+ �

(m)
− + I21�

(n)
+ σ

(m)
− )]. (8)

In the above equations, we have defined Ui j = Re(Ai j ), Ii j =
Im(Ai j )(i, j = 1, 2) with

A11 =
∑

n

∑
m

1

2ξ
(2ei π

2 |xn−xm| + ei π
2 |xn−xm−tA| + ei π

2 |xn+tA−xm|),

(9)

A22 =
∑

n

∑
m

1

2ξ
(2ei π

2 |yn−ym| + ei π
2 |yn−ym−tB| + ei π

2 |yn+tB−ym|),

(10)

A12 =
∑

n

∑
m

1

2ξ
(ei π

2 |xn−ym| + ei π
2 |xn−ym−tB|

+ ei π
2 |xn+tA−ym| + ei π

2 |xn+tA−ym−tB|), (11)

A21 =
∑

n

∑
m

1

2ξ
(ei π

2 |yn−xm| + ei π
2 |yn−ym−tA|

+ ei π
2 |yn+tB−xm| + ei π

2 |yn+tB−xm−tA|). (12)

From the above formula, it can be seen that the coherent
interaction and the collective dissipation between the giant
atoms can be modulated by the size of each giant atom, that
is, the distance between the atom-waveguide coupling points.
For simplicity, we consider that the two kinds of giant atoms
couple to the waveguide via the same coupling strength at
each site and fix the atomic spacing to be uniform by setting
f = g, tI = tJ = 1.

By adjusting the size of the giant atoms on demand, we
can obtain the following three cases of effective coherent
couplings and collective dissipations, which are listed in
Fig. 2. Now, we illustrate them in detail. Case (I): when
tA = 2n + 1, tB = 4m + 2 with integral n, m = 0, 1, 2 . . ., we
find that A22 = 0, A12 = 0, and A21 = 0. Therefore, the B
giant atoms are totally decoupled from the waveguide due
to the interference effect between the two connecting points.
As for the A type giant atoms, they undergo the coherent
coupling, with both individual and collective dissipations.
Case (II): when tA = 2n + 1, tB = 2m + 1, the effective co-
herent couplings only exist between the different types of the
atoms. Meanwhile, the collective dissipation occurs between
the same types of the atoms except for their individual dis-
sipations. Case (III): when tA = 2n + 1, tB = 4m + 4, both
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FIG. 3. (a) Time evolution of the average value of the Pauli operators Pe(t ) = (〈σz〉 + 〈�z〉)/2. (b)–(g) Tomography of the state of the
system at different moments. The parameters are set as 
 = 0, g = f = 0.08ξ , and η = 0.2ξ .

of the two types of the giant atoms undergo the individual
dissipations. Moreover, the coupling and collective dissipa-
tions exist between both of the same and different types of
giant atoms. Besides the mentioned statements above, one
of the most intriguing differences between the coherent cou-
plings is that, in case (III), only three atoms are needed to
form the cyclic coupling, whereas in case (II) at least four
are needed.

Note that there are still three other configurations
which are not illustrated in Fig. 2. They are tA = 4n +
2, tB = 4m + 4, tA = 4n + 2, tB = 4m + 2 and tA = 4n +
4, tB = 4m + 4, respectively. For tA = 4n + 2, tB = 4m + 4
and tA = 4n + 2, tB = 4m + 2, both of the two types of the
giant atoms are totally decoupled from the waveguide with
A11 = A22 = A12 = A21 = 0. When tA = 4n + 4, tB = 4m +
4, it has the same form of the coherence coupling form as
case (II) in Fig. 2. Therefore, we will not discuss them in
what follows. Based on the three cases listed in Fig. 2, we
will discuss the dynamical behavior for the two- and three-
giant-atoms setup. The results for the small-atom setup will
be listed in Appendix B for comparison.

III. TWO GIANT ATOMS

In this section, we first discuss only the two-giant-atoms
setup, which are labeled by A and B, respectively. A general
master equation can be written as

ρ̇ = −i[H + Hd , ρ] + J1D[σ+,σ−]ρ + J2D[�+,�−]ρ

+ J3(D[σ+,�−]ρ + D[�+,σ−]ρ ), (13)

where H is the effective Hamiltonian and D[O1,O2]ρ =
2O2ρO1 − ρO1O2 − O1O2ρ. The Hamiltonian H and the co-
efficients Ji (i = 1, 2, 3) depend on the configuration of the
giant atoms. In the rotating frame, the driving Hamiltonian is

written as Hd = η(σ+ + �+ + H.c.). Here, the driving field
is applied directly to the atoms and does not cause the
interactions between the atoms. We will use the notation
HI(HII,HIII ) to represent the effective Hamiltonian for case
(I) [case (II) and case (III)].

