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Multimode array filtering of resonance fluorescence
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We present a frequency-filtering method for measuring and calculating frequency-filtered photon correlations.
This method is a cavity-based system we call the multimode array filter, which consists of an array of tunable
single-mode cavities that are equally spaced in frequency. By introducing a mode-dependent phase modulation,
we produce a near rectangular frequency response, allowing us to increase the filter bandwidth—and thus the
temporal response—without sacrificing frequency isolation. We model the frequency filtering using a cascaded
quantum open systems approach which completely neglects any back-action of the filter onto the source system.
This allows us to derive a closed set of operator moment equations for source and filter system operators,
thus providing an extremely efficient method to calculate frequency-filtered first- and second-order correlation
functions. We demonstrate this filtering method by applying it to a resonantly driven two-level atom. We present
examples of frequency-filtered power spectra to demonstrate the improved frequency isolation of the multimode
array filter over the single-mode filter. We then present results for the single-mode and multimode array filtered
second-order auto- and cross-correlation functions. These are compared against expressions derived in the
secular approximation. The improved frequency isolation of the multimode array filter allows us to investigate
new regimes of frequency-filtered photon correlations, such as two-photon leapfrog processes, and the effect of
vanishing bandwidth on filtered autocorrelation functions.
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I. INTRODUCTION

Resonance fluorescence of a driven two-level atom is one
of the simplest examples of light interacting with matter, yet
it has also played a hugely important role in the development
of quantum optics. It was found that, upon strong coherent
excitation, the fluorescence spectrum splits into three compo-
nents, known as the “Mollow triplet” [1,2]. Around the same
time of Mollow’s work, there were also investigations into
the quantum nature of the emitted light, based on Glauber’s
photon correlation work [3,4]. It was shown that the emitted
photons are antibunched—an entirely quantum effect [5–8].

The majority of studies on atomic resonance fluorescence
at this time were largely focused on the entire fluorescence
spectrum of the atom. It was at the end of the 1970s when
some of the first investigations were conducted on correlations
between photons from different components of the Mollow
triplet, as opposed to the whole spectrum [9–13], with the
first experimental results reported by Aspect, Roger, Dalibard,
and Cohen-Tannoudji [14]. To achieve the separation of the
two side-peaks, the atomic fluorescence was split into two
channels, with each channel passing through an interference
filter tuned to the respective target frequency, and modeled
as a single-mode optical cavity [15–17]. Filtering such as
this is essential to the measurement of frequency-resolved
photon correlations as, typically, photon detectors are broad
bandwidth, and essentially nonselective in frequency.

*Contact author: j.ngaha@auckland.ac.nz

With this increased interest in measuring photon correla-
tions of frequency components came interest in the effect that
spectral filtering had on measurements [18–22], as well as
interest in other methods of calculating and measuring these
correlations. In 2012, del Valle et al. proposed a novel method
for measuring frequency-resolved photon correlations [23],
consisting of a system of interest weakly coupled to N two-
level “detector” atoms, where N is the order of the correlation
function of interest. This method has been used extensively in
theoretical studies due to its relatively simple implementation
[24–30]. There have been other methods discussed over the
years, some with more theoretical leaning, such as signal pro-
cessing methods [31], perturbation approaches [32], and fre-
quency resolved Monte Carlo or quantum trajectory methods
[33–35]. Some other methods, such as the eigenvalue decom-
position of Liouvillian superoperators developed by Kamide
et al. [36,37], allow for the modeling of not only Lorentzian
type filters, but for filters with any frequency response.

While there is no single method of frequency filtering
that is ideal for every application, there are also some issues
with the previously mentioned methods. The most common
and perhaps most intuitive method of frequency filtering
is the tunable interferometer. The main downside to this
method, however, is the Lorentzian frequency response of
the filter—a response that is also shared with the detector
atom approach—due to the far reaching tails of the Lorentzian
distribution, which, in fact, never decay entirely. For multi-
chromatic sources, such as the Mollow triplet, the tails of
the frequency response can readily overlap with nontarget
frequency components. As the bandwidth of a frequency
filter is inversely proportional to its temporal response, and
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faster temporal responses are required for accurate correlation
measurements, there will always be a tradeoff between fre-
quency isolation and temporal resolution with a Lorentzian
filter. A sought-after aim, therefore, is to develop a realistic
frequency filter model with a much sharper frequency re-
sponse than a standard Lorentzian, such as a rectangular filter.

We also desire that the filter has no effect on the evolution
of the source system. This is usually achieved by assuming
a vanishingly small coupling of the source system to the
filter, such that any back-action can be neglected. Holdaway
et al. [32] take this approximation a step further with an
algebraic expansion of the source-filter system with respect
to the coupling parameter. We can, however, ensure there is
no back-action at all by cascading the output of the source
system into the filter, using cascaded open quantum systems
theory [38,39]. This can be achieved experimentally through
the use of forward propagating waveguides, ring cavities, op-
tical isolators, or beam splitters.

In this paper, we will introduce our solution to these
problems: the multimode array filter, which consists of an
array of tunable, single-mode cavities. The output of a source
system is cascaded equally into each mode, where a mode-
dependent phase modulation is applied. The outputs of all
modes are then combined, allowing an interference which
results in an approximately rectangular frequency response.
To ensure a rectangular frequency response, we consider a
large number of modes in the array, and thus calculations can
be very computationally expensive. We therefore employ a
further, uncommon approach to calculating these frequency-
filtered second-order correlation functions, by deriving rate
equations for the expectation values of the detection oper-
ators. With no back-action of the array filter on the source
system, these operator—or moment—equations, form an ef-
fective coupling hierarchy where higher order moments are
only dependent on lower orders. We can then solve for exact
solutions of the moment equations extremely efficiently.

We begin in Sec. II by introducing the foundations of our
filtering model, including a brief discussion of single-mode
cavities and rectangular filters. We then present analytic and
numerical results for the temporal and frequency response of
the multimode array filter for different parameters. In Sec. III
we review the dynamics and key phenomena of a resonantly
driven two-level atom, which will serve as the source system
with which to test the effectiveness of the filter. We then
introduce the full atom-filter coupled system in Sec. IV and
the moment equations relevant to solving for the two-time
correlation functions. In Sec. V we present analytic results
for frequency-filtered auto- and cross-correlations, comparing
the multimode array filtered results with those of a standard
Lorentzian filter and approximate ideal solutions derived in
the dressed-state basis. Finally, we conclude in Sec. VI with
a summary of key results and a brief discussion on possible
experimental implementations.

II. FREQUENCY FILTERING THROUGH
OPTICAL CAVITIES

A. Single-mode Lorentzian filter

We begin by considering a standard frequency filtering
device, modeled as a single-mode cavity. Applying a coherent

driving, with driving strength Ed , the Hamiltonian modeling
this system is

HF = h̄ωca†a + ih̄(Ed e−iωt a† − E∗
d eiωt a), (1)

where ωc is the central resonance frequency of the cavity
mode, ω is the frequency of the driving field, and a† (a)
is the photon creation (annihilation) operator for the single-
cavity mode. We account for photon loss, at rate 2κ , with the
quantum optical master equation for the cavity mode density
operator ρ,

dρ

dt
= 1

ih̄
[HF , ρ] + κ�(a)ρ, (2)

with Lindblad superoperator,

�(X )• = (2X • X † − X †X • − • X †X ). (3)

We assume the cavity to initially be in the vacuum state, and
derive the equation of motion for the coherent state amplitude
of the cavity mode as

d

dt
α = −(κ + iωc)α + Ed eiωt , (4)

which, in the long time limit t → ∞, has solution

α(ω, t ) = Ed e−iωt

κ − i(ω − ωc)
. (5)

The frequency response of the single-mode cavity is, as ex-
pected, a simple Lorentzian, with half-width κ ,

|α(ω)|2 = |Ed |2
κ2 + (ω − ωc)2

. (6)

We therefore arrive at the main issue with single-mode cavi-
ties: the Lorentzian distribution. The filter bandwidth, 2κ , is
inversely proportional to the mean lifetime of a photon inside
the cavity. A faster temporal response, which is ideal for mea-
suring accurate photon correlations, therefore requires a larger
bandwidth, yet the tails of the Lorentzian distribution extend
far from the central frequency. If the source system of interest
emits photons over a range of frequencies, as we consider in
this paper, the frequency response of a single-mode filter may
overlap with nontarget frequencies. Decreasing the bandwidth
to reject these nontarget frequencies then increases the mean
photon lifetime, resulting in less accurate frequency-filtered
photon correlations.

B. The rectangular filter

Our ultimate goal is to develop a cavity-based frequency
filter that allows us to pick specific frequency components of
a general source system’s spectrum and measure photon corre-
lations. We take inspiration from an ideal bandpass model, i.e.,
the sinc filter—also known as the rectangular filter—which
results from the Fourier transform of the sinc function in the
time domain:

Rect(ω) = a

2π

∫ ∞

−∞

sin(at )

at
eiωt dt

=

⎧⎪⎨
⎪⎩

0, a < |ω|,
1
4 , |ω| = a,
1
2 , |ω| < a,

(7)
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FIG. 1. Time series and Fourier transform of a complete sinc
function (a), (b), positive-side sinc function (c), (d), and a positive
sinc function with a π phase delay (e), (f).

as shown in Figs. 1(a) and 1(b). The infinitely sharp frequency
response of the sinc, or rectangular, filter, would allow us
to maximally increase the bandwidth, and thus the temporal
response, of the filter response, much more than a conven-
tional Lorentzian filter, while still maintaining good frequency
isolation. Unfortunately, perfect sinc filters are physically
impossible to realize due to their noncausal nature, that is,
the temporal response depends on future inputs. By neglect-
ing the negative temporal response of the sinc function with
θ (t ) sinc(at ), where

θ (t ) =
{

0, t � 0,

1, 0 < t
(8)

is the Heaviside step function, we can realize a causal sinc fil-
ter. We see in Fig. 1(d), however, that the frequency response,
as calculated from the Fourier transform, changes drastically.
The infinitely sharp sides of the rectangular response have
been replaced with large slow-decaying wings, together with
a large dip in the center of the response.

