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Coherent population transfer with polariton states in circuit QED

Madan Mohan Mahana,1 Sankar Davuluri,2 and Tarak Nath Dey 1,*

1Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
2Department of Physics, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India

(Received 30 October 2023; revised 20 May 2024; accepted 5 August 2024; published 14 August 2024)

The stimulated Raman adiabatic passage (STIRAP) allows selective, coherent population transfer in a three-
level quantum system by the adiabatic control of two suitably chosen envelopes and delayed laser pulses.
However, the long operation time involved with the adiabatic protocols makes them more susceptible to decay
and decoherence. A shortcut-to-adiabaticity technique, namely, counterdiabatic driving (CD), suppresses the
decoherence-induced loss by speeding up the STIRAP process, thereby enhancing the efficiency and fidelity of
population transfer. The superadiabatic STIRAP (saSTIRAP) method requires the application of a shortcut drive
or CD pulse, which couples the coherently trapped states in a three-level quantum system. Hence, the closed-loop
� system consisting of all electric dipole-allowed transitions is an essential requirement for saSTIRAP, which
is rarely admissible in a natural atom. This paper theoretically investigates an experimentally feasible model
for implementing saSTIRAP using a closed-loop � system with doubly dressed polariton states in a driven
circuit QED system. We show a population transfer with efficiencies close to 80.75% and 98.10% with fidelities
of 89.86% and 99.04% for the resonant STIRAP and saSTIRAP protocols, respectively, with experimentally
feasible parameters. The efficiency of the population transfer can be further increased by improving the
coherence times of the cavity and the transmon qubit. This work may be useful in designing fast, efficient
quantum gates for applications in quantum technologies.
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I. INTRODUCTION

Precise manipulation and control of the quantum states in
a system are an essential task for efficient quantum technolo-
gies [1,2]. The stimulated Raman adiabatic passage (STIRAP)
is a robust, powerful adiabatic protocol in quantum optics
for selective, faithful coherent population transfer, entangled-
state preparation, etc. [3]. This protocol is robust against the
fluctuations in experimental parameters due to slow adia-
batic control of quantum states over long operation times.
The shortcut-to-adiabaticity (STA) techniques developed in
the last decade reduce the operation time of adiabatic pro-
tocols, thereby minimizing decoherence-induced losses and
improving the efficiency [4]. An STA technique, namely,
counterdiabatic driving (CD) drive, can speed up the STI-
RAP protocol and enhance the fidelity of population transfer
to achieve superadiabatic STIRAP (saSTIRAP) [5,6]. Recent
advancements in solid-state quantum devices like supercon-
ducting quantum circuits (SQCs) have led to growing interest
in studying multilevel coherent phenomena in quantum optics
in the microwave regime [7]. The on-chip tunability, rapid
improvement in the coherence time of superconducting arti-
ficial atoms or qubits (SAAs), and scalability make the SQCs
a versatile solid-state platform for quantum technologies and
microwave quantum optics [8]. However, the implementation
of the STIRAP and saSTIRAP protocols in SQCs is still
largely unexplored.

In quantum optics, counterintuitive phenomena such
as electromagnetically induced transparency (EIT) [9],
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Autler-Townes splitting (ATS) [10], and coherent population
trapping (CPT) [11] have a significant role in the precise
control of the optical property of a medium. These atomic
coherence-based experiments demand an atomic configura-
tion with a larger atomic coherence lifetime. A three-level
� system containing two longer-lived lower-level metastable
states fulfills said criterion. Hence, three-level � systems
with large anharmonicity and fewer decaying states are more
suitable for realizing these quantum optical phenomena.
Three-level quantum systems in SQCs have been used to
demonstrate EIT [12,13], ATS [14–16], and CPT [17].

