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Photon blockade in weak nonlinear regime is an exciting and promising subject that has been extensively
studied in the steady state. However, how to achieve dynamic blockade in a single bosonic mode with weak
nonlinearity using only pulsed driving field remains unexplored. Here, we propose to optimize the parameters of
the pulsed driving field to achieve dynamic blockade in a single bosonic mode with weak nonlinearity via the
particle swarm optimization (PSO) algorithm. We demonstrate that both Gaussian and rectangular pulses can
be used to generate dynamic blockade in a single bosonic mode with weak nonlinearity. Based on the Fourier
series expansions of the pulsed driving field, we identify that there are many paths for two-photon excitation in
the bosonic mode, even only driven by pulsed field, and the dynamic blockade in a weak nonlinear regime is
induced by the destructive interference between them. Our paper not only highlights the effectiveness of PSO
algorithm in optimizing dynamical blockade but also opens a probable way to optimize the parameters for other
quantum effects, such as quantum entanglement and quantum squeezing.
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I. INTRODUCTION

Photon blockade is a pure quantum effect that suppresses
multiphoton generation in a bosonic mode [1]. It is a mech-
anism for the generation of single photons through coherent
optical driving [2,3] and plays a pivotal role in the develop-
ment of quantum computing [4,5], quantum networks [6,7],
quantum cryptography [8,9], and quantum sensing [10,11].
Conventionally, photon blockade is proposed by introduc-
ing various strong nonlinear interactions into the optical
modes [12–23] and has been observed in some experimen-
tal platforms, such as optical cavities coupled to single
atoms [24–26], quantum dots embedded in photonic-crystal
nanocavities [27,28], and superconducting qubits resonantly
coupled to microwave resonators [29,30]. However, strong
nonlinearity is still difficult to achieve in most experimental
platforms, and photon blockade in weak nonlinear regime is
an exciting and promising subject.

In the past decade, some novel mechanisms have been
proposed to obtain photon blockade under weak nonlin-
ear interactions. The one that attracts the most attention
is the photon blockade originating from the suppression of
two-photon excitation by destructive interference between
different transition paths. It was first predicted in weakly
nonlinear photonic molecules [31,32] and then observed for
both optical [33] and microwave [34] photons. Photon block-
ade based on destructive interference has been extensively
studied in various systems, such as coupled optomechanical
systems [35–37], coupled cavities with second- or third-order
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nonlinearities [38–51], cavity embedded with a quantum dot
[52–56], coupled-resonator chain [57–59], etc. Photon block-
ade under weak nonlinear interactions has also been predicted
in a bosonic mode with nonlinear driving [60,61] or nonlinear
loss [62–65].

Different from the photon blockade predicted in the
steady state by constant driving, dynamical blockade is a
time-dependent phenomenon that strong photon blockade is
achieved in certain periodic time windows. Dynamical block-
ade has been proposed in nonlinear systems driven by a
coherent field with time-dependent amplitude [66–71] or us-
ing time-dependent coupling [72]. Due to the destructive
interference between different paths for two-photon excita-
tion, dynamical blockade has been predicted in the weakly
nonlinear regime when a bosonic mode is coupled to two
other modes by four-wave mixing [68], or coupled to a gain
medium [69], or driven by a combination of continuous and
pulsed fields [70], or driven by a bi-tone coherent field [71].
Nevertheless, how to achieve dynamic blockade in a single
bosonic mode with weak nonlinearity driven by only a pulsed
field is still an open question.

In this paper, we propose to optimize the parameters of
the pulsed driving field to achieve a dynamic blockade in a
single bosonic mode with weak nonlinearity via the particle
swarm optimization (PSO) algorithm [73]. The PSO algo-
rithm, inspired by collective behaviors observed in natural
phenomena such as flocks of birds and schools of fish, op-
erates as a group stochastic optimization algorithm, which
has extensive applications in physics, such as crystal structure
prediction [74], design of diffraction grating filters [75], max-
imization of topological invariants [76], characterization of
dephasing quantum systems [77], and cosmological parameter
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estimation [78]. Here, we apply the PSO algorithm to demon-
strate dynamic blockade in a single bosonic mode with weak
Kerr nonlinearity using only pulsed excitations. We optimize
the parameters of the Gaussian and rectangular pulses by
the PSO algorithm to generate strong dynamic blockade in
a single bosonic mode with weak nonlinearity. The method
of parameters optimization based on PSO algorithm is not
only for achieving photon blockade but may also be applied
to optimize the parameters for quantum entanglement [79] and
quantum squeezing [80].