Fortunately we are able to recover some of the rectangular
nature by introducing a slight phase modulation, or delay, to
the temporal response, θ (t ) sinc(at − π ) [Fig. 1(e)]. With this
slight delay, the Fourier transform, Fig. 1(f), shows a much
sharper cutoff than the nondelayed response in Fig. 1(d). By
increasing the delay even further, we can “recover” much
more of the sinc function, resulting in an even more rectan-
gular frequency response. Unfortunately, a greater modulation
also results in a greater temporal delay, which is undesirable
for measuring accurate photon correlations. We will see in the

FIG. 2. Schematic of a coherently driven multimode array filter
mode. The input field is evenly split into each individual two-sided
cavity mode, where a mode-dependent phase modulation is applied.
To achieve this equal coupling of the input light, the input field is
passed through an array of beam splitters with increasing intensity
reflectivity coefficient. The other (vertical) input field to each beam
splitter in the top row is vacuum. Similarly, the input field (horizon-
tal) to the lower output mirror in each filter cavity is also vacuum.
Since we consider photon counting measurements, these vacuum
fields make no contribution to the detection process.

following section that we are able to recreate this behavior
with a cavity based model.

C. The multimode array filter

It is no simple feat to develop an optical cavity-based
frequency filter that does not have a Lorentzian frequency
response. We therefore propose a model where an input source
field is coupled into an array of single-mode cavities, each
with a small bandwidth. At first glance, the small bandwidth
of each individual cavity mode might appear to result in an
overall poor temporal response of the filter as a whole; how-
ever, we will show that this is not the case.

We consider a configuration of 2N + 1 beam splitters and
2N + 1 single-mode cavities, as illustrated in Fig. 2. A portion
of the input field is reflected at each beam splitter towards
the in-coupling mirror of a single-mode cavity. The resonance
frequency of each cavity mode is detuned by a certain amount
from some central frequency ωc. To achieve equal coupling of
a source field into each cavity mode, the beam splitters have
increasing reflectivity, Rj = (N + 1 − j)−1. We therefore ex-
tend the single-mode Hamiltonian, Eq. (1), to the multimode
array filter, with

H = h̄
N∑

j=−N

ω ja
†
j a j + ih̄

N∑
j=−N

(E je
−iωt a†

j − E∗
j eiωt a j ), (9)

where N is the number of cavity modes with frequencies on
either side of the central mode frequency ωc, a†

j (a j ) is the
photon creation (annihilation) operator for the jth filter mode,
ω j = ωc + jδω is the resonance frequency of the jth filter
mode with mode frequency spacing δω, and

E j = Ed√
2N + 1

eim jπ/N (10)
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is the mode-dependent driving amplitude. Note that the input
field coupled into each filter mode has a mode-dependent
phase modulation applied to it, where m sets the size of the
introduced modulation. Each individual mode has a total pho-
ton loss rate of 2κ , such that the master equation for the total
system is

dρ

dt
= 1

ih̄
[H, ρ] + κ

N∑
j=−N

�(a j )ρ. (11)

We then assume that the fields transmitted through the out-
coupling mirrors of the cavities are incident on a single photon
detector. Note that the input fields to these mirrors are in the
vacuum state. As we are measuring the output via photon
detectors, these vacuum input fields make no contribution to
the detection process. The total electric field at the detector is
then given by

E (+)
source(z, t ) =

N∑
j=−N

√
h̄ω j

2ε0Ac

√
2κa j (t − z/c)√

2N + 1
, (12)

where ω j is the frequency of the jth cavity mode, ε0 is the
electric permittivity of free space, and A is the quantisa-
tion area of the field. With frequencies in the optical range
(∼1015 Hz), we assume that the effective half-width of the
multimode array filter, Nδω, is much smaller than the central
mode frequency ω0. The total field may then be approximated
as a sum over the annihilation operators:

E (+)
source(z, t ) =

√
h̄ω0

2ε0Ac

√
2κ

N∑
j=−N

a j (t − z/c)√
2N + 1

∝ Ā(t − z/c),

(13)

where

Ā = 1√
2N + 1

N∑
j=−N

a j (14)

is the normalized collective mode annihilation operator. For
the single-mode case, N = 0, κ is also the half-width of the
filter response. We therefore define the “effective half-width”
of the multimode array filter as

K =
{
κ, N = 0,

Nδω, N > 0.
(15)

1. Temporal response

Before assessing the frequency response of the multimode
array filter, we will first investigate the temporal response of
the filter to an impulse driving. From Eqs. (9) and (11) we can
write an equation of motion for the coherent field amplitude
of the jth mode; however, we replace the continuous driving
term in Eq. (4) with the Dirac delta function, such that the
equation of motion is

d

dt
α j = −(κ + iω j )α j + E jδ(t ), (16)

with solution

α j (t ) = E je
−(κ+iω j )tθ (t ), (17)

0 π/2 π 3π/2 2π 5π/2 3π

|Ed|t
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m = 2

sinc(Nδωt − π)

FIG. 3. Normalized field amplitude response to an impulse driv-
ing, Eq. (19), with m = 0 (blue, solid), m = 1 (orange, dashed), and
m = 2 (green, dash-dot). Also shown is the sinc term of Eq. (19)
(grey, dotted), showing the effect that the cavity decay, κ , has on the
temporal response. Other parameters are N = 20 and (δω, κ, ωc ) =
(0.1, 0.2, 0.0)|Ed |.

where θ (t ) is the Heaviside step function. To find the total
response of the multimode array filter, we sum all of the mode
amplitudes and consider the collective field amplitude,

Ā(t ) =
N∑

j=−N

α j (t )√
2N + 1

. (18)

Assuming a large number of closely spaced modes, such that
N � 1 and δω 	 Ed , we convert the summation in Eq. (18)
into an integral, and thus find the collective field amplitude
to be

Ā(t ) 
 1√
2N + 1

∫ ∞

−∞
α( j, t )d j = 2NEd

2N + 1
θ (t ) e−i(κ+iωc )t

× sinc(Nδωt − mπ ). (19)

We see, then, that this proposed model behaves as we ex-
pect from a sinc-response filter, i.e., the temporal response
is a positive-sided sinc function, with half-width Nδω and
a temporal delay of mπ . There is, however, an extra term
that arises due to individual cavity modes which make up
the multimode array filter: the exponential decay and oscil-
latory term e−(κ+iωc )t . The oscillatory term, e−iωct , simply
centres the response in frequency space at ωc. The cavity
decay term, however, can have a much more significant effect
on the filter’s response. We demonstrate this in Fig. 3, where
the temporal response for the phase-shifted multimode array
(orange, dashed), with m = 0, 1, or 2, is plotted against the
sinc term in Eq. (19). The cavity decay causes the collective
temporal response to deviate from the pure sinc term; an effect
which is much more noticeable for larger κ . We can mitigate
this effect, and thus achieve a more ideal sinc response, by
ensuring the individual cavity decay rate is much smaller than
the effective half-width of the array filter, i.e., κ 	 Nδω.

2. Frequency response

The sinc-like temporal response of the multimode array
filter is promising, yet it does not tell the entire story. To
investigate the frequency response of this filter model, we
must return to the case of continuous driving. With the same
approach that led to Eq. (6), we write the rate equation for the
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mean cavity field amplitude of the jth mode as

d

dt
α j = −(κ + iω j )α j + E je

−iωt , (20)

which has solution in the long-time limit similar to Eq. (5),

α j (ω, t ) = E je−iωt

κ − i(ω − ω j )
. (21)

As with the temporal response, the collective frequency re-
sponse of the multimode array filter is the sum of all field
amplitudes:

Ā(ω) = 1√
2N + 1

N∑
j=−N

α j (ω). (22)

Equation (21) is more involved than Eq. (17) due to its de-
pendence on the mode number j in both the denominator and
the exponential phase modulation in E j , hence it is difficult to
derive a general analytic solution for the frequency response.
If we remove the phase modulation, that is we set m = 0,
then we can derive an expression. As before, we replace the
summation over modes with an integral to find the collective
field amplitude to be

Ā(ω) 
 −iEd e−iωt

δω(2N + 1)
ln

[
κ − i(ω − ωN )

κ − i(ω − ω−N )

]
, (23)

where ω±N = ωc ± Nδω. The collective frequency response
is, therefore,

|Ā(ω)|2 = |Ed |2
δω2(2N + 1)2

×
∣∣∣∣ln

[
κ + i(ω − ωN )

κ + i(ω − ω−N )

]∣∣∣∣
2

, (24)

from which we see the effective bandwidth of the multimode
array filter in the ω − ω±N terms.