For the (I) case of tA = 2n + 1, tB = 4m + 2 with integral
n, m = 0, 1, 2 . . ., the Hamiltonian is

HI = 
σz + 
�z + Jσ+σ−, (14)

where J = g2/ξ and 
 = � − ωd is the detuning between the
frequency of the giant atoms and the frequency of driving
field. The coefficients in the dissipation terms satisfy J1 = J
and Ji = 0 for i = 2, 3. We now consider that the two giant
atoms are both excited initially (|ψ (0)〉 = |e, e〉) and explore
the time evolution of the atomic populations. In Fig. 3(a), we
find that the system cannot reach a steady state even when
the evolution time tends to be infinity. The distinguished dy-
namics for the giant atoms can be explained by the cartoon
coupling scheme in the first column of Fig. 2. The two gi-
ant atoms are isolated from each other with neither effective
coupling nor collective decay. The giant atom A experiences
both the dissipation induced by the waveguide and the ex-
ternal driving field and eventually achieves its steady state.
On the contrary, the giant atom B is subject only to the
external driving field and exhibits the Rabi oscillation. We
further pick two points ξ t = 597 and ξ t = 589 among the
moments during the time evolution when the atomic popu-
lation achieves its maximum and minimum values in Fig. 3(a)
and tomograph the corresponding quantum state in Figs. 3(b)
and 3(e). It shows that the population exhibits a uniform
distribution diagonally for both of the two states. However,
unlike the obvious coherence in the bare basis of the two atom
ρeAgB,eAeB = 0.1712 as shown in Fig. 3(b), the coherence of
the steady state is ρeAgB,eAeB = 0.04 shown in Fig. 3(e). The
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FIG. 4. Giant atomic population evolution (a), (c) and the tomog-
raphy of the steady state (b), (d). The results for cases (II) and (III)
are demonstrated in (a), (b) and (c), (d), respectively. The parameters
are set as 
 = 0, g = f = 0.08ξ , and η = 0.2ξ .

latter one is only 0.2 times the former one, so the coherence
shown in Fig. 3(e) can be neglected. In Figs. 3(c), 3(d), 3(f),
and 3(g), we further illustrate the tomography of the reduced
density matrix ρA(B) = TrB(A)ρ in the two states in order to
investigate the states of the atoms A and B, respectively. At
these two moments, the states of the giant atom A are the
same as shown in Figs. 3(c) and 3(f), but the giant atom B
behaves differently as shown in Figs. 3(d) and 3(g). Therefore,
the unstable behavior originates from the isolated giant atom
B, which is continuously driven by the external driving field.

As shown in Fig. 2, the effective Hamiltonians for the (II)
and (III) cases become

HII = 
σz + 
�z + Jσ+σ− − J�+�− + J (σ+�− + �+σ−),

(15)

HIII = 
σz + 
�z + Jσ+σ− + J (σ+�− + �+σ−). (16)

The effective coupling is identical in both cases, while the
only differences come from the Lamb shift term induced by
the waveguide. As for the dissipation counterpart, we have
J1 = J2 = J, J3 = 0 for case (II) and J1 = J, J2 = 2J, J3 =
−J for case (III), respectively. Due to the similarity between
the above two effective Hamiltonians HII and HIII, we observe
that the system will undergo an initial oscillation and finally
reach the steady state in the (II) and (III) cases, whose dynam-
ics are demonstrated in Figs. 4(a) and 4(c), respectively. For
the steady state, the tomography results in Figs. 4(b) and 4(d)
show that they are almost the maximum mixed state without
obvious coherence terms.