The paper is organized as follows. In Sec. II, we present
the model of a single bosonic mode with Kerr nonlinearity
driven by a pulsed coherent field, and briefly introduce the
PSO algorithm. We demonstrate the dynamic blockade in a
bosonic mode driven by a series of Gaussian pulses optimized
by the PSO algorithm in Sec. III. In Sec. IV, we show that
dynamic blockade also can be observed in the bosonic mode
when it is driven by a series of optimized rectangular pulses.
Finally, we make the conclusions in Sec. V.

II. MODEL AND ALGORITHM

A. Physical model

We consider a single bosonic mode with Kerr nonlinearity
driven by a pulsed coherent field, and in the frame rotating
with the driving frequency ωd , the system can be described by
the Hamiltonian (h̄ = 1)

H = �a†a + Ua†a†aa + ε(t )(a† + a), (1)

where a†(a) is the creation (annihilation) operator of the
bosonic mode with the resonant frequency ωa, U is the
strength of nonlinearity, ε(t ) is the envelope of the pulsed driv-
ing field at time t , and � ≡ ωa − ωd is the detuning between
the bosonic mode and driving field.

The dynamic of the system is governed by the quantum
master equation [81]

ρ̇ = −i[H, ρ] + γ

2
(2aρa† − a†aρ − ρa†a), (2)

where ρ is the density matrix of the system and γ is the decay
rate of the bosonic mode. The statistics of the bosonic mode
can be evaluated by the instantaneous equal-time second-
order correlation function

g(2)(t ) = 〈a†(t )a†(t )a(t )a(t )〉
〈a†(t )a(t )〉〈a†(t )a(t )〉 , (3)

which indicates dynamic blockade by g(2)(t ) < 1.
As the Hamiltonian is time dependent, except for a few

cases (such as using a simple bi-tone drive [71]), it is hard
to analytically obtain the optimal conditions for the dynamic
blockade. Here, we try to overcome this challenge via an op-
timization algorithm widely used in artificial intelligence (see
next subsection) and numerically demonstrate dynamic block-
ade in a single bosonic mode in the weak nonlinear regime,
i.e., U < γ , driven only by pulsed coherent field. Without loss
of generality, we set U/γ = 0.05 in the following numerical
simulations.

B. Optimization algorithm

In this subsection, we briefly survey the optimization algo-
rithm, i.e., the PSO algorithm, that we will use to optimize
the parameters for achieving dynamic blockade in a single
bosonic mode in the weak nonlinear regime. To be more spe-
cific, we will search for the optimal parameters of the pulsed
driving field by the PSO algorithm to achieve the minimal
second-order correlation function g(2)(t ).

In the PSO algorithm, there are Np computational agents,
referred to as particles, without any relation to the physical
particles. Each particle is assigned a position and a velocity
vector. The position of the ith particle at the kth iteration (k =
0, 1, 2, · · · , Nk) is

X k
i = [

X k
i1, X k

i2, · · · , X k
id

]T
(4)

and the velocity is

V k
i = [

V k
i1,V k

i2, · · · ,V k
id

]T
, (5)

where d denotes the dimensionality corresponding to the num-
ber of unknown parameters in the problem to be solved, and
Nk is the maximum number of iterations. Here, we set particle
number Np = 20 and iteration number Nk = 50, and search
for the optimized pulsed driving field to minimize g(2)(t ). The
parameters of the driving field, i.e., the detuning � and the
parameters for the envelope of the driving field ε(t ), serve as
the components of the position vector.