STIRAP is another prominent counterintuitive phe-
nomenon in which robust population transfer between two
nondegenerate metastable levels is possible without loss
of generality [18]. In STIRAP, a suitable choice of two
time-dependent coherent pulses coupled to two arms of a
three-level � system allows a complete population transfer
from the ground state to the target metastable state with-
out populating the intermediate excited state. In the last
few decades, many theoretical studies have been devoted to
the implementation of STIRAP systems with SQCs [19–24].
STIRAP has been experimentally realized in many quantum
optical systems, including SQCs [25,26]. Adiabatic proto-
cols like STIRAP are associated with a slow change in
controls, which leaves some dynamic properties invariant.
In the quantum regime, slow processes with long operation
times are badly affected by decoherence, which produces
unwanted losses and perturbations. STA methods are well-
established techniques to speed up the adiabatic protocols
and achieve the same final results while bypassing the strict
adiabatic conditions [27]. CD [28], the Lewis-Riesenfeld
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invariant method [29,30], and the dressed-state approach [31]
are among the STA techniques [32] readily used to speed
up the adiabatic quantum protocols. Very recently, a CD
protocol with STIRAP was successfully implemented in a
three-level ladder-type superconducting transmon qutrit [6].
The superadiabatic population transfer (saSTIRAP) from the
ground state to the qutrit’s second excited state was achieved
using a two-photon CD pulse driving the transition between
these states. However, two-photon detuning producing small
ac Stark shifts to all the energy levels is a drawback of the
system. This issue could be resolved by a complex process of
dynamically modifying the phases of all the applied drives,
thus leaving the scope for a better scheme for the demonstra-
tion of saSTIRAP in SQCs. Applying the CD pulse to a �

system requires driving the transition from the initial ground
state to the target metastable state, forming a closed-loop �

system. Therefore, the possibility of implementing saSTIRAP
using a closed-loop � system in SQCs is worth exploring. To
the best of our knowledge, there has not been a theoretical
investigation of saSTIRAP with a closed-loop � system in
SQCs yet.

The experimental realization of � systems with metastable
states in SQCs has been elusive. The implementation of a
dressed-state-engineered impedance-matched � system in the
doubly dressed polariton basis was investigated in Ref. [33].
It opened up avenues for theoretical and experimental demon-
stration of several quantum optical applications with �

systems in SQCs [34–36]. The implementation of EIT with
an identical system was theoretically proposed in Ref. [37]
and was experimentally realized with the polariton states gen-
erated with a rf-biased transmon qubit coupled to a resonator
[38]. With all the dipole-allowed transitions, a closed-loop �

configuration is possible in this system, which is impossible
in natural atoms. We exploit this advantage to theoretically
investigate the implementation of the STIRAP and saSTI-
RAP protocols with a driven circuit QED system. We use
the doubly dressed polariton states instead of the qutrit states
[6] used recently to study the coherent transfer of population
in SQCs. The SAAs, such as flux qubits [20], are operated
away from the sweet spots to break the parity-selection rule
and form closed-loop �-type configurations. All transitions in
such SAAs are allowed away from the sweet spots at the cost
of lower coherence lifetimes [39]. However, the driven circuit
QED system suggested in this paper remedies this issue while
maintaining the sweet spot’s coherence properties.

The rest of this paper is organized as follows. In Sec. II,
we describe the theoretical model of the Hamiltonian and the
tunable transition rates of a � system in a driven circuit QED
system. We discuss the theoretical proposal for implementing
the CD protocol for saSTIRAP with a closed-loop � system
in Sec. III. Section IV thoroughly discusses the significant
numerical results. Finally, we conclude our investigation in
Sec. V.

II. THEORETICAL MODEL

This section deliberates the theoretical model for realizing
a � system in circuit QED. First, we describe the Hamiltonian
of the model, then derive the expression for transition rates of
the � system.

FIG. 1. A schematic lumped-element circuit diagram of a driven
circuit QED system. Here, a classical microwave field with coupling
strength �d drives a transmon (gray) with frequency ωd , further
capacitively coupled to a single-mode cavity (green) with coupling
strength g. The transmon and cavity are capacitively coupled to two
independent semi-infinite waveguides (blue).

A. Model Hamiltonian

The ability to precisely control a quantum system’s popu-
lation at various levels is challenging due to decay-induced
population loss. The STIRAP is an indispensable tool for
transferring the population to the desired levels and over-
coming decay-induced population losses. A counterintuitive
pair of laser pulses is used in the STIRAP. A pump pulse
couples an initial populated ground state with an excited state,
whereas an advanced Stokes pulse couples an unoccupied
metastable state and an excited state. The two lower-level
metastable states coupling with the intermediate excited state
by the coherent pulses form a �-type configuration. In this
level geometry, the efficiency and robustness of the population
transfer are sensitive to the overlaps between the Stokes and
pump fields and the individual pulse area. The slow rate of
population transfer in STIRAP is the obstacle to efficient
population transfer and the reason behind the population loss.
Hence, faster population-transfer processes such as saSTI-
RAP can avoid inherent decay and decoherence limitations.
This work explores speeding up STIRAP passage in circuit
quantum electrodynamics by considering a closed-looped �

