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Experimental retrieval of photon statistics from click detection
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We utilize click-counting theory for the reconstruction of photon statistics, employing an analytic pseudoin-
version method. A reconfigurable time-bin multiplexing, click-counting detector is experimentally implemented,
allowing for altering the photon-number resolution. A detector tomography is carried out, yielding vital measure-
ment features, such as quantum efficiencies and cross-talk rates. We gauge the success of the pseudoinversion
by applying the Mandel and binomial parameters, resulting in an additional interpretation of these parameters
for the discrimination of distinct quantum statistics. For coherent states, which lie at the classical-nonclassical
boundary, both parameters are highly sensitive measures, probing the kind of statistics and the reconstruction
performance. In addition, we apply a loss deconvolution technique to account for detection losses.
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I. INTRODUCTION

Since the beginning of quantum mechanics, the field of
quantum optics has attracted an extraordinary interest for
purposes of explaining optical phenomena that are outside
the realm of classical physics [1–3]. Since then, ongoing
research has employed nonclassical optical states [3,4] to de-
velop and advance photonic quantum technologies [5–7]. For
understanding and manipulating quantum light, a prerequisite
is the ability to measure quantum-optical systems [8]. The
information obtained from these measurements allows us to
quantify the resourcefulness of quantum states by reconstruct-
ing their full interference structure [9–11]. One of the most
crucial questions is determining whether a given light field
is quantum [12–14], often investigated via photon statistics
[15,16] for which photodetectors are the main tool to provide
this information.

However, true photon-number-resolving detectors, which
can measure arbitrarily high photon counts, are relatively
inaccessible, despite ample research efforts. By contrast,
detectors that record clicks as a result of any number of pho-
tons are readily available for on-demand usage due to their
technological abundance [17–21]. Therefore, it is of utmost
importance to tailor strategies that account for the nature
of click detection when characterizing nonclassical photon
statistics.

The quantum-optical click-detection theory allows one to
formulate a proper model of click-counting systems, which
may include up to 100 individual click detectors [22–26].
To this end, experimental methods, such as multiplexing
[27–30], are often used. An operator version of a bino-
mial probability distribution arises as the general description
of click-counting devices [31]. Thus, the earlier notion of
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sub-Poissonian light for photon-number statistics [32] is up-
dated to the concept of sub-binomial light as its click-based
equivalent [33], being further supplemented by the con-
cepts of sub-Poisson-binomial light and sub-multinomial light
[34,35]. For identifying sub-binomial light, the binomial pa-
rameter QB can be experimentally applied [36,37], just like
the Mandel parameter QM is for photon-number statistics.

A manifold of sophisticated techniques to obtain photon-
number distributions from measured data has been developed
[38–46]. These reconstruction tools include maximum like-
lihood estimation [47], detector tomography [48], and reg-
ularizations of ill-posed problems [49], to name but a few.
Another noteworthy method within the context of this paper
is a detector calibration to determine the detector’s response
to light (see, e.g., Refs. [50,51]), yielding important mea-
surement characteristics, e.g., light-matter interactions [52],
noise [53], and dead time and after pulses [54]. Regardless,
the aforementioned methods commonly require a detection
scheme with high efficiency, low noise, signals far from satu-
ration, etc., being hardly satisfiable in practice.

In this paper, we extract the photon statistics from
measured click-counting statistics by utilizing an easy-to-
implement pseudoinversion technique [55], circumventing the
complexities of other techniques. Furthermore, the Mandel
and binomial parameters are employed unconventionally as
discriminators between click-type and photon-number-type
quantum statistics, assessing the success of the pseudoin-
version procedure. By applying coherent light, which lies at
the challenging classical-quantum boundary, our procedure
removes a possible loophole which could lead to fake non-
classicality. A time-bin multiplexing detection system with
superconducting single-photon nanowire detectors is realized
in a modular manner, and a finely grained detector calibration
is carried out. Eventually, we also apply a loss deconvolution
method to retrieve a near-ideal photon-number distribution.
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The remainder of the paper is organized as follows: The
distinct photon-number and click-counting theories and their
discrimination via Q parameters are laid out in Sec. II. In
Sec. III, we describe our experiment and present the recon-
struction of the detector response function via coherent-state
measurements. Section IV includes our key results from the
pseudoinversion and the application of Q parameters. The
losses are treated in Sec. V. Eventually, we conclude in
Sec. VI.