We furthermore explore the steady-state entanglement
which is quantified by the concurrence of the state proposed
by Hill and Wootters [69]. For stronger driving strengths,
as can be obtained from the tomography in Figs. 4(b) and
4(d), the system is weakly coherent and is in the maximum

A

B

C

D

A

B

C

D

FIG. 5. Concurrence of the steady states for the case (II) in
(a) and the case (III) (b). The parameters are set as 
 = 0 and
g = f = 0.05ξ . Panels (c)–(f) are the tomography of the state at the
four black dots in (a) and (b).

mixing state but without entanglement. Therefore, we explore
the steady-state entanglement when the driving strength is
comparable to the effective coupling strength J . The results
for (II) and (III) cases are demonstrated in Figs. 5(a) and
5(b), respectively, under different driving strengths. When the
driving strength is η = 0.004ξ , we find the appearance of
the Rabi splitting in both of the cases, which indicates the
waveguide induced effective coupling between the two giant
atoms. When the driving field is resonant with the frequency
difference between the dressed states and the ground state, a
relative large entanglement can be achieved and the concur-
rence peaks locate at δ = ±√

2J . However, when the system
is subject to a weakly driven field of η = 0.002ξ , there are two
peaks in case (II) while they are fused into a single one in case
(III). This is because the dissipation rate of the giant atom B
is J2 = 2J , which is larger than that in case (II) with J2 = J .
On the other hand, due to the waveguide induced dissipation,
the steady state is a mixed state of the dressed states and the
ground state; therefore, the concurrence is much smaller than
1 as shown in Figs. 5(a) and 5(b). To demonstrate the state
more clearly, we tomograph the steady states in Figs. 5(c)–
5(f). When η = 0.002ξ , as shown in Figs. 5(c) and 5(d), the
probability of being in the dressed state is greater in Fig. 5(d)
than that in Fig. 5(c). Correspondingly, the entanglement in
Fig. 5(b) is larger than that in Fig. 5(a). Similarly, for η =
0.004ξ , the greater coherence in case (III) also corresponds to
a stronger entanglement.
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FIG. 6. (a), (b) Steady-state entanglement in the three-giant-atom
setting with case (II) and case (III), respectively. (c), (d) The steady-
state entanglement of the small-atom setup. The red dashed line gives
the results for the next neighbor entanglement as a function of drive
strength. The parameters are set as 
 = 0, g = f = 0.05ξ .

IV. THREE GIANT ATOMS

To explore the potential application of our proposal with
giant atoms in the quantum information processing, we gen-
eralize the above discussion to the setup consisting of three
giant atoms which are composed of two A type atoms (denoted
by A1 and A2, respectively) and one B type atom (denoted
by B1). Since the B type atom in case (I) is decoupled with
the waveguide, we here constrain ourselves to case (II) and
case (III). Then, the master equation for the giant atoms
is ρ̇ = −i[Hi, ρ] + Diρ (i = II, III), where the corresponding
effective Hamiltonians and the dissipative terms in the rotating
frame are respectively

HII = 
(σ (1)
z + σ (2)

z ) + 
�(1)
z + J (σ (1)

+ σ
(1)
− + σ

(2)
+ σ

(2)
− )

− J�
(1)
+ �

(1)
− + J (σ (1)

+ �
(1)
− + �

(1)
+ σ

(2)
− + H.c.), (17)

DIIρ = JD[σ (1)
+ ,σ

(1)
− ]ρ + JD[σ (2)

+ ,σ
(2)
− ]ρ + JD[�(1)

+ ,�
(1)
− ]ρ

− J
(

D[σ (1)
+ ,σ

(2)
− ]ρ + D[σ (2)

+ ,σ
(1)
− ]ρ

)
, (18)

and

HIII = 

(
σ (1)

z + σ (2)
z

) + 
�(1)
z + J (σ (1)

+ σ
(1)
− + σ

(2)
+ σ

(2)
− )

+ J (σ (1)
+ �

(1)
− + �

(1)
+ σ

(2)
− − σ

(1)
+ σ

(2)
− + H.c.), (19)

DIIIρ = JD[σ (1)
+ ,σ

(1)
− ]ρ + JD[σ (2)

+ ,σ
(2)
− ]ρ + 2JD[�(1)

+ ,�
(1)
− ]ρ

− J
(

D[σ (1)
+ ,�

(1)
− ]ρ + D[�(1)

+ ,σ
(1)
− ]ρ

)
− J

(
D[σ (2)

+ ,�
(1)
− ]ρ + D[�(1)

+ ,σ
(2)
− ]ρ

)
. (20)