system in which the ground and metastable states can be
directly coupled. The scheme for a coupled transmon-cavity
system is shown schematically in Fig. 1. The cavity and
the transmon are connected to semi-infinite waveguides 1
and 2, respectively. Through waveguide 2, a microwave field
with coupling strength �d drives a two-level transmon with
frequency ωd , further capacitively coupled to a single-mode
cavity with coupling strength g. The total Hamiltonian of the
system can be cast as follows:

Ĥ0 = h̄

2
ωqσ̂z + h̄ωr

(
â†â + 1

2

)
+ h̄g(â†σ̂− + âσ̂+)

+ h̄�d
(
σ̂−eiωd t + σ̂+e−iωd t

)
, (1)

where ωq and ωr stand for the transmon and cavity frequen-
cies, respectively. The transmon is basically a weakly anhar-
monic oscillator. However, the transmon can be effectively
treated as a two-level system by the suppression of excitation
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to higher noncomputational states using robust control tech-
niques such as a derivative-reduction-by-adiabatic-gate pulse
[40]. Here, we use a two-level transmon for the simplicity of
the calculations, as used in recent works [13,38]. The anni-
hilation and creation operators of the cavity are denoted by
â and â†, and the atomic lowering and raising operators for
the transmon are σ̂− and σ̂+. The interaction strength and fre-
quency of the classical microwave field are expressed by the
parameters �d and ωd , respectively. We eliminate the explicit
time-dependent factors of the Hamiltonian by transforming
the Hamiltonian into a rotating frame using a unitary operator
U = e−iωd t (σ̂z/2+â†â) and obtain the effective Hamiltonian

ĤRWA = h̄

2
ω̃qσ̂z + h̄ω̃r

(
â†â + 1

2

)
+ h̄g(â†σ̂− + âσ̂+)

+ h̄�d [σ̂− + σ̂+] (2)

under the rotating-wave approximation. Here, ω̃q = ωq −
ωd , ω̃r = ωr − ωd , and �̃ = ω̃r − ω̃q is the cavity-transmon
detuning. The first three terms in the Hamiltonian can be
identified as the celebrated Jaynes-Cummings model. The last
term represents the interaction between the external classical
microwave drive field and the two-level transmon. The eigen-
states of the Jaynes-Cummings Hamiltonian are known as the
dressed states, which can be denoted as

|+, n〉 = cos
θn

2
|e, n〉 + sin

θn

2
|g, n + 1〉, (3)

|−, n〉 = − sin
θn

2
|e, n〉 + cos

θn

2
|g, n + 1〉, (4)

where tan θn = −2g
√

n + 1/�̃. Here, |e, n〉 and |g, n〉 denote
that the qubit is in the excited state |e〉 and ground state |g〉,
respectively, whereas the single-mode cavity is in state |n〉.
The corresponding eigenenergies of the dressed states are

E±,n = h̄ω̃r (n + 1) ± h̄

2

√
�̃2 + 4g2(n + 1). (5)

Further mixing of these dressed states in the dispersive regime
(g � �̃) by the external microwave field applied to drive the
transmon gives doubly dressed polariton states. Polaritons are
referred to as quasiparticles carrying elementary excitations
of the light-matter interaction. These polariton states can be
denoted by |i〉 and | j〉, with the corresponding eigenenergies
ωi and ω j (i, j = 1, 2, 3, 4, . . . ). The polariton states can be
engineered to obtain a nested four-level system consisting of
the lowest four eigenstates of (2) by restricting the driving
field to satisfy the condition ωq − 3χ < ωd < ωq − χ , where
χ = g2/�̃ denotes the dispersive frequency shift ([33,37];
also see Appendix B). Under the so-called nesting regime,
levels |1〉, |3〉 (or |4〉), and |2〉 form a � system configuration,
as shown in Fig. 2. We denote states |1〉, |2〉, and |3〉 as the
ground state, metastable state, and excited state, respectively.