II. DETECTION THEORIES AND
QUANTUM-STATISTICAL SIGNATURES

In photoelectric detection theory [56,57], ideal photodetec-
tors can be represented through their positive operator-valued
measure, �̂n = |n〉〈n| = :e−n̂n̂n/n!:, with n ∈ N, the photon-
number operator n̂, and : · · · : denoting the normal-ordering
prescription. For example, the photon-number distribution of
coherent light is given by pn = 〈α|�̂n|α〉 = e−|α|2 |α|2n/n!,
with a coherent amplitude α. To account for imperfections,
n̂ can be replaced by a general response function �̂ [56],
e.g., �̂ = ηn̂ + ν1̂, where η is the quantum efficiency and ν

describes dark counts. Photon counting for general response
functions �̂ always takes the form of quantum-Poissonian
distribution. To describe the quantum-statistical properties of
states of light, access to the photon-number distribution is
essential, which is difficult because of a lack of true photon-
number-resolving detectors.

Nowadays, common detector technologies employ so-
called click detectors where a “click” is recorded if one or
an arbitrary number of photons are absorbed, and “no click”
is recorded otherwise [17,18,20,21]. Furthermore, incident
light may be uniformly distributed across N click detectors,
commonly referred to as multiplexing [27–29]; see Fig. 1.
Then, we can express realistic click detectors through [31]

π̂k = :

(
N

k

)(
e−�̂

)N−k(
1̂ − e−�̂

)k
:, (1)

for k ∈ {0, . . . , N} total clicks. One strategy of multiplex-
ing is time-bin multiplexing, which is the detection scenario
implemented in our experiment (two bottom schemes in
Fig. 1). In contrast to the photon-number distribution, the
click-counting distribution [Eq. (1)] is a quantum-operator
analog to a binomial distribution. For example, the lossless
and dark-count-free click-counting distribution for coherent
light is ck = 〈α|π̂k|α〉 = (N

k

)
(e−|α|2/N )

N−k
(1 − e−|α|2/N )

k
.

It is important to emphasize that k clicks and n photons
are related but dissimilar concepts (even if k = n, η = 1, and
ν = 0), which is discussed later in more detail.

One can use the Poissonian behavior in the photoelectric
detection scenario as a reference for probing nonclassicality
of light [32]. Analogously, one can characterize the super-
and sub-binomial behavior with click detection systems for
determining the quantumness of the signal in theory and ex-
periment [33,36]. In photoelectric measurements, the Mandel
parameter is utilized,

QM = (�n)2

n
− 1, (2)

FIG. 1. The click-counting theory applies to, for example, the
three depicted multiplexing schemes, in which light is uniformly split
spatially (50:50 beam splitters) and temporally (delay loops), before
being measured with on-off click detectors that collectively yield a
total number of clicks. The top spatial multiplexing layout utilizes
three beam splitters and N = 4 detectors. The middle configuration
uses one less beam splitter and only two detectors. Together with
the delay line, this results in early and late time bins in the top
and bottom detector, i.e., N = 4 detection bins. The bottom scheme
doubles the number of time bins by introducing only one extra beam
splitter and a delay double the length of the prior loop, resulting in a
N = 8 time-bin multiplexing detector. The latter two schemes, being
more efficient than the spatial multiplexing in the number of optical
elements, are experimentally realized in this paper.

with the expected photon number n = ∑∞
n=0 npn and vari-

ance (�n)2 = n2 − n2 of the distribution (pn)n∈N . A value
QM = 0 describes a Poisson distribution, classical light obeys
QM � 0, and nonclassicality is verified when QM < 0. In the
same manner, we utilize the binomial parameter QB for click-
counting devices [33],

QB = N
(�k)2

k(N − k)
− 1, (3)

using the variance (�k)2 and expected click number k of the
measured click-counting distribution (ck )k∈{0,...,N}; QB = 0 is
achieved for a perfect binomial distribution.