In Figs. 6(a) and 6(b), we plot the two atom steady-state
entanglement as a function of the drive strength for cases
(II) and (III), respectively. Correspondingly, the waveguide
induced effective atomic couplings are demonstrated in the
inset. In both cases, the entanglements between the neigh-
bor atoms (A1B1 and B1A2) agree with each other and are
larger than that of the next neighbor ones. The difference is
reflected in the next neighbor atomic entanglement. For the
weak driving, a more pronounced next neighbor entanglement
can be generated in case (III) as shown in the shaded regime
of Figs. 6(a) and 6(b). The significant difference stems from
the waveguide induced atomic coupling. In case (II), there
is only the neighbor atomic coupling with strength J . For
case (III), we further find the next neighbor atomic coupling
with strength −J and it forms a cyclic coupling. Therefore,
compared to case (II), there is more next neighbor atomic
entanglement in case (III). When the driving strength is further
increased to be greater than the effective coupling strength in-
duced by the waveguide, the neighbor entanglement vanishes
so that the system is in a maximally mixed state, which is
consistent with the discussion in Figs. 4 and 5.

As a comparison, we also discuss the steady-state entangle-
ment when an array of small atoms couple to the waveguide
via a single coupling site for each atom. Here, we consider
that two neighboring small atoms (labeled a and b) consti-
tute a unit cell, with both the intracell and extra-cell atomic
distances being adjustable on demand. The Hamiltonian of
the small atom setup and the master equation is given in
Appendix B. There exist two coupling cases which are listed
in Fig. 10. Correspondingly, the steady-state concurrence as
a function of the driving strength and the effective interatom
coupling is plotted in Figs. 6(c) and 6(d). It shows that, for
both of the two cases, the next neighbor atomic entanglement
is always zero, due to the absence of the cyclic coupling
configuration.

V. ENTANGLEMENT MANIPULATION BY ARTIFICIAL
MAGNETIC FIELD

In the above section, we find an intriguing phenomena that
the giant atom system will generate the atomic entanglement
even between the next neighbor atom pairs. It is natural to
further explore how to manipulate the degree of entanglement.
One approach is to induce the phase in the driven field, which
serves as the artificial magnetic fields [63–66]. Due to the
cyclic coupling, the phase difference between different atoms
cannot be eliminated by any gauge transformation. Therefore,
we write the driving Hamiltonian in the rotating frame as

Hd =
∑
n,m

η(σ (n)
+ + �

(m)
+ e−iφ + H.c.), (21)

with the strength η and the phase φ. Phenomenally, we ap-
proximate that the other parts in the effective Hamiltonian and
the master equation are not changed by the phase φ.

We begin with the two atom setup, where the modulation
of entanglement via the artificial magnetic field (the driving
phase cannot be eliminated by canonical transformation) is
demonstrated in Fig. 7 for both giant- and small-atom config-
urations. A general result is that the modulation to the giant
atomic configuration is more obvious than that to the small
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FIG. 7. Steady-state entanglement modulated by artificial mag-
netic field for the case of the giant atoms and the small atoms. The
green dashed line and purple dashed line correspond to case (II) and
case (III) geometric configurations in the giant-atom configuration,
respectively. The blue solid line and red star line represent the results
for small atoms. The parameters are set as 
 = 0, g = f = 0.06ξ ,
and η = 0.002ξ .

atoms. Therefore, the giant-atom system provides us with an
approach to tune the entanglement with a wider regime via
the artificial magnetic field. As we have already discussed
in Sec. III, the effective coupling of the two giant atoms is
the same in cases (II) and (III). However, the presence of

the larger individual dissipation of the B atom in case (III)
with J2 = 2J makes the concurrence decrease rapidly with
the modulation of the driving phase, as shown by the purple
dashed line in Fig. 7. Furthermore, the two cases listed in
Fig. 10 for two small atoms are the same with each other;
therefore, the curves for the small atoms coincide with each
other. Case (II) in the giant-atom configurations has the simi-
lar form as in the small-atom configurations, as listed in Fig. 2
and Fig. 10. Therefore, the significant difference in the mod-
ulation is originated from the waveguide-induced Lamb shift
of the giant atoms, which is not achievable in the small-atom
configurations.