We plot the collective frequency response in Fig. 4 for
three different sizes of phase modulation—(a) m = 0, cal-
culated from Eq. (24), (b) m = 1, and (c) m = 2—for three
different effective half-widths: Nδω/|Ed = 1 (blue, solid), 2
(orange, dashed), and 4 (green, dash-dot). By setting m = 0,
the collective response of the multimode array filter produces
the “bunny-ear” like response, characteristic of the Fourier
transform of the positive-sided sinc function in Fig. 1(d).
Applying a slight modulation, with m = 1, we see that the col-
lective response closely resembles that of Fig. 1(f), with much
sharper frequency cut-offs than a standard Lorentzian (grey,
dotted). We cannot, however, push the phase modulation too
far. As previously mentioned, an increase in the size of the
modulation also increases the temporal response of the filter.
We also see a noticeable dip in the center of the frequency
response when m = 2, in Fig. 4(c).

These results are promising as they show we can increase
the bandwidth of the multimode array filter to be almost four
times larger than a standard Lorentzian filter, without sacrific-
ing frequency isolation. This is important for two related yet
important reasons: first, the wider bandwidth results in a faster
temporal response, thus allowing for more accurate photon
correlations to be measured; and second, the bandwidth of the
filter needs to be large enough such that it encompasses the
spectral shape of the input field, while still rejecting nontarget
frequencies. If the filter bandwidth is too narrow compared to
the input field—and thus the lifetime of the cavity is much

FIG. 4. Normalized frequency response for a single-mode cavity
with κ = |Ed | (grey, dotted) and a multimode array filter with (a) no
phase modulation (m = 0), from Eq. (24), (b) π -phase modulation
(m = 1), and (c) 2π -phase modulation (m = 2), with K = |Ed | (blue,
solid), K = 2|Ed | (orange, dashed), and K = 4|Ed | (green, dot-dash).
Other parameters are N = 80, ωc = 0, and, for the multimode array
filter, κ = 0.07|Ed |.

longer than the lifetime of the source—the dynamics of the
source system are now averaged out over the lifetime of the
filter [18,19].

III. A RESONANTLY DRIVEN TWO-LEVEL ATOM

Having introduced the multimode array filter and inves-
tigated its temporal and frequency response to a coherent
driving, we now investigate its effectiveness at measuring and
calculating frequency-filtered photon correlations. The reso-
nantly driven two-level atom provides an excellent scenario
with which to test this due to its relative simplicity and its
history of study.

A. The optical Bloch equations

In this section we will briefly introduce the Mollow triplet
and the notation that we will use throughout the rest of this
paper. We consider a two-level atom with ground state |g〉
and excited state |e〉, with respective eigenfrequencies ωg and
ωe. The atom is coherently driven at the atomic resonance
frequency, ωA = ωe − ωg, with Rabi frequency �, such that
the Hamiltonian, in a frame rotating at ωA, is

HA = h̄
�

2
(σ+ + σ−), (25)
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where σ+ = |e〉 〈g| and σ− = |g〉 〈e| are the atomic raising and
lowering operators, respectively. To account for spontaneous
emission, the Lindblad master equation for the atomic density
operator ρ is introduced in the form

dρ

dt
= 1

ih̄
[HA, ρ] + γ

2
�(σ−)ρ, (26)

where γ is the atomic excited state decay rate. Expanding
the density operator in the atomic state basis, we can rewrite
the master equation in terms of the expectation values of the
atomic operators:

d

dt
〈σ〉 = M (σ)〈σ〉 + B, (27)

with

〈σ〉 =
⎛
⎝〈σ−〉

〈σ+〉
〈σz〉

⎞
⎠, B =

⎛
⎝ 0

0
−γ

⎞
⎠, (28a)

M (σ) =

⎛
⎜⎝− γ

2 0 i �
2

0 − γ

2 −i �
2

i� −i� −γ

⎞
⎟⎠, (28b)

where σz = |e〉 〈e| − |g〉 〈g|. These equations, known as the
optical Bloch equations [40] provide a concise and simple
method for calculating appropriate quantities, such as the
population inversion, and will play a vital role in the modeling
of the multimode array filtered fluorescence.

B. The Mollow triplet

The fluorescence spectrum can be calculated from the
Fourier transform of the first-order correlation function, using
a form of the Wiener-Khinchin theorem [41,42]:

S(ω) = 1

2π

∫ ∞

−∞
eiωτ g(1)

ss (τ )dτ, (29)

where

g(1)
ss (τ ) = lim

t→∞
〈σ+(t )σ−(t + τ )〉√〈σ+σ−(t )〉〈σ+σ−(t + τ )〉 = 〈σ+(0)σ−(τ )〉ss

〈σ+σ−〉ss

(30)

is the normalized steady-state first-order correlation function
for the driven two-level atom. In the steady state there ex-
ist quantum fluctuations, describable with operators �σ± =
σ± − 〈σ±〉ss, and so we decompose the fluorescence spectrum
into coherent and incoherent components:

Scoh(ω) = 1

2π

∫ ∞

−∞
eiωτ 〈σ+〉ss〈σ−〉ss

〈σ+σ−〉ss
dτ, (31a)

Sinc(ω) = 1

2π

∫ ∞

−∞
eiωτ 〈�σ+(0)�σ−(τ )〉ss

〈σ+σ−〉ss
dτ. (31b)

In the weak driving regime, � 	 γ , the incoherent power
spectrum of the atom is Lorentzian, centered at the atomic
frequency ωA, and with half-width γ /2. As the Rabi fre-
quency increases, and thus incoherent scattering dominates,
side peaks emerge at ωA ± �, giving shape to the Mollow
triplet [2], as shown in Fig. 5.
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(ω − ωA) /γ

(b)

FIG. 5. Incoherent power spectrum of the two-level atom for
Rabi frequencies (a) � = 0.1γ and (b) � = 7.5γ .

C. Atomic dressed states

Each of the Mollow triplet peaks can be attributed to transi-
tions amongst the atomic dressed states [43,44]—eigenstates
of the combined atomic and quantised field Hamiltonians. By
diagonalizing the Hamiltonian, Eq. (25), we can express the
eigenstates in terms of the atomic bare states as

HA |u〉 = +h̄
�

2
|u〉 , |u〉 = 1√

2
(|e〉 + |g〉), (32a)

HA |d〉 = −h̄
�

2
|d〉 , |d〉 = 1√

2
(|e〉 − |g〉). (32b)

These dressed states form an energy level ladder, where each
pair are separated by an energy of h̄ωA in the quantised
radiation field. In the strong driving regime, where the two
dressed states are well separated, three sets of dressed state
transitions occur, as depicted in Fig. 6: |d〉 → |u〉 with fre-
quency ωA − �, |u〉 → |u〉 and |d〉 → |d〉 with frequency ωA,
and |u〉 → |d〉 with frequency ωA + �. We can express the
atomic operators in terms of these dressed states, allowing us
to rewrite the atomic master equation in the dressed state ba-
sis. Transforming into a rotating frame with unitary evolution
operator U (t ) = exp[HAt/ih̄], Eq. (26) becomes

dρ

dt
= γ

2
�(σ̃−(t ))ρ̃(t ), (33)

with ρ̃(t ) = U†(t )ρ U (t ) and

σ̃±(t ) = U†(t )σ±U (t ) = 1
2

[
σ D

z ± (σ D
− e−i�t − σ D

+ ei�t )
]
,

(34)

FIG. 6. The three components of the Mollow triplet arise from
photon emissions down the ladder of atomic dressed states.
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where we have introduced the dressed-state operators

σ D
− ≡ |d〉 〈u| , σ D

+ ≡ |u〉 〈d| , (35a)

σ D
z ≡ |u〉 〈u| − |d〉 〈d| . (35b)

Using these operators in Eq. (33) and making the secular
approximation by dropping any rapidly oscillating terms (as-
suming � � γ ), the master equation reduces to [18]

dρ

dt
= −i

�

2

[
σ D

z , ρ
]+γ

8
�(σ D

− )ρ+γ

8
�(σ D

+ )ρ+γ

4
�
(
σ D

z

)
ρ.

(36)

From this equation we can identify the three processes cor-
responding to the three Mollow triplet peaks: a |u〉 → |d〉
transition with operator σ D

− , a |d〉 → |u〉 transition with opera-
tor σ D

+ , and a dephasing term with operator σ D
z , corresponding

to the |u〉 → |u〉 and |d〉 → |d〉 transitions.

1. Autocorrelation functions

From Eq. (36) we can derive a set of simple decoupled
moment equations similar to the optical Bloch equations,
Eqs. (28),

d

dt
〈σ D

− 〉 = −
(

3γ

4
+ i�

)
〈σ D

− 〉, (37a)

d

dt
〈σ D

+ 〉 = −
(

3γ

4
− i�

)
〈σ D

+ 〉, (37b)

d

dt

〈
σ D

z

〉 = −γ

2

〈
σ D

z

〉
. (37c)

We can then use the quantum regression equations (see
Refs. [45,46] and Sec. 1.5 of [47] for details) to derive
second-order correlation functions for the central-, left-, and
right-peak photon transitions, respectively:

g(2)
C (τ ) =

〈
σ D

z (0)σ D
z σ D

z (τ )σ D
z (0)

〉
ss〈

σ D
z σ D

z

〉2
ss

= 1, (38a)

g(2)
L (τ ) = 〈σ D

− (0)σ D
− σ D

+ (τ )σ D
+ (0)〉ss

〈σ D− σ D+ 〉2
ss

= 1 − e− γ

2 τ , (38b)

g(2)
R (τ ) = 〈σ D

+ (0)σ D
+ σ D

− (τ )σ D
− (0)〉ss

〈σ D+ σ D− 〉2
ss

= 1 − e− γ

2 τ . (38c)

The left- and right-peak photons both exhibit antibunching
characteristic of the two-level atom, as expected from the
deexcitation paths illustrated in Figs. 6(b) and 6(c). Central-
peak photons, however, are entirely second-order coherent, as
the dressed-state density matrix remains unchanged after an
emission.