Introducing the parameter QB is necessary because if one
applies QM to click-based measurement devices, we may get
a false indication of nonclassicality [31,33].

Here, we additionally attribute another function to QB and
QM as they enable us to determine the Poissonian or binomial
behavior of a detection system and the character of recon-
structed distributions from data (Fig. 2). In general, QB/M < 0
and QB/M > 0 means that the distribution under consideration
is, respectively, too narrow and too broad for a binomial or
Poissonian distribution. Also, coherent states, as employed
in our experiment, are at the classical-quantum boundary,
exactly yielding QB = 0 and QM = 0. Thus, such edge states
present a highly sensitive testbed for our method, for example,
to ensure that no fake quantum effects are introduced via the
reconstruction procedure.
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FIG. 2. Q parameters applied to binomial (N = 4) and Poisson
probability distributions. The top plot (a) depicts the result for the
photon-number distribution of a coherent state as a function of a
mean photon number |α|2. QM = 0 (solid, purple) shows the Poisson
nature of the photon-number statistics, and QB �= 0 (dashed, blue)
certifies incompatibility with binomial statistics. The bottom plot
(b) analogously gives both Q parameters when applied to a click-
counting distribution of a coherent state. QM �= 0 (dashed, purple)
and QB = 0 (solid, blue) yield the expected falsification and compat-
ibility with Poissonian and binomial behaviors, respectively.

III. SETUP AND DETECTOR CALIBRATION

In this section, we describe and characterize our experi-
ment. The detector characteristics of the whole measurement
system are analyzed through a thorough detector tomography.
We also probe the cross-talk and splitting uniformity between
the detection time bins.

A. Setup description

We begin with a description of the realized detection sys-
tem; see Fig. 3. We use a pulsed laser with a pulse length
of 100 ps at λ = 1549.8 nm wavelength as a coherent light
source. The repetition rate of the pulsed laser is r = 2 MHz.
The pulse intensity is split via a beam splitter. The bright
output, containing approximately 94% of the light, is directly
measured with a power meter and is used as a reference to

FIG. 3. A variable fiber beam splitter (BS) is used to divide a
beam into two paths, one of which is detected with a power meter
(PM), and the other with a superconducting nanowire single-photon
detector (SNSPD) after passing through two variable optical at-
tenuators (VOA) and the time-multiplexed detector (TMD) system.
The clicks are recorded with a time-to-digital converter (TDC). Full
description can be found in the text.

monitor power drifts. The remaining 6% is attenuated to the
single-photon level with two variable optical attenuators. The
two attenuators have a rated error of ±0.3 dB and are individ-
ually characterized for linearity. The attenuated coherent laser
pulses are connected to the time-bin multiplexing scheme,
which can be set to consist of either N = 4 or 8 detection bins.
The output from the time multiplexing is detected with two
superconducting nanowire single-photon detectors. A time-to-
digital converter is used to log the arrival time of the detected
clicks relative to the laser pulses.

Before the measurements are performed, the input photon
flux to the detectors is calibrated. For that, the power exiting
the two output ports of the variable beam splitter is measured
with the power meter. Additionally, the zero attenuation of
the attenuators is measured and is added as a constant offset
to the selected attenuation. Together with the constant power
monitoring of the input power, this calibration provides the
photon flux entering the time-bin multiplexing detection sys-
tem within the measurement uncertainty.