Next, let us move to the system with three atoms and
compare the steady-state entanglement between the giant-
and small-atoms setups. In the upper panel of Figs. 8(a)–
8(d), we illustrate the entanglement for cases (II), (III) in
the giant-atom setups and cases (I), (II) in the small-atom
setups and the corresponding energy-level diagrams are also
given in the lower panel. In the energy diagram, we define
the states |ψA(a)1〉 = |e, g, g〉, |ψB(b)1〉 = |g, e, g〉, |ψA(a)2〉 =
|g, g, e〉, and |ψ0〉 = |g, g, g〉. Here, the capital letters A and B
represent the giant atoms while the lowercase letters a and
b represent the small atoms. The blue (green) solid arrows
represent the driving field (waveguide) induced transitions and
the yellow dashed arrows are the waveguide induced atomic
collective dissipations.

We first discuss the setup with three giant atoms, in
which both the neighbor atomic entanglement [Css(A1B1) =
Css(B1A2)] and the next neighbor atomic entanglement
[Css(A1A2)] can be effectively modulated by the artificial mag-
netic field. This can be explained by the cyclic energy diagram

0.1

0.2

0.3

0.4

0.5

0

FIG. 8. Steady-state entanglement modulated by an artificial magnetic field for the case of the giant atoms (a), (b) and the small atoms
(c), (d). The red dashed line represents the next neighbor entanglement. The blue solid line and orange dashed line represent the neighbor
entanglement. The parameters are set as 
 = 0, g = f = 0.08ξ , and η = 0.002ξ . The lower part is the diagram of the energy levels
corresponding to the geometric configuration. The blue line represents the extra driving field, the green line represents the atomic coupling
induced by the waveguide, and the yellow dashed line represents the associated dissipation.
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as shown in the lower panel of Figs. 8(a) and 8(b). For case
(II) represented by Fig. 8(a), the presence of the driving field
leads to the cyclic diagram to the system. For case (III), we
can also observe the |ψA1〉 → |ψB1〉 → |ψA2〉 → |ψ0〉 cycle
which is the same as case (II). Furthermore, there exists an-
other |ψA1〉 → |ψB1〉 → |ψA2〉 cycle which is induced only
by the waveguide induced atomic coupling and is denoted
by the black circle in the lower panel of Fig. 8(b). Due to
these cyclic transitions, the atomic entanglement can be sig-
nificantly modulated by the artificial magnetic field and even
the next neighbor entanglement can surpass those of neighbor
ones, which is exhibited in the shaded regime of the upper
panel of Figs. 8(a) and 8(b). It is worth noting that the next
neighbor entanglement in Fig. 8(b) is smaller than that in
Fig. 8(a). This is due to the weakened role of the black closed
cycle constituted by the waveguide interactions in Fig. 8(b).

The results for three small-atom setups are given in
Figs. 8(c) and 8(d) for cases (I) and (II), respectively. Here, the
cyclic transition |ψA1〉 → |ψB1〉 → |ψA2〉 → |ψ0〉 is formed in
case (II) [as shown in Fig. 8(d)] but not in case (I) [as shown
in Fig. 8(c)]. Therefore, the next neighbor entanglement is
always zero in the latter case but can be manipulated by the
artificial magnetic field in the former case.

Combining the four cases, only the presence of the red
closed cycle in Fig. 8 allows the manipulation of next neigh-
bor entanglement. Comparing Figs. 8(b) and 8(c), the closed
cycles containing neighbor atoms are all present (|ψA1〉 →
|ψA2〉 → |ψ0〉), but the absence of the red closed cycle makes
manipulation of the next neighbor entanglement in Fig. 8(c)
impossible. One should also note that the −J for |ψb1〉 →
|ψa2〉 transition in Fig. 8(d) instead of the J for |ψB1〉 →
|ψA2〉 transition in Fig. 8(a) results in modulation of the next
neighbor entanglement being not significant in Fig. 8(d). On
the other hand, in the small-atoms cases, the next neighbor
entanglement is not only smaller than the counterpart in the
giant atom but also smaller than the neighbor ones. Therefore,
the giant-atom system is of great potential to obtain and ma-
nipulate the atomic entanglement.

VI. CONCLUSION

In this paper, we have proposed a scheme to realize the con-
trollable coupling and collective dissipation among the giant
atoms, which is mediated by the coupled resonator waveguide.
In the microwave regime, the working frequency transmission
line resonator is in the order of GHz; the photonic hopping
strength between the neighbor site ξ can achieve hundreds of
MHz [70,71]. With the platform of superconducting materials,
the controllable coupled resonator waveguide has also been
realized by the high-impedance microwave resonators and,
by expanding the capacitively coupled lumped element, the
nearest hopping strength has been achieved from 50 MHz to
200 MHz [72–74]. The giant atom was initially realized at
the surface acoustic wave platform by coupling a supercon-
ducting transmon quantum qubit [4]. With the development
in microwave superconducting materials, the giant atom was
also achieved by coupling artificial atoms made of Josephson
junctions into superconducting circuits through capacitance
or inductance. In such systems, the coupling strength g is

much smaller than the hopping strength ξ with the existing
technology [75–77].