2. Cross-correlation functions

We can also derive expressions for cross-correlation func-
tions of the dressed state transitions, allowing us to look at two
separate photon emissions:

g(2)
RC (τ ) =

〈
σ D

− (0)σ D
z σ D

z (τ )σ D
+ (0)

〉
ss〈

σ D− σ D+
〉
ss

〈
σ D

z σ D
z

〉
ss

= 1, (39a)

g(2)
RL(τ ) =

〈
σ D

− (0)σ D
+ σ D

− (τ )σ D
+ (0)

〉
ss〈

σ D+ σ D−
〉
ss

〈
σ D− σ D+

〉
ss

= 1 + e− γ

2 τ . (39b)

Given an initial detection of a right-peak photon, Eq. (39b)
shows that cross-correlations between the two side-peaks are
strong, as indicated in the transition order in Figs. 6(b) and
6(c), while correlations between the central peak and either of
the side peaks remain second-order coherent. When consider-
ing frequency filtered correlations, however, these expressions
only hold for long-time behavior, where τ � γ −1. In the
short-time behavior, τ 	 γ −1, there are more complicated
dynamics occurring. For example, for an emission of a right-
peak photon and a central-peak photon, the emission can
occur via two different cascade pathways, |u〉 → |d〉 → |d〉
and |u〉 → |u〉 → |d〉. While these two pathways technically
describe two different de-excitations path, they both corre-
spond to an emission starting in the upper state |u〉 and ending
in the lower state |d〉. On a short timescale, there is destruc-
tive interference between the two different time orderings. As
derived by Schrama et al. [43], the frequency-filtered photon
correlations for the ideally separated Mollow triplet are

g(2)
RC (τ ) = (1 − e−Kτ ), (40a)

g(2)
RL(τ ) = e− γ

2 τ − 1 + 1
2 (2 − e−Kτ )2 + 1

2 e−2Kτ , (40b)

with K given by Eq. (15).

IV. THE FREQUENCY-FILTERED MOLLOW TRIPLET

Having introduced the multimode array filter in Sec. II
and our source system in Sec. III, we now merge the two
systems together. To model the frequency filtering, we treat
the two-level as a source subsystem, and cascade the output
fluorescence into the multimode array filter using cascaded
open systems theory [38,39]. The Hamiltonian for this cas-
caded system is then

H = HA +
N∑

j=−N

h̄�ω ja
†
j a j (41)

+ ih̄

2

N∑
j=−N

(E∗
j a jσ+ − E ja

†
jσ−), (42)

with atomic Hamiltonian, Eq. (25), frequency detuning of the
jth mode from atomic resonance, �ω j = (ω0 + jδω) − ωA,
and mode-dependent coupling,

E j =
√

γ κ

2N + 1
eim jπ/N . (43)

The atomic fluorescence is evenly cascaded into an array of
2N + 1 tunable single-mode cavities, as depicted in Fig. 7(a).
Each mode is modeled as a ring cavity, with two perfect
mirrors and two lossy mirrors, each with a loss rate of κ/2.
This results in two separate output channels: a reflection
channel consisting of the reflection of photons from and the
transmission of photons out through the input mirror; and
a transmission channel consisting of photons emitted out
through the second lossy mirror. Each channel is directed
towards a separate photodetector [see Fig. 7(b)]. As noted
earlier, all input channels to the beam splitters and cavity cou-
pling mirrors that do not emanate from the source are assumed
to be vacuum, and thus make no contribution to the detection
process. The total cascaded system master equation is then
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(a) (b) (c)

FIG. 7. (a) Full schematic of the multimode array filtered two-level atom, with (b) detail of the decay channels of the jth mode. The
phase-shifted fluorescence is evenly cascaded into a ring cavity with two perfectly reflecting mirrors (bold). The reflection (and transmission)
from the input mirror and transmission from the output mirror are sent to separate photodetectors. (c) The atomic and filter-mode operator
moment equations couple in a cascaded scheme, where lower-order moments can be solved independently of higher-order moments. The
colors of the boxes indicate the order of filter-mode operators, and thus the order in which they can be computed, with the arrows indicating
the coupling of lower-order to higher-order moments.

[38,39]

dρ

dt
= 1

ih̄
[H, ρ] + κ

2

N∑
j=−N

�(a j )ρ + 1

2

N∑
j=−N

�(Cj )ρ, (44)

where

Cj =
√

γ

2N + 1
eim jπ/Nσ− + √

κa j, (45)

is the cascaded decay operator, corresponding to the reflection
channel.

A. Moment equation approach

With the master equation, Eq. (44), we can solve for the
multimode array filtered first- and second-order correlation
functions using the quantum regression equations [45,46]. For
this filtering method, we allow for a large number of cavity
modes, N � 1, each with an infinite dimension Hilbert space.
Even by taking a conservative photon number truncation of up
to two photons, the size of the total system’s density operator
grows as (2 × 32N+1)2. The computations then prove to be
extremely demanding, and as a result we were limited to
N = 20 on our current hardware.

Fortunately, we can instead find exact solutions of the
two-time correlation functions by calculating the moment
equations. For some operator X , we can derive the rate equa-
tion of the expectation value by using the master equation,
with

d

dt
〈X 〉 = d

dt
tr{Xρ} = tr

{
X

dρ

dt

}
. (46)

As an example, we find that the second-order moment 〈a†
j ak〉

evolves as

d

dt
〈a†

j ak〉 = tr

{
a†

j ak
dρ

dt

}
= −[2κ − i(�ω j − �ωk )]〈a†

j ak〉

− E∗
j 〈akσ+〉 − E j〈a†

jσ−〉. (47)

This operator moment is dependent only on itself and two
“lower order” moments 〈akσ+〉 and 〈a†

jσ−〉. These moments
then evolve with equations similar to optical Bloch equations:

d

dt
〈a jσ−〉 = −

(
γ

2
+ κ + i�ω j

)
〈a jσ−〉 + i

�

2
〈a jσz〉, (48a)

d

dt
〈a jσ+〉 = −

(
γ

2
+ κ + i�ω j

)
〈a jσ+〉 − i

�

2
〈a jσz〉, (48b)

d

dt
〈a jσz〉 = i�〈a jσ−〉−i�〈a jσ+〉−(γ + κ + i�ω j )〈a jσz〉.

(48c)

We can write Eqs. (48) in matrix form:

d

dt

⎛
⎝a jσ−

a jσ+
a jσz

⎞
⎠ = [M (σ) − (κ + i�ω j )1]

⎛
⎝a jσ−

a jσ+
a jσz

⎞
⎠

+

⎛
⎜⎝ 0

− 1
2E j (〈σz〉 + 1)

−γ 〈a j〉 + E j〈σ−〉

⎞
⎟⎠, (49)

where the evolution matrix M (σ ) is given by Eq. (28b). Intro-
ducing the operator vector notation,

〈Xσ〉 =
⎛
⎝〈Xσ−〉

〈Xσ+〉
〈Xσz〉

⎞
⎠, (50)

the first six coupled moment equations are

d

dt
〈σ〉 = M (σ)〈σ〉 +

⎛
⎝ 0

0
−γ

⎞
⎠, (51a)

d

dt
〈a j〉 = −(κ + i�ω j )〈a j〉 − E j〈σ−〉, (51b)

d

dt
〈a†

j〉 = −(κ − i�ω j )〈a†
j〉 − E∗

j 〈σ+〉, (51c)

d

dt
〈a jσ〉 = [M (σ) − (κ + i�ω j )1]〈a jσ〉

+

⎛
⎜⎝ 0

− 1
2E j (〈σz〉 + 1)

−γ 〈a j〉 + E j〈σ−〉

⎞
⎟⎠, (51d)

d

dt
〈a†

jσ〉 = [M (σ) − (κ − i�ω j )1]〈a†
jσ〉

+
⎛
⎝ − 1

2E∗
j (〈σz〉 + 1)

0
−γ 〈a†

j〉 + E∗
j 〈σ+〉

⎞
⎠, (51e)
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d

dt
〈a†

j ak〉 = −[2κ − i(�ω j − �ωk )]〈a†
j ak〉

− E∗
j 〈akσ+〉 − E j〈a†

jσ−〉. (51f)

A coherent coupling, like that of the Jaynes-Cummings
model, would introduce a bidirectional coupling, with lower-
order terms depending on higher-order terms. Hence, just like
the Jaynes-Cummings model, it would be impossible to derive
a closed set of equations for the second-order correlation func-
tion. The unidirectional cascading, however, enforces a simple
structure to the coupled moment equations: higher-order mo-
ments are dependent only on lower-order terms, as seen in
Eqs. (51). We depict the couplings in order of calculations in
Fig. 7(c), up to the fourth-order moment 〈a†

j a
†
kalam〉 needed

to calculate the second-order correlation function. With zero
back-action of the filter onto the atom, the optical Bloch
equations serve as the source of all of the dynamics of the
system, and can be easily solved as a 3×3 matrix of coupled
equations.