With the input photon-number statistics defined, the next
task is to define the relevant time bins such that the click
statistics can be correctly measured. To this end, we calibrate
the output time bins in each detector to the time reference
of the laser. This allows narrow time filtering, here 1 ns,
around the expected time bins. The system then records the
measured click number for each trigger provided by the laser,
as well as the click pattern of the time bins.

B. Characterization

1. Photon-number estimation

We measure the laser power P0 = 1.5 × 10−5 W with the
power meter and carefully tally all losses in our setup before
the attenuated laser light enters the time-bin multiplexing
detector, L0 = 33.4 dB. In addition, the variable attenuators
(55 � L � 70 dB) yield coherent states with different mean
photon numbers n̄ = |α|2. Together, this leads to a power at
the input of the detector of P = 10−(L0+L)/10P0. Using the
relations

P = n̄rh f ↔ n̄ = 10−(L0+L)/10P0λ

rhc
, (4)

with the central wavelength c/ f = λ, the repetition rate r, the
Plank constant h, and the speed of light c, we obtain mean
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FIG. 4. The top plot depicts the mean clicks per bin, Eq. (6),
depicted here for the N = 4 configuration and the maximal photon
number n̄ = |α|2 = 0.84. This distribution is compatible with a uni-
form distribution (purple, solid line); one standard deviation σ of
±0.011 clicks (blue, dashed lines) is shown. The bottom plot de-
picts bin-bin cross talk through vanishing off-diagonal covariances,
Eq. (7), for the same data set as used above. No two bins j �= j′

exhibit nonzero correlations within the margin of error (blue cylinder
depicts 10σ for improved visibility). Similar results are found for all
measured cases, including the N = 8 bin scenario.

photon numbers

0.027 � n̄ � 0.85 (5)

at the input of the click-counting device. In this range, we
measure sixteen and six attenuated coherent states for the
four-bin and eight-bin configuration, respectively. Also note
that the mean photon numbers are determined independently
from the detection system to be characterized in the following.

2. Bin uniformity and cross talk

We can now analyze the detection system. We begin with
observing the system’s quality across individual detection
bins. To this end, clicks ck1,...,kN were recorded with k j = 0
and 1 denoting no click or a click from the jth time bin.
One measure for how well our system operates is the uniform
distribution of light across detection bins, which can be quan-
titatively assessed with

k j =
1∑

k1,...,kN =0

ck1,...,kN k j, (6)

which is expected to be constant with respect to j in case of a
uniform distribution. The result for one data set is depicted in
Fig. 4 (top). While deviations from perfect uniformity exist,
they do not amount to significant biases across bins.

Exceeding the performance of common characterizations,
our bin-by-bin analysis also allows us to determine cross talk
between detection bins, here quantifying the temporal separa-
tion of time bins. This can be achieved by covariances

(�k j )(�k j′ ) = k jk j′ − k j k j′ , (7)

which ought to be zero for j �= j′, i.e., uncorrelated for coher-
ent light. Exemplified again for one data set, Fig. 4 (bottom)
shows that cross correlations are insignificant, proving an
excellent temporal separation.

3. Detector response

We now transition from the bin-by-bin characterization to
the characterization of the full detection system by virtue of
the click-counting statistics ck = ∑

k1+···+kN =k ck1,...,kN , where
k ∈ {0, . . . , N} denotes the total number of clicks. Inferring
photon-number features from click detection gives us a strong
motivation to carry out a detector calibration for obtaining the
click detector’s response function [51]. For this purpose, we
recall that the first moment of the click-counting distribution
reads [58,59]

k = N (1 − 〈:e−�̂:〉) ↔ � = − ln

(
1 − k

N

)
. (8)

Therein, we used the simplification 〈α|:e−�̂:|α〉 = e−� for
normally ordered expectation values with coherent states.
Furthermore, the assumed response function is