The positions of the particles are initiated by random num-
bers in a given range (described later), the initial values of
the components in the velocities are initialized by random
numbers within the range [−0.1, 0.1], and the positions and
velocities are updated at each iteration until an optimization
position is obtained. At the (k + 1)th iteration, the position
and velocity of the ith particle are updated in the following
way:

X k+1
i = X k

i + V k+1
i , (6)

V k+1
i = wV k

i + f1r1
(
Pk

i − X k
i

) + f2r2
(
Gk − X k

i

)
. (7)

Here, w represents the inertial weight, exerting a significant
influence on the algorithm’s search capability. A larger w

promotes global exploration while a smaller w is conducive to
local exploration. The parameters f1 and f2 correspond to the
individual cognitive learning factor and social learning factor,
respectively. Without loss of generality, we set w = 0.5 and
f1 = f2 = 1.5 for numerical simulation. The random numbers
r1 and r2, sampled from the interval [0,1], introduce an ele-
ment of randomness to enhance the search process.

The quality of the position is characterized by a fitness
value evaluated by an optimization function (fitness function)
based on the predetermined criteria. In this paper, the fitness
function is defined as the minimum of the instantaneous equal-
time second-order correlation function, denoted by g(2)

min(t ),
within a specified time range. The instantaneous equal-time
second-order correlation function is calculated by numerically
solving the master equation (2) with the open-source software
QUTIP [82,83] for the system driven by a pulsed field charac-
terized by d-dimensional parameters, i.e., the position X k

i .
There are two kinds of historically best positions that

should be memorized at each iteration. One is Pk
i , the
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FIG. 1. (a) The envelope of the driving Gaussian pulses ε(t ),
(b) the mean photon number n(t ), and (c) the equal-time second-
order correlation function g(2)(t ) versus time γ t . (d)–(f) The local
enlarged views of (a)–(c), respectively. The parameters are U/γ =
0.05, γ T = 5, �/γ = 0.5, εp/γ = 0.1, and A = 5.27.

historically best position of the ith particle within k iterations
for the fitness function [g(2)

min(t )] achieving the minimal value,
and the other one is Gk , the historically best position for the
entire swarm within k iterations. When the particle’s fitness
value becomes approximately constant with the increasing
iteration number, the optimization position is found and the
corresponding best position Gk is the set of the optimized
parameters of the driving field.

III. GAUSSIAN PULSES

As a specific example, we consider the case that the
bosonic mode is driven by a series of Gaussian pulses in this
section, and the envelope of the driving field is written as

ε(t ) = εpA√
π

∑
m

exp[−A2γ 2(t − mT )2], (8)

where εp denotes the driving strength, A governs the duration
of the pulses, T represents the period of the pulses, and m is
an integer. To optimize the parameters of the driving field for
dynamic blockade, the position for the ith particle at the kth
iteration is given by

X k
i = [

�k
i , ε

k
p,i, T k

i , Ak
i

]T
, (9)

where �k
i , εk

p,i, T k
i , and Ak

i are the detuning, the driving
strength, the period, and the duration of the pulses, respec-
tively. The ranges of these parameters for optimization are
set as follows: �/γ in the range (−5, 5), εp/γ in the range
(0.1,0.5), γ T in the range (3, 8), and A in the range (0.001,10).

After 50 iterations, we obtain the following optimal param-
eters for dynamic blockade: �/γ = 0.5, εp/γ = 0.1, γ T =
5, and A = 5.27. The envelope of the pulses ε(t ) for the opti-
mized parameters is shown in Fig. 1(a), and the corresponding
mean photon number n(t ) and second-order correlation func-
tion g(2)(t ) are shown in Figs. 1(b) and 1(c), respectively. The

FIG. 2. The populations of Fock states with one photon and two
photons (P1 and P2) versus time γ t for U = 0 (blue dashed curves)
and U/γ = 0.05 (red solid curves). The parameters are the same as
in Fig. 1.

bosonic mode is periodically excited by the driving pulses,
and there is a time delay between the driving pulses and
the excitations [Figs. 1(d)–1(f)]. Such time delay induces a
counterintuitive phenomenon that the decay of mean photon
number is accelerated and the minimal mean photon number
nmin(t ) ≈ 3 × 10−4 [Fig. 1(e)] appears during the increasing
of the driving strength (i.e., the rising edge of the driving
pulse) [Fig. 1(d)]. Meanwhile, the second-order correlation
function also decays rapidly in this regime and the strong
antibunching is obtained with the minimum value g(2)

min(t ) ≈
4 × 10−4 [Fig. 1(f)].