In conclusion, we have investigated the engineering of the
interaction and entanglement among the driven giant atoms
via tuning of their geometric configurations. By adjusting the
artificial magnetic field, the next neighbor atomic entangle-
ment can be further enhanced and is expected to surpass the
neighbor ones in the giant-atoms system in principle. This
entanglement is limited by the fact that the waveguide induced
dissipation is in the same order of magnitude as the effec-
tive coupling strength. Actually, both the neighbor and next
neighbor atomic entanglement is hopefully enhanced with the
assistance of some strategies, for example, to induce the direct
atomic interaction or designing the giant-atom array system to
support strong entanglement via the quantum phase transition,
etc. Since the giant-atom setup is mainly realized in super-
conducting circuits, which are widely used to design kinds of
coupling schemes, these proposals are potentially achievable
in experiment. This next neighbor atomic enhancement is not
found in the small-atom setup and it is expected that it will
be useful in constructing the quantum network and realizing
quantum information processing.
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APPENDIX A: MASTER EQUATION FOR GIANT-ATOM
SETUP

In this Appendix, we outline the derivation of the master
equation (7), which governs the dynamics of the system by
considering the coupling resonator waveguide as the environ-
ment. In the interaction picture, the interaction Hamiltonian
can be rewritten as follows:

HI = g
∑

n

[σ (n)
+ E (An, t )ei�t + H.c.]

+ f
∑

m

[�(m)
+ E (Bm, t )ei�t + H.c.], (A1)

where

E (An, t ) = 1√
Nc

∑
k,n

ake−iωkt (eikxn + eik(xn+tA ) ),

E (Bm, t ) = 1√
Nc

∑
k,m

ake−iωkt (eikym + eik(ym+tB ) ). (A2)

Under the Markov approximation and in the interaction pic-
ture, the formal master equation for the quantum open system
reads [68]

·
ρ(t ) = −

∫ ∞

0
dτ Trc{[HI (t ), [HI (t − τ ), ρc ⊗ ρ(t )]]}. (A3)
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Since we are working at zero temperature, the waveguide
is in its vacuum state initially. Therefore, we will have
Trc[E†(X, t )E (X, t − τ )ρc] = 0. Back to the Schrödinger pic-
ture, the above equation becomes

ρ̇ =
∑

n

∑
m

{
− i

[
�

2
σ n

z + �

2
�m

z , ρ

]

+ (A11 + A∗
11)σ n

−ρσ m
+ − A11σ

n
+σ m

− ρ − A∗
11ρσ n

+σ m
−

+ (A22 + A∗
22)�n

−ρ�m
+ − A22�

n
+�m

−ρ − A∗
22ρ�n

+�m
−

+ (A12 + A∗
12)σ n

−ρ�m
+ − A12σ

n
+�m

−ρ − A∗
12ρσ n

+�m
−

+ (A21 + A∗
21)�n

−ρσ m
+ − A21�

n
+σ m

− ρ − A∗
21ρ�n

+σ m
−

}
,

(A4)

where

A11 = g2
∫ ∞

0
dτ ei�τ Trc

(∑
n

∑
m

E (An, t )E†(Am, t − τ )ρc

)

= g2
∑

n

∑
m

∫ ∞

0
dτ ei�τ Trc{[(E (xn, t ) + E (xn + tA, t ))

× (E†(xm, t − τ ) + E†(xm + tA, t − τ ))]ρc}

= g2
∑

n

∑
m

∫ ∞

0
dτ ei�τ Trc[E (xn, t )E†(xm, t − τ )ρc

+ E (xn, t )E†(xm + tA, t − τ )ρc

+ E (xn + tA, t )E†(xm, t − τ )ρc

+ E (xn + tA, t )E†(xm + tA, t − τ )ρc]. (A5)

We can see that the integral in the above equation in-
volves four terms. Let us take one of them for example to
show our calculation. The first term of the above equation
is [67]