B. First-order correlation function

The normalized first-order correlation function for the mul-
timode array filter in the steady-state limit is

g(1)
filter = 〈A†(τ )A(0)〉ss

〈A†A〉ss
, (52)

where we have introduced the non-normalized collective
mode annihilation operator, A = √

2N + 1Ā. Decomposing
the filtered power spectrum into coherent and incoherent scat-
tering components, the frequency-filtered incoherent power
spectrum is then given by

Sinc(ω) = 1

2π

∫ ∞

−∞
eiωτ 〈�A†(τ )�A(0)〉

〈A†A〉ss
dτ. (53)

We can derive an analytic expression for the time dependence
of the first-order correlation function with only two sets of
equations, Eqs. (51a) and (51c). For the initial conditions,
however, we need to solve up to the second-order moment
〈a†

j ak〉ss. While these can also be solved analytically, it is a
tedious exercise and so we calculate these numerically. The
first-order correlation function for the multimode array filtered
two-level atom is then

〈�A†(τ )�A(0)〉 = C1e− γ

2 τ + C2e−( 3γ

4 −δ)τ

+ C3e−( 3γ

4 +δ)τ + C4e−κτ , (54)

where

C1 =
N∑

j=−N

E∗
j

2

�− + �+
γ /2 − κ + i�ω j

, (55a)

C2 =
N∑

j=−N

−E∗
j

4δ

(γ /4 + δ)(�− − �+) + i��z

3γ /4 − δ − κ + i�ω j
, (55b)

C3 =
N∑

j=−N

E∗
j

4δ

(γ /4 − δ)(�− − �+) + i��z

3γ /4 + δ − κ + i�ω j
, (55c)

C4 =
N∑

j=−N

(ei�ω jτ 〈�a†
j�A〉ss) − C1 − C2 − C3, (55d)

with

δ =
√(γ

4

)2
− �2, (56a)

�− = 〈�σ−�A〉ss, (56b)

�+ = 〈�σ+�A〉ss, (56c)

�z = 〈�σz�A〉ss. (56d)

While we do not give explicit expressions for the steady state
expectation values in Eqs. (55) and (56), we can compute
these numerically from the moment equations given in the
Appendix.

Using Eq. (54), we compute the incoherent power spectrum
of the single- and multimode array filters for increasing half-
widths, shown in Fig. 8. For the multimode array filter, we
choose a large number of modes, N = 80, to ensure a sharp
cutoff in the frequency response. Comparing the single-mode
filter, Figs. 8(a) and 8(b), to the unfiltered Mollow triplet
(grey dotted line), we see two distinct features. First, for the
smallest half-width shown, K = 2γ , the output resonance is
much narrower than the target peak. Increasing the half-width
worsens the frequency isolation, as the Lorentzian response
overlaps with the other peaks of the Mollow triplet.

Figures 8(c) and 8(d) show a dramatic dropoff in the
incoherent power spectra of the multimode array filtered flu-
orescence. As with the single-mode filter, for the smallest
half-width, K = 2γ , the linewidth of the filtered fluorescence
is much narrower than the natural linewidth. With the largest
half-width, K = 16γ , the multimode array filter performs
similarly to the single-mode filter, as the half-width encom-
passes both side-peaks of the Mollow triplet. The intermediate
half-width, at K = 8γ , however, demonstrates the sharp fre-
quency response cut-off of the multimode array filter. This
gives a good indication of the optimal half-width regime for
accurately measured frequency-filtered photon correlations.

V. FREQUENCY-FILTERED PHOTON CORRELATIONS

To measure and calculate frequency-filtered photon cor-
relations, we propose a model where the two-level atom is
simultaneously coupled into two separate multimode array
filters, which we label as filters A and B. For simplicity’s
sake, we assume these two filters to have the same number of
modes, frequency spacing, and mode half-width—N, δω, and
κ—but with different central mode frequencies, ω

(a)
0 and ω

(b)
0 .

We couple the fluorescence to each filter through a 50:50 beam
splitter, with one arm coupling to the first detection filter, A,
and the other arm into the second filter, B. We then have the
Hamiltonian

H = h̄
�

2
(σ+ + σ−) + h̄

N∑
j=−N

�ω
(a)
j a†

j a j

+ ih̄

2

N∑
j=−N

(E∗
j a jσ+ − E ja

†
jσ−)

+ h̄
N∑

j=−N

�ω
(b)
j b†

jb j

+ ih̄

2

N∑
j=−N

(E∗
j b jσ+ − E jb

†
jσ−) (57)
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FIG. 8. Frequency-filtered incoherent power spectrum of a single-mode (a), (b), N = 0, and multimode (c), (d), N = 80, filters. The filter
resonance is resonant with the (a), (c) centralpeak, �ω0 = 0, and the (b), (d) right peak, �ω0 = 5πγ , of the Mollow triplet, with half-widths
K = 2γ (blue, solid), K = 4γ (orange, dashed), and K = 16γ (green, dot-dash). The filtered spectra are compared against the unfiltered
Mollow triplet (grey, dotted). Other parameters are � = 5πγ , m = 1 and, for the multimode array filter, δω = K/N , κ = 2.5δω.

and master equation

dρ

dt
= 1

ih̄
[H, ρ] + κ

2

N∑
j=−N

�(a j )ρ + 1

2

N∑
j=−N

�
(
C(a)

j

)
ρ

+ κ

2

N∑
j=−N

�(b j )ρ + 1

2

N∑
j=−N

�
(
C(b)

j

)
ρ, (58)

where

�ω
(a)
j = (

ω
(a)
0 + jδω

)
, (59a)

�ω
(b)
j = (

ω
(b)
0 + jδω

)
, (59b)

E j =
√

γ κ/2

2N + 1
eim jπ/N , (59c)

C(a)
j =

√
γ /2

2N + 1
eim jπ/Nσ− + √

κa j, (59d)

C(b)
j =

√
γ /2

2N + 1
eim jπ/Nσ− + √

κb j . (59e)

We note here the difference between Eqs. (59c) and (43) is
the factor of 1/2 to account for the 50:50 beam splitter guiding
the fluorescence into the two multimode array filters. For
this two-filter system, we wish to correlate photons emitted
from filter B some time τ after a detection of an emission
from mode A. We therefore introduce the frequency-filtered

second-order cross-correlation function:

g(2)(α, 0; β, τ ) = 〈A†(0)B†B(τ )A(0)〉ss

〈A†A〉ss〈B†B〉ss
(60)

where α and β indicate the central resonance frequencies
of filters A and B, with respective collective annihilation
operators,

A =
N∑

j=−N

a j, B =
N∑

j=−N

b j . (61)

We again use the moment equation approach as mentioned
in the previous section, with the moment equations given in
the Appendix.

A. Auto-correlations

Figure 8 shows exactly what we expect of the multimode
array filter in the frequency domain, that is, the multimode
array filter is able isolate frequency components much more
effectively than the single-mode filter. We now move into
the time domain and towards the main focus of this paper:
frequency-filtered photon correlations. We therefore consider
the case where α = β in Eq. (60).

There are four parameters of the multimode array filter:
the number of modes, N ; the frequency spacing between each
mode, δω; the half-width of each individual mode, κ; and,
the size of the phase modulation, m. For this work, however,
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FIG. 9. Frequency-filtered autocorrelation function of a single-mode (a), (b), N = 0, and multimode (c), (d), N = 80, filters. The filter
resonance is resonant with the (a), (c) central peak, �ω0 = 0, and (b), (d) right peak, �ω0 = 5πγ , of the Mollow triplet, with half-widths
K = 2γ (blue, solid), K = 4γ (orange, dashed), and K = 8γ (green, dot-dash). The filtered correlation functions are plotted against the secular
approximation equations, (a), (b) Eq. (38a) and (c), (d) Eq. (38c). Other parameters are � = 5πγ , m = 1 and, for the multimode array filter,
δω = K/N , κ = 2.5δω.

we will fix the number of modes to N = 80, and set the fre-
quency spacing based on the effective half-width, K = Nδω.
As established in Sec. II, we will also assume the half-width
of each mode to be much smaller than the effective half-width,
with κ = δω

4 = K
4N . We will also set the size of the phase

modulation to m = 1. For this paper we will only consider the
effect that the effective half-width, K , has on the single- and
multimode-filtered correlation functions. For a detailed analy-
sis on the effect of other parameters, see Ref. [48], Sec. 6.3.1.

1. Varying the half-width

In Fig. 9 we depict sets of frequency-filtered photon cor-
relation functions for increasing half-widths—K = 2γ (blue
solid line), 4γ (orange dashed line), and 8γ (green dot-dash
line)—for both the single-mode filter, Figs. 9(a) and 9(b),
and the multimode array filter, Figs. 9(c) and 9(d). We com-
pare the frequency-filtered second-order correlation functions
to the ideal correlation functions derived in the secular ap-
proximation (grey dotted line), Eqs. (38a) and (38c).

In the bad cavity limit, as K/γ → ∞, the “filtered” field
is indistinguishable from the unfiltered atomic fluorescence;
the photon correlations exhibit large Rabi oscillations, of fre-
quency �, as the atomic state oscillates between the ground
and excited states. For the single-mode filter, Figs. 9(a) and
9(b), these Rabi oscillations are visible even at the smaller
half-width, K = 2γ . As the half-width is increased, these

oscillations get larger; indicating, in the temporal domain, that
the frequency isolation is worsening.

We see an almost immediate improvement in the multi-
mode array filter where, even for the largest half-width of K =
8γ , the Rabi oscillations are almost completely suppressed.
For K = 8γ we also see a much closer agreement with the
secular approximations, Eqs. (38a) and (38c). For smaller
bandwidths, when K ∼ γ , there is a larger discrepancy be-
tween the filtered correlations and the secular approximation,
due to the slower temporal resolution of the finer bandwidth.