�̂ = ν1̂ + η
n̂

N
+ γ

(
n̂

N

)2

, (9)

where the scaling n̂/N accounts for the fact that input photons
are distributed across the N detection bins and the second-
order term proportional to γ probes the presence of nonlinear
absorption properties [30,58]. Note that we probed different
orders of the Taylor approximation in the variable n̂/N and
found that a linear-response function suffices for our data.
However, as a concrete example, we here focus on the second-
order nonlinear case. Together with Eq. (8), we have the
function

|α|2 = n̄ 	→ � = ν + η
n̄

N
+ γ

(
n̄

N

)2

, (10)

that can be fitted to our data.
We use a nonlinear regression in Fig. 5 to retrieve the

coefficients in Eq. (10). For both detector variants, N = 4
and 8, the dark count contributions are negligible, ν|N=4 =
1.8 × 10−4(1 ± 0.4) and ν|N=8 = 5.8 × 10−6(1 ± 8). Also,
the nonlinear contribution that scales with (n̄/N )2 is small,
γ |N=4 = 1.9 × 10−2(1 ± 0.6) and γ |N=8 = 6.2 × 10−2(1 ±
0.5). (None of these parameters is different from zero
with statistical significance, a three-standard-deviation er-
ror margin.) Most importantly, the quantum efficiency of
the click-counting device is about 60%, η|N=4 = 60.8%(1 ±
0.004) and η|N=8 = 60.5%(1 ± 0.005), including both optical
losses in the multiplexing stage and nonunit efficiencies of
individual on-off detectors.
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FIG. 5. Determination of the response function [Eq. (10); blue,
dashed lines] from measured mean click numbers [Eq. (8); thick,
purple points] for N = 4 and 8 time-bin detection setups in the top
and bottom depiction, respectively. In both cases, the response is gov-
erned by a linear behavior, with quantum efficiencies η|N=4 = 60.8%
and η|N=8 = 60.5%. Dark counts (less than 2 × 10−4) and nonlin-
ear contributions (γ n̄2/N2 < 10−3) are negligible in both cases. For
N = 4 and 8, the coefficient of determination is R2 > 0.9999, quan-
titatively showing a near-perfect agreement between data and fit.

4. Discussion

Our comprehensive detector characterization certifies an
excellent performance of the whole click detection system.
The response function is mostly linear, exhibiting insignificant
dark count contributions and detection nonlinearities. The
overall quantum efficiency of the click-counting devices is
estimated as 60%. Furthermore, we also ascertain the quality
of the setup in terms of the uniformity of the distribution of
photons across time bins without overlap, i.e., no cross talk.

IV. PSEUDOPHOTON-NUMBER RECONSTRUCTION

In contrast to previous studies, we exploit the binomial
click statistics in Eq. (1) and implement a theoretically pro-
posed pseudoinversion approach [55]. The click-counting
distribution can be expressed through the photoelectric statis-
tics for a quantum efficiency η as [55]

ck =
∞∑

n=0

(
N

k

)
k!

Nn

{
n
k

}
pn(η), (11)

where k ∈ {0, . . . , N} is the number of clicks, N is the total
number of detection bins, and {n

k} are the Stirling numbers
of the second kind. In vector notation, �c = (ck )k∈{0,...,N} and

FIG. 6. Example of reconstructed [Eq. (14)] pseudophoton-
number distribution p′

n(η) (blue, left) and measured click-counting
distribution ck (purple, right), with k, n ∈ {0, . . . , N} for N = 8. (For
visibility, a 50σ error bar is shown in black.) A direct comparison
of the measured and reconstructed probability distributions would
lead to the conclusion that they are rather similar. However, this
superficial belief is disproved in Fig. 7 where we apply Q parameters
to distinguish dissimilar quantum statistics.

�p(η) = (pn(η))n∈N , Eq. (11) takes the following form:

�c = C �p(η), where C = (Ck,n)k∈{0,...,N},n∈N

and Ck,n =
(

N

k

)
k!