∑
n

∑
m

∫ ∞

0
dτ ei�τ Trc[E (xn, t )E†(xm, t − τ )ρc]

=
∑

n

∑
m

∫ ∞

0
dτ

ei�τ

Nc

× Tr

⎡
⎣∑

k,k′
e−iωkt eikxn akeiωk′ (t−τ )e−ik′xm a†

k′ρc

⎤
⎦

=
∑

n

∑
m

∫ ∞

0

dτ

Nc

∑
k

[e−i(ωk−�)τ e−ik(xm−xn )]

=
∑

n

∑
m

∫ ∞

0

dτ

Nc

Nc−1∑
n=0

e−i
cτe
−2π i(xm−xn )nc

Nc e2iξ cos( 2πnc
Nc

)τ

=
∑

n

∑
m

∫ ∞

0
dτ

e−i
cτ

Nc

Nc−1∑
n=0

e
−2π i(xm−xn )nc

Nc

×
∞∑

j=−∞
i jJj (2ξτ )ei2πnc j/Nc

=
∑

n

∑
m

∫ ∞

0
dτ e−i
cτ i|xn−xm|J|xn−xm|(2ξτ )

=
∑

n

∑
m

1

2ξ
ei π

2 |xn−xm|. (A6)

In the above calculations,we have considered that the giant
atom is resonant with the bare resonator (
c = ωc − � = 0)
and apply the formula∫ ∞

0
dτ Jj (aτ ) = 1

|a| . (A7)

Therefore, we will finally achieve Ai j = ∑
n,m A(n,m)

i j , where

A(n,m)
11 = 1

2ξ
(2 ei π

2 |xn−xm| + ei π
2 |xn−xm−tA| + ei π

2 |xn+tA−xm|).

(A8)

A(n,m)
22 = 1

2ξ
(2 ei π

2 |yn−ym| + ei π
2 |yn−ym−tB| + ei π

2 |yn+tB−ym|).

(A9)

A(n,m)
12 = 1

2ξ
(ei π

2 |xn−ym| + ei π
2 |xn−ym−tB|

+ ei π
2 |xn+tA−ym| + ei π

2 |xn+tA−ym−tB|), (A10)

A(n,m)
21 = 1

2ξ
(ei π

2 |yn−xm| + ei π
2 |yn−xm−tA|

+ ei π
2 |yn+tB−xm| + ei π

2 |yn+tB−xm−tA|). (A11)

After regrouping the terms, we will get the final form which
is given in Eq. (12) of the main text.

APPENDIX B: MASTER EQUATION FOR SMALL-ATOM
SETUP

In the main text, we compare and discuss the configuration
of giant atoms with that of small atoms. Here, we provide a
specific model and master equation form for the considered
small-atom configuration and briefly discuss them. Similarly,
we consider the interaction between a small atomic array
composed of two-level atoms and a one-dimensional coupled-
resonator waveguide. We consider the array composed of
small atoms, where two neighboring small atoms form a pro-
tocell, labeled a and b, respectively, with different inter- and
extra-cell atomic distance which can be adjusted, sketched in
Fig. 9. Giant atoms can be coupled to the waveguide through
multiple sites, while each small atom can only be coupled to
the waveguide via only one site. In the small-atom configura-
tion, the Hamiltonian of the system is written as

Hc = ωc

∑
j

a†
j a j − ξ

∑
j

(a†
j+1a j + a†

j a j+1), (B1)

H = Hc + �

2

∑
n

ν (n)
z + �

2

∑
m

τ (m)
z

+
∑
n,m

[
ga†

xn
ν

(n)
− + f a†

ym
τ

(m)
− + H.c.

]
. (B2)
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FIG. 9. Small atoms coupled to a 1D coupled-resonator waveg-
uide. We label the odd number of small atoms as a (orange ball) and
the even number of small atoms as b (yellow ball).