These phenomena can be understood based on the dy-
namics of the populations Pn of the Fock states |n〉 (n is a
non-negative integer). The populations of Fock states with
single photon (P1) and two photons (P2) are shown in Fig. 2 for
U = 0 and U = 0.05γ . The decay of the populations (P1 and
P2) is accelerated before they reach their minimal values. The
single-photon excitation (|0〉 → |1〉) and two-photon excita-
tion (|1〉 → |2〉) are suppressed by the destructive interference
between different paths [see Fig. 3(c)], but the reverse transi-
tions (|1〉 → |0〉 and |2〉 → |1〉) are enhanced by the driving
field, which is the origin of the phenomenon that the decay of
the mean photon number is accelerated at the rising edge of
the driving pulse. If there is no nonlinear interaction (U = 0)
in the bosonic mode, the dynamics of P1 and P2 are simultane-
ous, and there is no blockade effect, i.e., 2P2/P2

1 = 1. In con-
trast, under the weak nonlinear interaction (U = 0.05γ ), the
dynamics of P1 and P2 become nonsimultaneous. After opti-
mization, the two-photon excitation (|1〉 → |2〉) is suppressed
much more seriously than the single-photon excitation (|0〉 →
|1〉), which induces the results that the minimum value of P2 is
about four orders smaller than that for U = 0 and strong pho-
ton blockade is achieved at the rising edge of the driving pulse.
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FIG. 3. The populations of Fock states |1〉 and |2〉 [(a) P1 and (b) P2] versus time γ t by the numerical [Eq. (2)] (red solid curves) and
analytical [Eqs. (15) and (16)] (blue dashed curves) methods. (c) Energy levels of a single bosonic mode with Kerr nonlinearity and the
possible transition pathways for the bosonic mode driven by pulsed field [Eqs. (15) and (16)]. (d) |c(N )

2 |2 versus N at different times (γ t =
29.7, 29.78623, 29.9). The parameters are the same as in Fig. 1.

To show the interference between different paths for two-
photon excitation, we derive the populations of Fock states
based on the Schrödinger equation. Under the weak excitation
condition n(t ) � 1, the state of the bosonic mode can be
truncated to the two-photon manifold as

|ψ〉 ≈ c0|0〉 + c1|1〉 + c2|2〉. (10)

Here, |n〉 is the Fock state with n photons, and cn is the cor-
responding coefficient that satisfies the conditions |c0| ≈ 1 	
|c1| 	 |c2|. Based on the Schrödinger equation, i∂|ψ〉/∂t =
Heff |ψ〉, with the effective Hamiltonian Heff ≡ H − iγ a†a/2,
the dynamic equations for the coefficients c1 and c2 are given
by

dc1

dt
=

(
− i� − γ

2

)
c1 − iε(t ), (11)

dc2

dt
= [−i2(� + U ) − γ ]c2 − i

√
2ε(t )c1. (12)

The envelop of the pulsed driving field can be written as a
Fourier series as

ε(t ) =
+∞∑

k=−∞
εk exp(ikωpt ), (13)

where the complex coefficients are given by

εk = 1

T

∫ T

0
ε(t ) exp(−ikωpt )dt . (14)

ωp ≡ 2π/T is the generation frequency of the Gaussian-
shaped pulses, and k is an integer. Following the method used

in Ref. [71], the dynamic equations can be solved via Fourier
transformation as

c1 =
+∞∑

k=−∞
χ

(1)
k eikωpt , (15)

c2 =
+∞∑

k′=−∞

+∞∑
k=−∞

χ
(2)
k′k χ

(1)
k ei(k+k′ )ωpt , (16)

where

χ
(1)
k = −iεk

i(� + kωp) + γ

2

, (17)

χ
(2)
k′k = −i

√
2εk′

[i(k + k′)ωp + 2i(� + U ) + γ ]
. (18)

Based on the analytical solutions, the populations of Fock
states |1〉 and |2〉 are given by P1 = |c1|2 and P2 = |c2|2.