Nn

{
n
k

}
. (12)

The matrix C maps the infinite-dimensional photon number
�p(η) to the (N + 1)-dimensional vector �c of clicks. Therefore,
it is an impossibility to invert the matrix C as an insufficient
amount of information is available. Instead, we apply the
pseudoinverse C+ [55], which is of the same size as the click
statistics, with matrix entries

C+
k,m =

(
N

k

)−1 Nm

k!

[
k

m

]
, (13)

for m, k ∈ {0, . . . , N} and with [k
m] denoting the (signed) Stir-

ling numbers of the first kind. In the context of Eq. (13), we
refer to m as the pseudophoton number because it is obtained
via the pseudoinverse C+ that yields

C+�c = �p ′(η). (14)

Note that, for states with photon-number distributions with
zero probability for photon numbers n > N , the reconstructed
statistics is exact [55], i.e., p′

n(η) = pn(η). Furthermore, no
correction for losses has been made here; a loss deconvolution
is carried out in Sec. V.

We apply the pseudoinversion to our measured click statis-
tics and compare the initial and resulting distribution in Fig. 6.
On a superficial level, one might think that the inversion does
nothing substantial. However, upon closer inspection by prob-
ing the binomial and Poissonian character in Fig. 7, we clearly
find a distinction between the measured click distribution
and the pseudophoton-number distribution, which becomes
increasingly prominent with increasing signal intensity of
the coherent input state. In particular, we can infer that the
measured data follow the expected binomial behavior [QB = 0
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FIG. 7. Application of the Mandel QM parameter [Eq. (2)] and binomial QB parameter [Eq. (3)] for verifying and falsifying Poisson
and binomial statistics, for N = 4 (a, b) and N = 8 detection bins (c, d), including a 1σ uncertainty (blue, dashed for QM and purple, solid
for QB). Plots (a) and (c) demonstrate that the measured click-counting data are compatible with a binomial distribution but distinct from
a Poissonian photon-number distribution, as expected for coherent light. After pseudoinversion (b, d), the reconstructed statistics follow
Poisson-like distributions, which are clearly distinct from binomial distributions, demonstrating the successful conversion from click-counting
data to photon-number information.

for �c ], and our extracted pseudophoton values behave like a
true Poisson statistics [QM = 0 for �p ′(η)]. The binomial and
Mandel parameter are commonly used to probe the nonclas-
sical behavior of light. Here, we assign an additional value to
such parameters: a highly sensitive and effective measure to
distinguish quantum-statistical signatures.

V. LOSS DECONVOLUTION

Thus far, we implemented the pseudoinversion from
the measured click-counting statistics �c to the lossy
pseudophoton-number distribution �p ′(η). Now, we addi-
tionally address the problem of removing attenuation for
estimating the lossless photon-number distribution �p ′ = �p ′(1)
[49,53]. Recall that we previously determined the efficiency
η = 60% in Sec. III.

Beginning with the true photon statistics �p, the distribu-
tion undergoes the well-known loss-channel description, after
which it gets convoluted into experimentally measured �c:

�p 	→ �p(η) = H (η) �p
	→ �c = C �p(η) = CH (η) �p, (15)

where the linear loss map H (η) is defined through the matrix
elements

Hn,m(η) =
{(m

n

)
ηn(1 − η)m−n if m � n,

0 otherwise.
(16)

In terms of vector and matrix entries, this means pn(η) =∑∞
m=n

(m
n

)
ηn(1 − η)m−n pn, which is the common loss repre-

sentation. The above matrix-valued function H satisfies the
following properties: H (η1)H (η2) = H (η1η2) and H (1) is
the identity. This further implies H (η)−1 = H (1/η), which is
useful for loss removal.