Here, xn and ym are the coupling site between the small atoms
and the one-dimensional coupled-resonator waveguide. The
parameters ti, t j are the intracell atomic distance and the extra-
cell atomic distance, respectively. After the same derivation
process, we can obtain the master equation for small atoms:

·
ρ = −i[H, ρ]

+
∑
n,m

[
g2U (n,m)

11 (2ν
(n)
− ρν

(m)
+ − ν

(m)
+ ν

(n)
− ρ − ρν

(n)
+ ν

(m)
− )

+ f 2U (n,m)
22 (2τ

(n)
− ρτ

(m)
+ − τ

(n)
+ τ

(m)
− ρ − ρτ

(n)
+ τ

(m)
− )

+ gf U (n,m)
12 (2ν

(n)
− ρτ

(m)
+ − ν

(n)
+ τ

(m)
− ρ − ρν

(n)
+ τ

(m)
− )

+ gf U (n,m)
21 (2τ

(n)
− ρν

(m)
+ − τ

(n)
+ ν

(m)
− ρ − ρτ

(n)
+ ν

(m)
− )

]
,

(B3)

where the coherent coupling between the atoms is

H =
∑
n,m

(
�

2
ν (n)

z + �

2
τ (m)

z

)

+
∑
n,m

[g2I11ν
(n)
+ ν

(m)
− + f 2I22τ

(n)
+ τ

(m)
− ]

+
∑
n,m

[gf (I12ν
(n)
+ τ

(m)
− + I21τ

(n)
+ ν

(m)
− )]. (B4)

FIG. 10. Effective couplings and dissipations for two different
cases. The first line is the simple illustration of different systems. The
second line is a schematic diagram of the corresponding effective
coherent interaction. The last line shows the diagram of effective
dissipation.

In the above equations, we have defined Ui j =∑
n,m Re(A(n,m)

i j ), Ii j = ∑
m,n Im(A(n,m)

i j )(i, j = 1, 2), where

A(n,m)
11 = 1

2ξ
ei π

2 |xn−xm|,

A(n,m)
11 = 1

2ξ
ei π

2 |yn−ym|,

A(n,m)
12 = A(n,m)

21 = 1

2ξ
ei π

2 |xn−ym|. (B5)

The form of interaction between small atoms is also related
to the spacing between them. For convenience, we fix the
intracellular distance as ti = 1. By changing the intercellular
distance t j , we find that there are two cases of interac-
tions for small atoms, as shown in Fig. 10. We present the
geometric configurations of two cases of interaction and their
corresponding associated dissipation. For the two small-atom
configurations, it can be visually seen from Fig. 10 that there is
no cyclic coupling structure as the giant-atom configuration.

With the two atoms setup, the master equation for the (I)
and (II) cases becomes

ρ̇ = −i[HI + Hd , ρ] + JD[ν+,ν−]ρ + JD[τ+,�−]ρ, (B6)

HI = 
νz + 
�z + J (ν+τ− + τ+ν−) (B7)

and

ρ̇ = −i[HII + Hd , ρ] + JD[ν+,ν−]ρ + JD[τ+,τ−]ρ, (B8)

HII = 
νz + 
τz + J (ν+τ− + τ+ν−), (B9)

where H is the effective Hamiltonian and D[O1,O2]ρ =
2O2ρO1 − ρO1O2 − O1O2ρ. In the rotating frame, the driv-
ing Hamiltonian is written as Hd = η(ν+ + τ+ + H.c.).

The master equation for the three atoms setup is ρ̇ =
−i[Hi, ρ] + Diρ (i = I, II), where the corresponding effec-
tive Hamiltonians and the dissipators in the rotating frame are
respectively

HI = 

(
ν (1)

z + ν (2)
z

) + 
τ (1)
z

+(Jν
(1)
+ τ

(1)
− − Jν

(1)
+ ν

(2)
− + H.c.), (B10)

DIρ = JD[ν (1)
+ ,ν

(1)
− ]ρ + JD[ν (2)

+ ,ν
(2)
− ]ρ + JD[τ (1)

+ ,τ
(1)
− ]ρ

− J (D[τ (1)
+ ,ν

(2)
− ]ρ + D[ν (2)

+ ,τ
(1)
− ]ρ ) (B11)

and

HII = 

(
ν (1)

z + ν (2)
z

) + 
τ (1)
z

+ (Jν
(1)
+ τ

(1)
− − Jτ

(1)
+ ν

(2)
− + H.c.), (B12)

DIIρ = JD[ν (1)
+ ,ν

(1)
− ]ρ + JD[ν (2)

+ ,ν
(2)
− ]ρ + JD[τ (1)

+ ,τ
(1)
− ]ρ

− J (D[ν (1)
+ ,ν

(2)
− ]ρ + D[ν (2)

+ ,ν
(1)
− ]ρ ). (B13)
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