The populations of Fock states |1〉 and |2〉 (P1 and P2)
obtained by numerical [Eq. (2)] (red solid curves) and ana-
lytical [Eqs. (15) and (16)] (blue dashed curves) methods are
shown in Figs. 3(a) and 3(b). The results obtained by these two
methods match quantitatively. From Eq. (16), we can see that
the two-photon excitation can be achieved through multiple
paths, i.e., absorbing two photons with the same frequency
(k = k′) or with different frequencies (k �= k′), as shown in
Fig. 3(c). All the paths for two-photon excitation may interfere
destructively and lead to the vanishing of the population of
Fock state |2〉 with c2 ≈ 0. To show the multiple-path destruc-
tive interference, we define

c(N )
2 =

N∑
k′=−N

N∑
k=−N

χ
(2)
k′k χ

(1)
k ei(k+k′ )ωpt , (19)
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FIG. 4. The minimal values of the second-order correlation func-
tion g(2)

min(t ) versus parameters: (a) �/γ , (b) γ T , (c) A, and (d) εp/γ .
The other parameters are the same as in Fig. 1.

and we have c(N )
2 = c2 for N → +∞. We show |c(N )

2 |2 versus
N , i.e., (2N + 1)2 paths, at different times in Fig. 3(d). It is
clear that |c(N )

2 |2 decreases gradually with the increase of N ,
and approaches to the stable value (P2) for N > 20.

To demonstrate the optimization based on the PSO al-
gorithm, we show the minimal values of the second-order
correlation function g(2)

min(t ) versus the parameters of the driv-
ing pulses in Fig. 4. From these figures, we can see that the
parameters (�/γ = 0.5, γ T = 5, and A = 5.27) are indeed
the optimal parameters for dynamic blockade, which indicates
that the PSO algorithm can be used to obtain the optimal con-
ditions for the dynamic blockade. In addition, there are some
notes that should be mentioned: (i) As shown in Fig. 4(d),
a smaller εp corresponds to a smaller g(2)

min(t ), as well as a
smaller mean photon number n(t ). (ii) In the optimization, we
set the range for γ T as (3,8) because it is related to the mean
photon number n(t ). A longer interval between two pulses
results in a smaller mean photon number for strong dynamic
blockade, so we impose an upper limit on γ T to prevent a
too small mean photon number. (iii) There are many optimal
parameter regimes for strong dynamic blockade, so we can
choose different parameters according to the experimental
conditions and application situations.

IV. RECTANGULAR PULSES

The dynamic blockade optimization based on the PSO
algorithm can be applied to the cases that the bosonic mode is
driven by a pulsed field with different envelope. Rectangular
pulses are also commonly used in optical driving, and there
are even more controllable parameters for the envelope of the
rectangular pulses, in comparing with the Gaussian pulses. In
this section, we discuss the dynamic blockade optimization
achieved by driving the bosonic mode with a series of rectan-
gular pulses. The envelope of the rectangular pulses is written

FIG. 5. (a) The envelope of the driving rectangular pulses ε(t ),
(b) the mean photon number n(t ), and (c) the equal-time second-
order correlation function g(2)(t ) versus time γ t . (d)–(f) The local
enlarged views of (a)–(c), respectively. The parameters are U/γ =
0.05, �/γ = 0.617, εm/γ = 0.4, γ tr = 0.468, γ tw = 0.372, γ t f =
0.01, and γ T = 4.365.

as a function of time t as

ε(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εm
t ′
tr
, 0 � t ′ < tr

εm, tr � t ′ < t2
εm

(t3−t ′ )
t f

, t2 � t ′ < t3
0, t3 < t ′ < T,

(20)

where εm represents the maximal amplitude of the rectangular
pulses, tr designates the pulse rise time, t f corresponds to the
pulse fall time, tw signifies the pulse width, T stands for the
pulse period, t2 ≡ tr + tw, t3 ≡ tr + tw + t f , t ′ ≡ t%T , and %
denotes the modulo operation.