One gauge we can use to measure the efficacy of the
multimode array filter is to investigate the initial value of the
autocorrelation function. For very large filter bandwidths we
expect an initial value close to zero, and for smaller band-
widths we expect to see different behavior from the secular
approximation. In Fig. 10 we see the initial autocorrelation
value tends towards zero as the filter half-width increases,
while for smaller half-widths it increases.

There is an intermediate region, K ∼ 2.5γ to ∼8γ , where
the initial correlation value approaches the value expected
from the secular approximation: g(2)(0, 0; 0, 0) = 1 for the
central peak, Fig. 10(a); and g(2)(�, 0; �, 0) = 0 for the right
peak, Fig. 10(b). At first glance, in Fig. 10, it seems that the
single-mode filter would perform better than the multimode
array filter, as there is a direct match with the initial autocor-
relation value in the secular approximation at K ∼ 5.5γ . We
have seen, however, in Figs. 8 and 9 that this half-width is still
too large to effectively isolate the central peak.

023719-11



NGAHA, PARKINS, AND CARMICHAEL PHYSICAL REVIEW A 110, 023719 (2024)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
K/γ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

g
(2

)
(0

,0
;0

,0
)

(a)
Multi-Mode

Single-Mode

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
K/γ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

g
(2

)
(Ω

,0
;Ω

,0
)

(b)
Multi-Mode

Single-Mode

FIG. 10. Initial photon-correlation value of the multimode (blue,
solid), N = 80, and single-mode (orange, dashed), N = 0, filters for
the (a) central peak, �ω0 = 0, and (b) right peak, �ω0 = 5πγ , of the
Mollow triplet. Also shown is the initial autocorrelation value from
the secular approximations (black, dotted line), (a) g(2)(0, 0; 0, 0) =
1 and (b) g(2)(�, 0; �, 0). Other parameters are � = 5πγ , δω =
K/N , and κ = 2.5δω.

There is a different story for the filtered right peak,
Fig. 9(b). Heisenberg’s uncertainty principal does not allow
for a finite bandwidth filter to perfectly isolate a target photon
with exact precision of its temporal correlations. In this half-
width region, however, the multimode array filter produces
stronger antibunching of the right peak when compared with
the single-mode filter.

In Fig. 11 we present autocorrelations calculated with
single-mode and multimode array half-widths that closely re-
semble the secular approximation correlation functions: K =
7.4γ (2.5γ ) and K = 9.3γ (2.5γ ) for the multimode (single-
mode) filtered central and right peaks, respectively. Here we
see that the multimode array filter has almost completely
isolated the target peak. With an effective half-width roughly
three times larger than the single-mode filter the Rabi oscilla-
tions are significantly suppressed, resulting in close matching
of photon correlations to the secular approximations.

We note here that the filter half-widths in Fig. 11 were
chosen via numerical optimization where the Rabi oscillations
were minimized, i.e, a close match to the secular approxima-
tions. In principle, one could also just pick a half-width for
the multimode array filter that is half the frequency separation
between the target peak and its nearest neighbor, e.g., �/2
for the resonantly driven two-level atom, without substantially
affecting the results.

2. Filtering within the peak

Figure 10 showed an increasing filter half-width resulted
in autocorrelations that tended towards the bare atomic
correlations. A decreasing half-width, however, resulted in
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FIG. 11. Frequency-filtered photon correlations of the (a) central
peak, �ω0 = 0 and the (b) right peak, �ω0 = 5πγ , of the Mollow
triplet for the multimode (blue, solid), with N = 80, and single-
mode (orange, dashed), with N = 0, filters. The filtered correlation
functions are plotted against the secular approximation equations,
(a) Eq. (38a) and (b) Eq. (38c). Other parameters are � = 5πγ ,
δω = K/N , and κ = 2.5δω.

correlations that deviated from the expected behavior of the
secular approximation. In Fig. 12 we extend the range of filter
half-widths from K = 10−5γ to 102γ , highlighting the dif-
ferent regimes of behavior. Results for the single-mode filter
(orange dashed line) have been reported in both theoretical
and experimental work in the strong [27,49] and weak driving
regimes [50–52].

Focusing first on the single-mode filtered-correlations, we
see similar regimes for both the filtered central and right-
peaks [Figs. 12(a) and 12(b), respectively]. As previously
mentioned, very large filter half-widths, K � �, have a neg-
ligible effect on the atomic fluorescence, resulting in near
perfect antibunching. As the half-width decreases to the range
γ < K < �, the filter mostly rejects the nontarget peaks, re-
sulting in autocorrelations close to the secular approximation,
as discussed in the previous section.

As the half-width decreases further, we see two different
yet related regimes for the filtered central- and right-peaks.
For vanishingly small half-widths, K ≪ γ (∼10−5γ ), the
input field is effectively a broadband field from the perspective
of the filter. The input field then begins to resemble a thermal
environment, resulting in the “thermalization” of the source
field [18,20,25]. The side peaks of the Mollow triplet are
products of the incoherent scattering of the driving field by
the atom. Hence as the filter half-width decreases, the initial
value of the autocorrelation function tends towards that of
thermal light, g(2)(�, 0; �, 0) = 2.

The central peak differs, however, as there exists a coherent
scattering component, which can be reasonably modeled by
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FIG. 12. Initial value of the correlation function of the (a) cen-
tral peak, �ω0 = 0, and the (b) right peak, �ω0 = 5πγ , for the
multimode (blue, solid), N = 80, and single-mode (orange, dashed),
N = 0, filters. Other parameters are � = 5πγ , δω = K/N , and
κ = 2.5δω.

the Dirac delta function. For vanishingly small half-widths,
more of the incoherent scattering is filtered out, eventually
leaving only the infinitely narrow coherent component. The
autocorrelation then tends towards second-order coherence,
with g(2)(0, 0; 0, τ ) = 1.

The two possible deexcitation paths corresponding to
the central peak [see Fig. 6(a)] should give rise to photon
bunching; however, interference between these two transitions
results in second-order coherence [25]. For small—yet not
vanishingly small—half-widths, K ∼ 10−2γ –10−1γ , this in-
terference no longer holds and we see a large peak in photon
bunching; g(2)(0, 0; 0, 0) ≈ 2.5 for the single-mode filter.

The multimode array filter produces results similar to the
single-mode filter: large half-widths give near perfect an-
tibunching, intermediate half-widths can isolate the target
peaks, and vanishingly small half-widths result in thermaliza-
tion for the filtered right peak and second-order coherence for
the filtered central peak. We do see some slight differences,
such as a shift in the bunching peak for the filtered central
peak, due to the improved frequency isolation. The most
striking difference is the emergence of peaks at K ∼ � for
both the filtered central and right peaks, and a second peak at
K ∼ 2� for the filtered right peak. Similar results can be seen
in a perfect rectangular filter (see Figs. 4 and 5 of Ref. [36]).
Kamide et al. suggest that these peaks are due to constructive
interference in the cascaded decay channels.

The ratio of the coherent and incoherent scattering intensi-
ties for the filtered field is given by

Iinc

Icoh
= 〈�A†�A〉ss

〈A†〉ss〈A〉ss
= 〈A†A〉ss

〈A†〉ss〈A〉ss
− 1, (62)
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FIG. 13. Intensity ratio of the multimode (blue, solid) and single-
mode (orange, dashed) filtered coherent and incoherent spectra when
resonant with the central peak, �ω = 0, from Eq. (62). The inset is
zoomed in on the region where K ≈ �, where there is a clear de-
crease in the incoherent intensity Iinc, corresponding to the bunching
peak in Fig. 12. Parameters are the same as in Fig. 10.

which we show for the filtered central peak in Fig. 13. When
the half-width is approximately the same as the side-peak
splitting, K ≈ �, there is a clear deviation in the single-mode
and multimode filtered intensity ratios (highlighted in the inset
of Fig. 13). As the frequency response of the multimode array
filter expands and overlaps slightly with the side peaks, there
is a decrease in the incoherent scattering intensity, possibly
due to the interference in the cascaded decay channels. We
can infer a similar effect occurs when the filter is resonant with
either side peak. As the filter response first overlaps with the
central peak, at K ≈ �, and then with the opposite side peak,
at K ≈ 2�, there will be a similar decrease in the incoherent
scattering. This, however, will need further investigation.

B. Cross-correlations

Allowing the tunable central frequencies of both fil-
ters, �ω

(a)
0 and �ω

(b)
0 , to vary, we can investigate cross-

correlations between different frequency components.

1. Temporal evolution of peak-to-peak correlations

We first focus on the temporal evolution of the cross-
correlation function when the two filters are resonant with
two different peaks of the Mollow triplet. When driven on
resonance, there is a symmetry between the two side-peaks,
therefore we set the first filter, A, resonant with the right
peak, �ω

(a)
0 = �. In Fig. 14 we depict the evolution of the

(a) right-to-central peak, g(2)(�, 0; 0, τ ), and (b) right-to-left
peak, g(2)(�, 0; −�, τ ), cross-correlations.

As previously discussed, the secular approximation in the
atomic picture fails to account for the different time orderings
of the deexcitation paths. The filtered correlations in Fig. 14
do not show the expected bunching for right-to-left filtered
correlations of Eq. (39a) or the second-order coherence of
Eq. (39b). We instead see close agreement with the behavior
expected from the equations derived by Schrama et al. [53],
Eqs. (40).