Via the pseudoinverse C+ in Eq. (14), we already carried
out the crucial step in the (N + 1)-photon subspace, resulting
in �p ′(η). According to the inversion of the order of maps
in Eq. (15), the final step, on which we focus here, is a
more common loss deconvolution. The matrix entries from
Eq. (16) for the needed inverse loss matrix read Hn,m(1/η) =(m

n

)
(1/η)n(1 − 1/η)m−n, including arbitrarily large, negative

contributions because of 1 − 1/η → −∞ for η → 0, render-
ing the deconvolution unstable [49]. This includes unphysical
cases where loss-deconvoluted photon numbers become nega-
tive, thus requiring some extra attention when removing losses
from any data in any measurement scenario.
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FIG. 8. Application of the loss deconvolution to the pseudophoton-number distribution from Fig. 6, with n̄ = |α|2 = 0.85 and N = 8.
The leftmost (blue), left-center (blue-green), and right-center (green) distributions correspond to the unaltered distribution �p ′(60%), the
distribution �p ′(80%) in which half the experimental losses have been removed, and the lossless distribution �p ′(100%), respectively. For com-
parison, the rightmost (hatch shaded) distribution represents the expected, ideal distribution pn = e−|α|2 |α|2n/n! for coherent light and perfect
detectors. In all cases of losses, the statistical consistency with a Poissonian distribution is preserved; i.e., QM |η=60% = −0.0065(1 ± 70%),
QM |η=80% = −0.0087(1 ± 140%), and QM |η=100% = −0.011(1 ± 360%) are zero within an at most 1.5σ error margin (likewise, all negativities
are insignificant).

Figure 8 shows our results for the deconvolution of
losses from the pseudophoton-number distribution obtained
in Sec. IV, where η = 60%. To show the progression to full
loss removal, η = 100%, a halfway step with the efficiency
80% is depicted together with the theoretically predicted,
lossless Poisson distribution (black-white). From QM ≈ 0, as
discussed in the caption of Fig. 8, we can conclude that the
Poissonian nature of our initial pseudoinversion was success-
fully preserved by the loss deconvolution. In addition, our
final, lossless quasiphoton-number distributions are in excel-
lent agreement with the ideal photon-number measurement.

VI. CONCLUSION

In this paper, a pseudoinversion of click-counting data
was carried out to obtain the otherwise inaccessible photon-
number distribution. The Mandel and binomial parameters
were proposed and used as measures to assess the quality of
the reconstruction procedure, and to generally discern differ-
ent types of quantum statistics.

Our experimental implementation of the methodology is
based on a custom-made, time-bin multiplexing detector that
is easily configurable to a desired resolution. Based on detec-
tor tomography with coherent light, we analyzed the detection
system’s response, allowing us to determine essential proper-
ties, such as detection efficiency and cross talk between time
bins. To demonstrate the variable nature of our setup, both
a four-bin and eight-bin configuration were analyzed in this
manner. Using the binomial and Mandel parameter, we proved
that our coherent-light data are consistent with a binomial
click distribution and inconsistent with a Poissonian photon
distribution as one would expect from the comparison of click
and photoelectric counting theories.

A pseudoinversion approach was implemented to recover
a pseudophoton-number resolution up to four and eight

photons, depending on the detector’s configuration. While the
resulting and initially measured distributions appear rather
similar when plotted together, the Mandel and binomial pa-
rameters reveal the now Poissonian nature of the reconstructed
distribution and rule out the previous binomial behavior, re-
spectively. Thereby, the success of the pseudoinversion as
well as the effectiveness of the discrimination via the two
parameters is demonstrated. Importantly, the pseudoinversion
is based on an analytically obtained matrix that is applied
only once to each data set, circumventing difficulties and
computational complexities of other competing reconstruction
techniques. The reconstruction method was applied to coher-
ent states at the boundary between classical and nonclassical
light, presenting a uniquely challenging scenario. However,
it is worth mentioning that the pseudoinversion applies to
general, unknown states.