To optimize the parameters of the rectangular pulses for
dynamic blockade, the position for the ith particle at the kth
iteration is given by

X k
i = [

�k
i , T k

i , εk
m,i, t k

r,i, t k
w,i, t k

f ,i

]T
, (21)

where �k
i , T k

i , εk
m,i, t k

r,i, t k
w,i, and t k

f ,i are the detuning, the pe-
riod, the driving strength, the rise time, the width, and the fall
time of the pulses, respectively. We set the range of the param-
eters as �/γ in the range (−5, 5), γ T in the range (3,8), εm/γ

in the range (0.4,0.5), γ tr in the range (0.01,0.5), γ tw in the
range (0.01,0.5), and γ t f in the range (0.01,0.5). The fitness
value becomes stable after 50 iterations, yielding the opti-
mal parameters for dynamic blockade: �/γ = 0.617, εm/γ =
0.4, γ tr = 0.468, γ tw = 0.372, γ t f = 0.01, and γ T = 4.365.
The envelope of the rectangular pulses ε(t ), the mean pho-
ton number n(t ), and the second-order correlation function
g(2)(t ) plotted as functions of time t with the optimal param-
eters are shown in Fig. 5. The minimal mean photon number
(≈4 × 10−4) [Fig. 5(e)] is achieved at the rising edges of the
rectangular pulses [Fig. 5(d)], and the dynamic blockade with
a minimal value of g(2)

min(t ) ≈ 4 × 10−3 [Fig. 5(f)] is obtained
just before the mean photon number reaching its minimum
value. As mentioned in the case of Gaussian pulses, the

023718-5



ZHANG, LIU, AND XU PHYSICAL REVIEW A 110, 023718 (2024)

FIG. 6. The minimal values of the second-order correlation func-
tion g(2)

min(t ) versus parameters: (a) �/γ , (b) γ T , (c) εm/γ , (d) γ tr , (e)
γ tw , and (f) γ t f . The parameters are the same as in Fig. 5.

dynamic blockade in the weak nonlinear bosonic mode with
pulsed driving is induced by the destructive interference be-
tween different paths for two-photon excitation [see Eq. (16)].

To demonstrate the results of optimization, we show
the minimal values of the second-order correlation function
g(2)

min(t ) versus one of the parameters, with the other optimal
parameters fixed, in Fig. 6. It should be noted that there is
no optimal values of both εm and t f , i.e., a smaller g(2)

min(t ) is
obtained with a smaller εm and t f . Moreover, there are many
minimal values in Figs. 6(a) and 6(b), which means that, be-
sides the parameters in Fig. 5, there are some other parameter
regimes that can also be used to achieve dynamic blockade.

V. CONCLUSIONS

In conclusion, we have proposed a scheme to optimize
the envelopes of the driving pulses to generate strong photon
blockade by the PSO algorithm and demonstrated dynamic
blockade in a single bosonic mode with weak Kerr nonlinear-
ity using only pulsed driving fields. Based on the analytical
expression of the populations of Fock states, we found that
there are many paths for two-photon excitation and the de-
structive interference between them induces the dynamic
blockade in the weak nonlinear regime. Dynamic blockade
optimization can be realized by different types of pulses based
on the PSO algorithm, and we have shown the cases of driving
the single bosonic mode with Gaussian or rectangular pulses.
Our work opens a way to generate dynamic blockade by the
optimization algorithm.

The PSO algorithm may be applied to optimize the pa-
rameters for observing other quantum effects. For example,
we note that quantum entanglement and quantum squeezing
have been extensively studied in the standard optomechanical
systems driven by constant fields [84], but how to optimize
the dynamic quantum entanglement and squeezing in a stan-
dard optomechanical system driven by pulsed fields is still
an open question. The PSO algorithm for dynamic blockade
proposed here may be generalized to optimize the parameters
of the pulsed fields for exploring dynamic quantum entan-
glement and squeezing in a standard optomechanical system
by replacing the fitness function with the log negativity (for
entanglement) or quadrature fluctuations (for squeezing).
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