These theoretical results do slightly differ from experimen-
tal literature, as in Refs. [14,43]. For the right-to-central peak
cross-correlation, Fig. 14(a), the central dip due to the de-
structive interference is seen in Figs. 12–14 of Ref. [43]. The
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FIG. 14. Cross-correlation function of the filtered (a) right-to-
central peak, g(2)(�, 0; 0, τ ), and (b) right-to-left peak,
g(2)(�, 0; −�, τ ), transitions for the multimode (blue, solid)
and single-mode (orange, dashed) filters. The filtered correlation
functions are plotted against the secular approximation, Eq. (40b),
for the respective half-width. Other parameters are � = 5πγ ,
δω = K/N , and κ = 2.5δω.

experimental results, however, do not show any visible Rabi
oscillations, possibly due to the weaker driving amplitude.

We note here that we have chosen different half-widths
for the single- and multimode array filters, with the same
numerical optimisation method as in Fig. 11, which is why
the expected short-time behaviors differ. With a half-width

roughly three times larger, however, the visible Rabi oscil-
lations in the multimode-filtered cross-correlations are still
significantly reduced when compared to the single-mode filter.
Larger K for the single-mode filter would result in much larger
Rabi oscillations in the cross-correlations.

2. Cross-correlations outside the Mollow triplet peaks

We are not limited to cross-correlations that are resonant
with the three peaks of the Mollow triplet; we can choose the
central resonance of filters A and B to be any frequency. Doing
so allows us to uncover more interesting, and potentially use-
ful, photon correlations. Figure 15 depicts landscapes of initial
correlation values for the single- and multimode array filters,
as the central frequencies of both filters are varied. We note
that the results for the single-mode filter, Fig. 15(a), closely
resemble the results from recent work [25–27,30,54], where
the frequency filter was also modeled as a single-mode cavity.

For both filtering cases we see similar regions of correla-
tions. Along the positive diagonal—the initial autocorrelation
value—we see regions of antibunching surrounding the side
peaks and second-order coherence about the origin. For cross-
correlated photons, there are regions of strong antibunching
when one of the filters is resonant with the central peak,
and second-order coherence for the left-to-right and right-
to-left peak correlations. These regions are anticipated from
the temporal evolution, Figs. 9 and 14, and from the secular
approximations, Eqs. (38) and (40).

When moving the filter resonances away from the Mollow
triplet peaks, we see regions of strong photon correlations
appearing. These regions are due to simultaneous two-photon
“leapfrog” processes. As there are only three possible relax-
ation paths, these regions occur in areas where the sum of the
two filtered photons’ frequencies matches the allowed transi-
tion, i.e., �ω

(a)
0 + �ω

(b)
0 = −�, 0, or �. Due to the improved

frequency isolation of the multimode array filter, these regions
are much more clearly defined.
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FIG. 15. Initial value of the cross-correlation function, g(2)(α, 0; β, 0), for the (a) single-mode filter, with N = 0 and K = γ , and
the (b) multimode array filters, with N = 80, K = 5.5γ , δω = 0.069γ , and κ = 0.172γ . The color code of the contour plot is blue for
g(2)(α, 0; β, 0) < 1, white for g(2)(α, 0; β, 0) = 1, and red for g(2)(α, 0; β, 0) > 1. The driving amplitude is � = 5πγ .
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VI. CONCLUSION

We have developed an effective frequency filtering
model—the multimode array filter—consisting of an array of
tunable single-mode cavities. Each cavity is assumed to have a
very narrow linewidth compared to the range of frequencies,
such that there is minimal overlap between each individual
frequency response. The output of each individual cavity
is then directed towards a single photodetector, resulting in
a near-rectangular collective frequency response. Compared
against a single-mode Lorentzian filter, the multimode array
filter can achieve much wider half-widths—and, thus, faster
temporal response—with a much sharper cutoff in frequency
response.

We investigated frequency-filtered photon correlations
when filtering resonance fluorescence of a driven two-level
atom. We compared results for frequency-filtered auto- and
cross-correlations for both the single-mode and multimode
filters, where the multimode array filtered correlations could
reproduce the ideal photon correlations, as derived in the
secular approximation, more accurately than the single-mode
filter.

In order to achieve a sufficient frequency response, a large
number of cavity modes, N , is required. This would subse-
quently result in a rapidly growing Hilbert space of the model.
Due to the cascaded coupling, we were able to circumvent
this issue by deriving a closed set of coupled operator mo-
ment equations, providing an efficient method of calculation.
Provided one can derive a closed set of operator moment

equations for the source system, cascading the source into
the multimode array ensures a closed set of equations for the
total source-filter coupled system. Unfortunately, not every
quantum system can be described by a closed set of operator
equations, in which case a master equation or quantum tra-
jectory method must be used, with a conservative number of
modes.

Here we have defined the multimode array filter as an
array of single-mode resonators. While not the focus of this
paper, recent work with ring resonator arrays [55] and on-chip
resonators [56,57] shows promise for possible experimental
implementations of the multimode array filter.

In principle, this filtering system could be applied to any
quantum optical source system. To calculate the complete
set of filter-operator moment equations, the set of moment
equations of the source system must be closed. We have also
applied this method to a three-level ladder-type atom driven at
two-photon resonance, with a manuscript currently in prepa-
ration [58].
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APPENDIX: MOMENT EQUATIONS FOR THE TWO-FILTER SYSTEM

Here we present all of the operator moment equations needed to calculate the second-order cross-correlation function,
Eq. (60). We write these coupled moment equations in matrix form, where we use the notation

〈σ〉 =
⎛
⎝〈σ−〉

〈σ+〉
〈σz〉

⎞
⎠, 〈Xσ〉 =

⎛
⎝〈Xσ−〉

〈Xσ+〉
〈Xσz〉

⎞
⎠. (A1)

Routines written in FORTAN90 compute the steady states of these moment equations using the LAPACK matrix inversion
routines [59]. The routines can be found in a GitHub repository [60].

1. Two-level atom

We restate the moment equations for the driven two-level atom, the optical Bloch equations, Eq. (28):

d

dt
〈σ〉 = M (σ)〈σ〉 +

⎛
⎝ 0

0
−γ

⎞
⎠, M (σ ) =

⎛
⎝− γ

2 0 i �
2

0 − γ

2 −i �
2

i� −i� −γ

⎞
⎠. (A2)

2. First-order filter mode operators

The operator moment equations for the first-order filter mode operators, 〈aj〉, 〈a†
j〉, 〈b j〉, and 〈b†

j〉, are

d

dt
〈a j〉 = −(

κ + i�ω
(a)
j

)〈a j〉 − E j〈σ−〉, (A3a)

d

dt
〈a†

j〉 = −(
κ − i�ω

(a)
j

)〈a†
j〉 − E∗

j 〈σ+〉, (A3b)

d

dt
〈b j〉 = −(

κ + i�ω
(b)
j

)〈b j〉 − E j〈σ−〉, (A3c)

d

dt
〈b†

j〉 = −(
κ − i�ω

(b)
j

)〈b†
j〉 − E∗

j 〈σ+〉. (A3d)
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3. First-order filter mode operators with spin operators

The operator moment equations for the second-order operators, 〈ajσ〉, 〈a†
jσ〉, 〈b jσ〉, and 〈b†

jσ〉 are

d

dt
〈a jσ〉 = [

M (σ ) − (
κ + i�ω

(a)
j

)
1
]〈a jσ〉 +

⎛
⎜⎝ 0

− 1
2E j (〈σz〉 + 1)

−γ 〈a j〉 + E j〈σ−〉

⎞
⎟⎠, (A4a)

d

dt
〈a†

jσ〉 = [
M (σ ) − (

κ − i�ω
(a)
j

)
1
]〈a jσ〉 +

⎛
⎝ − 1

2E∗
j (〈σz〉 + 1)

0
−γ 〈a†

j〉 + E∗
j 〈σ+〉

⎞
⎠, (A4b)

d

dt
〈b jσ〉 = [

M (σ ) − (
κ + i�ω

(b)
j

)
1
]〈b jσ〉 +

⎛
⎜⎝ 0

− 1
2E j (〈σz〉 + 1)

−γ 〈b j〉 + E j〈σ−〉

⎞
⎟⎠, (A4c)

d

dt
〈b†

jσ〉 = [
M (σ ) − (

κ − i�ω
(b)
j

)
1
]〈b jσ〉 +

⎛
⎝ − 1

2E∗
j (〈σz〉 + 1)

0
−γ 〈a†

j〉 + E∗
j 〈σ+〉

⎞
⎠. (A4d)

4. Second-order filter mode operators

The operator moment equations for the second-order operators, 〈ajbk〉, 〈a†
j b

†
k〉, 〈a†

j ak〉, 〈b†
jbk〉, 〈a†

j bk〉, and 〈b†
jak〉 are

d

dt
〈a jbk〉 = −[

2κ + i
(
�ω

(a)
j + �ω

(b)
k

)]〈a jbk〉 − E j〈bkσ−〉 − Ek〈a jσ−〉, (A5a)

d

dt
〈a†

j b
†
k〉 = −[

2κ − i
(
�ω

(a)
j + �ω

(b)
k

)]〈a†
j b

†
k〉 − E∗

j 〈b†
kσ+〉 − E∗

k 〈a†
jσ+〉, (A5b)

d

dt
〈a†

j ak〉 = −[
2κ − i

(
�ω

(a)
j − �ω

(a)
k

)]〈a†
j ak〉 − E∗

j 〈akσ+〉 − Ek〈a†
jσ−〉, (A5c)

d

dt
〈b†

jbk〉 = −[
2κ − i

(
�ω

(b)
j − �ω

(b)
k

)]〈b†
jbk〉 − E∗

j 〈bkσ+〉 − Ek〈b†
jσ−〉, (A5d)

d

dt
〈a†

j bk〉 = −[
2κ − i

(
�ω

(a)
j − �ω

(b)
k

)]〈a†
j bk〉 − E∗

j 〈bkσ+〉 − Ek〈a†
jσ−〉, (A5e)

d

dt
〈b†

jak〉 = −[
2κ − i

(
�ω

(b)
j − �ω

(a)
k

)]〈b†
jak〉 − E∗

j 〈akσ+〉 − Ek〈b†
jσ−〉. (A5f)