Eventually, a loss deconvolution was applied to correct
for the previously estimated losses of the detection system.
The resulting distribution is virtually indistinguishable from
the Poisson distribution of a perfect (e.g., lossless) photon
detector, up to the threshold photon number given by the
maximal number of total clicks (here, four and eight). To
enable a fair comparison between reconstructed and ideal
statistics, the mean photon number of the coherent input
states was measured independently from the click-counting
device.

For determining nonclassical properties of quantum light,
a thorough detector calibration and readily accessible recon-
struction of quantum features, as laid out in this paper, is
essential. Thereby, experimentally accessible click-counting
devices become one of the closest, readily available substi-
tutes to true photon-number-resolving detectors. Furthermore,
an extra application of parameters, which are commonly used
to determine nonclassicality in quantum optics, was pro-
vided by exploiting them to discern fundamentally different
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quantum statistics in a highly sensitive manner. Also, the
application of the binomial and Mandel parameters shows
that a broad belief—a click corresponds to a photon—cannot
be true because of their distinct binomial and Poissonian
behavior, respectively. In the future, we plan to extend our
framework to emerging threshold detectors, offering an intrin-
sic pseudophoton-number resolution, e.g., in Refs. [60,61], as
well as generalization to phase-sensitive detector applications
[62,63].
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[16] K. Thapliyal, J. Peřina, Jr., O. Haderka, V. Michálek, and R.
Machulka, Experimental characterization of multimode photon-
subtracted twin beams, Phys. Rev. Res. 6, 013065 (2024).

[17] G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A.
Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams,
and R. Sobolewski, Picosecond superconducting single-photon
optical detector, Appl. Phys. Lett. 79, 705 (2001).

[18] H. B. Coldenstrodt-Ronge and C. Silberhorn, Avalanche photo-
detection for high data rate applications, J. Phys. B 40, 3909
(2007).

[19] C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, Optical
time domain reflectometry with low noise waveguide-coupled
superconducting nanowire single-photon detectors, Appl. Phys.
Lett. 102, 191104 (2013).

[20] M. K. Akhlaghi, E. Schelew, and J. F. Young, Waveguide in-
tegrated superconducting single-photon detectors implemented
as near-perfect absorbers of coherent radiation, Nat. Commun.
6, 8233 (2015).

[21] I. E. Zadeh, J. Chang, J. W. N. Los, S. Gyger, A. W. Elshaari, S.
Steinhauer, S. N. Dorenbos, and V. Zwiller, Superconducting
nanowire single-photon detectors: A perspective on evolu-
tion, state-of-the-art, future developments, and applications,
Appl. Phys. Lett. 118, 190502 (2021).

[22] J. Blanchet, F. Devaux, L. Furfaro, and E. Lantz, Measure-
ment of sub-shot-noise correlations of spatial fluctuations in
the photon-counting regime, Phys. Rev. Lett. 101, 233604
(2008).

[23] J. Kröger, T. Ahrens, J. Sperling, W. Vogel, H. Stolz, and B.
Hage, High intensity click statistics from a 10 × 10 avalanche
photodiode array, J. Phys. B 50, 214003 (2017).

[24] J. Tiedau, M. Engelkemeier, B. Brecht, J. Sperling, and C.
Silberhorn, Statistical benchmarking of scalable photonic quan-
tum systems, Phys. Rev. Lett. 126, 023601 (2021).

[25] M. Eaton, A. Hossameldin, R. J. Birrittella, P. M. Alsing, C. C.
Gerry, H. Dong, C. Cuevas, and O. Pfister, Resolution of 100
photons and quantum generation of unbiased random numbers,
Nat. Photon. 17, 106 (2023).

[26] R. Cheng, Y. Zhou, S. Wang, M. Shen, T. Taher, and H. X.
Tang, A 100-pixel photon-number-resolving detector unveiling
photon statistics, Nat. Photon. 17, 112 (2023).

[27] H. Paul, P. Törmä, T. Kiss, and I. Jex, Photon chopping: New
way to measure the quantum state of light, Phys. Rev. Lett. 76,
2464 (1996).

[28] D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and
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