5. Second-order filter mode operators with spin operators

The operator moment equations for the third-order operators, 〈ajbk〉, 〈a†
j b

†
kσ〉, 〈a†

j akσ〉, 〈b†
jbkσ〉, 〈a†

j bkσ〉, and 〈b†
jakσ〉 are

d

dt
〈a jbkσ〉 = {

M (σ ) − [
2κ + i

(
�ω

(a)
j + �ω

(b)
k

)]
1
}〈a jbkσ〉

+
⎛
⎝ 0

− 1
2E j (〈bkσz〉 + 〈bk〉) − 1

2Ek
(〈a jσz〉 + 〈a j〉

)
−γ 〈a jbk〉 + E j〈bkσ−〉 + Ek〈a jσ−〉

⎞
⎠, (A6a)

d

dt
〈a†

j b
†
kσ〉 = {

M (σ ) − [
2κ − i

(
�ω

(a)
j + �ω

(b)
k

)]
1
}〈a†

j b
†
kσ〉

+

⎛
⎜⎝− 1

2E∗
j

(〈b†
kσz〉 + 〈b†

k〉
) − 1

2E∗
k

(〈a†
jσz〉 + 〈a†

j〉
)

0
−γ 〈a†

j b
†
k〉 + E∗

j 〈b†
kσ+〉 + E∗

k 〈a†
jσ+〉

⎞
⎟⎠, (A6b)

d

dt
〈a†

j akσ〉 = {
M (σ ) − [

2κ − i
(
�ω

(a)
j − �ω

(a)
k

)]
1
}〈a†

j akσ〉

+

⎛
⎜⎝

− 1
2E∗

j (〈akσz〉 + 〈ak〉)

− 1
2Ek

(〈a†
jσz〉 + 〈a†

j〉
)

−γ 〈a†
j ak〉 + E∗

j 〈akσ+〉 + Ek〈a†
jσ−〉

⎞
⎟⎠, (A6c)
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d

dt
〈b†

jbkσ〉 = {
M (σ ) − [

2κ − i
(
�ω

(b)
j − �ω

(b)
k

)]
1
}〈b†

jbkσ〉

+

⎛
⎜⎜⎝

− 1
2E∗

j (〈bkσz〉 + 〈bk〉)

− 1
2Ek

(〈b†
jσz〉 + 〈b†

j〉
)

−γ 〈b†
jbk〉 + E∗

j 〈bkσ+〉 + Ek〈b†
jσ−〉

⎞
⎟⎟⎠, (A6d)

d

dt
〈a†

j bkσ〉 = {
M (σ ) − [

2κ − i
(
�ω

(a)
j − �ω

(b)
k

)]
1
}〈a†

j bkσ〉

+

⎛
⎜⎜⎝

− 1
2E∗

j (〈bkσz〉 + 〈bk〉)

− 1
2Ek

(〈a†
jσz〉 + 〈a†

j〉
)

−γ 〈a†
j bk〉 + E∗

j 〈bkσ+〉 + Ek〈a†
jσ−〉

⎞
⎟⎟⎠, (A6e)

d

dt
〈b†

jakσ〉 = {
M (σ ) − [

2κ − i
(
�ω

(b)
j − �ω

(a)
k

)]
1
}〈b†

jakσ〉

+

⎛
⎜⎜⎝

− 1
2E∗

j (〈akσz〉 + 〈ak〉)

− 1
2Ek

(〈b†
jσz〉 + 〈b†

j〉
)

−γ 〈b†
jak〉 + E∗

j 〈akσ+〉 + Ek〈b†
jσ−〉

⎞
⎟⎟⎠. (A6f)

6. Third-order filter mode operators

The operator moment equations for the third-order operators, 〈a†
j akbl〉, 〈b†

jbkal〉, 〈b†
ja

†
kal〉, and 〈a†

j b
†
kbl〉 are

d

dt
〈a†

j akbl〉 = −[
3κ − i

(
�ω

(a)
j − �ω

(a)
k − �ω

(b)
l

)]〈a†
j akbl〉

− E j
∗〈akblσ+〉 − Ek〈a†

j blσ−〉 − El〈a†
j akσ−〉, (A7a)

d

dt
〈b†

jbkal〉 = −[
3κ − i

(
�ω

(b)
j − �ω

(b)
k − �ω

(a)
l

)]〈b†
jbkal〉

− E∗
j 〈albkσ+〉 − Ek〈b†

jalσ−〉 − El〈b†
jbkσ−〉, (A7b)

d

dt
〈b†

ja
†
kal〉 = −[

3κ − i
(
�ω

(b)
j + �ω

(a)
k − �ω

(a)
l

)]〈b†
ja

†
kal〉

− E∗
j 〈a†

kalσ+〉 − E∗
k 〈b†

jalσ+〉 − El〈a†
kb†

jσ−〉, (A7c)

d

dt
〈a†

j b
†
kbl〉 = −[

3κ − i
(
�ω

(a)
j + �ω

(b)
k − �ω

(b)
l

)]〈a†
j b

†
kbl〉

− E∗
j 〈b†

kblσ+〉 − E∗
k 〈a†

j blσ+〉 − El〈a†
j b

†
kσ−〉. (A7d)

7. Third-order filter mode operators with spin operators

The operator moment equations for the fourth-order operators, 〈a†
j akblσ〉, 〈b†

jbkalσ〉, 〈b†
ja

†
kalσ〉, and 〈a†

j b
†
kblσ〉 are

d

dt
〈a†

j akblσ〉 = {
M (σ ) − [

3κ − i
(
�ω

(a)
j − �ω

(a)
k − �ω

(b)
l

)]
1
}〈a†

j akblσ〉

+

⎛
⎜⎜⎝

− 1
2E∗

j (〈akblσz〉 + 〈akbl〉)

− 1
2Ek

(〈a†
j blσz〉 + 〈a†

j bl〉
) − 1

2El
(〈a†

j akσz〉 + 〈a†
j ak〉

)
−γ 〈a†

j akbl〉 + E∗
j 〈akblσ+〉 + Ek〈a†

j blσ−〉 + El〈a†
j akσ−〉

⎞
⎟⎟⎠, (A8a)

d

dt
〈b†

jbkalσ〉 = {
M (σ ) − [

3κ − i
(
�ω

(b)
j − �ω

(b)
k − �ω

(a)
l

)]
1
}〈b†

jbkalσ〉

+

⎛
⎜⎜⎝

− 1
2E∗

j (〈albkσz〉 + 〈al bk〉)

− 1
2Ek

(〈b†
jalσz〉 + 〈b†
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) − 1

2El
(〈b†
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jbk〉

)
−γ 〈b†

jbkal〉 + E∗
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jbkσ−〉

⎞
⎟⎟⎠, (A8b)
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d

dt
〈b†

ja
†
kalσ〉 = {

M (σ ) − [
3κ − i

(
�ω

(b)
j + �ω

(a)
k − �ω

(a)
l

)]
1
}〈b†

ja
†
kalσ〉

+

⎛
⎜⎜⎝

− 1
2E∗

j

(〈a†
kalσz〉 + 〈a†
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) − 1

2E∗
k

(〈b†
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)

− 1
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(〈a†
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jσz〉 + 〈a†
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)

−γ 〈b†
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†
kal〉 + E∗

j 〈a†
kalσ+〉 + E∗

k 〈b†
jalσ+〉 + El〈a†

kb†
jσ−〉

⎞
⎟⎟⎠, (A8c)

d

dt
〈a†

j b
†
kblσ〉 = {

M (σ ) − [
3κ − i

(
�ω

(a)
j + �ω

(b)
k − �ω

(b)
l

)]
1
}〈a†

j b
†
kblσ〉

+

⎛
⎜⎜⎝

− 1
2E∗

j

(〈b†
kblσz〉 + 〈b†

kbl〉
) − 1

2E∗
k

(〈a†
j blσz〉 + 〈a†

j bl〉
)

− 1
2El

(〈a†
j b

†
kσz〉 + 〈a†

j b
†
k〉
)

−γ 〈a†
j b

†
kbl〉 + E∗

j 〈b†
kblσ+〉 + E∗

k 〈a†
j blσ+〉 + El〈a†

j b
†
kσ−〉

⎞
⎟⎟⎠. (A8d)

8. Fourth-order filter mode operators

The operator moment equation for the fourth-order filter mode operator 〈a j†b†
kbl am〉 is

d

dt
〈a†

j b
†
kblam〉 = −[

4κ − i
(
�ω

(a)
j + �ω

(b)
k

) + i
(
�ω

(b)
l + �ω(a)

m

)]〈a†
j b

†
kblam〉

− E∗
j 〈b†

kblamσ+〉 − E∗
k 〈a†

j amblσ+〉 − El〈b†
ka†

j amσ−〉 − Em〈a†
j b

†
kblσ−〉. (A9)
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