B. Transition rates

Waveguides 1 and 2 are coupled to the cavity and transmon
to apply drive and readout signals. We consider two waveg-
uides as external environments, and the total Hamiltonian of
the open quantum system can be written as

ĤT = ĤS + ĤE + ĤI , (6)

FIG. 2. Energy-level diagram of the doubly dressed polariton
states in the driven circuit QED system. The solid red and dashed
green arrows represent the two arms of the � system constructed
by using the states |1〉, |3〉 (or |4〉), and |2〉 in the doubly dressed
polariton basis.

where ĤS, ĤE , and ĤI denote the Hamiltonians of the system,
the environment, and the system-environment interaction, re-
spectively. We consider Eq. (1) to be the Hamiltonian of
the system ĤS . The Hamiltonian of the environment ĤE is
expressed as

ĤE = h̄
∫

ωb̂†(ω)b̂(ω)dω + h̄
∫

ω′ĉ†(ω′)ĉ(ω′)dω′, (7)

where b̂ and ĉ denote the annihilation operators in waveguide
1 and waveguide 2, respectively, and b̂† and ĉ† represent the
corresponding creation operators. The system-environment
interaction Hamiltonian is denoted by ĤI and can be defined
as

ĤI = h̄

[∫
dωK (ω)b̂†(ω)â + H.c.

]

+ h̄

[∫
dω′η(ω′)ĉ†(ω′)σ̂− + H.c.

]
. (8)

The Hamiltonians ĤE and ĤI remain unchanged in the rotat-
ing frame. For simplicity, we can consider having flat spectra
in the environments, so that both coupling strengths K (ω) and
η(ω′) can be considered constants. Thus, by introducing the
first Markov approximation, we can get

K (ω) =
√

κ

2π
, (9)

η(ω′) =
√

γ q

2π
, (10)

where κ and γ q denote the decay rates of the cavity and the
transmon into waveguides 1 and 2, respectively. For simplic-
ity, the inherent (nonradiative) decay rates of the transmon
qubit and the cavity are included in γ q and κ , respectively
[34]. Let us write the operators â and σ̂− in the polariton basis:

â =
∑

i j

〈i|â| j〉σ̂i j, (11)

σ̂− =
∑

i j

〈i|σ̂−| j〉σ̂i j, (12)
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TABLE I. Numerically calculated values for the transition matrix
elements Ci j and Qi j , radiative transition rates γi j , and the transition
frequencies (ωi j = ωi − ω j) in the polariton basis. The parameters
ωq/2π = 5 GHz, ωr/2π = 10 GHz, ωd/2π = 4.9 GHz, g/2π = 0.5
GHZ, �d/2π = 30 MHz, κ/2π = 3 MHz, and γ q/2π = 40 kHz
and the exact eigenstates of Hamiltonian (2) are used for the numer-
ical calculation of the above parameters.

Parameter Value Parameter Value (2π MHz)

C31 0.77 ω31 5101
C32 0.64 ω32 5023
C21 0.08 ω21 78
Q31 0.00 γ31 1.78
Q32 0.10 γ32 1.23
Q21 0.82 γ21 0.05

where |i〉 and | j〉 denote the polariton states and σ̂i j = |i〉〈 j|.
In the polariton basis, the Hamiltonian HI can be recast into
the following form:

ĤI = h̄
∫

dω
∑

i j

[√
κi j

2π
b̂†(ω)σ̂i j + H.c.

]

+ h̄
∫

dω′ ∑
i j

⎡
⎣

√
γ

q
i j

2π
ĉ†(ω′)σ̂i j + H.c.

⎤
⎦, (13)

where κi j and γ
q
i j are the radiative decay rates into waveguide

1 and waveguide 2, respectively, for the transition from po-
lariton state |i〉 to | j〉. The transition rates κi j, γ

q
i j are defined

as

κi j =κ|〈i|â†| j〉|2, (14)

γ
q
i j =γ q|〈i|σ̂+| j〉|2. (15)

Hence, we can determine the total radiative decay rate γi j for
the transition between polariton states |i〉 and | j〉 as follows:

γi j = κi j + γ
q
i j = κC2

i j + γ qQ2
i j, (16)

where the parameters Ci j = |〈i|â†| j〉| and Qi j = |〈i|σ̂+| j〉|
represent the transition matrix elements corresponding to ex-
ternal drives applied to the cavity and the qubit, respectively.
The energies of the polariton states can be tuned by the
frequency ωd and the Rabi frequency �d of the classical
microwave drive field applied to the transmon through waveg-
uide 2. Thus, the decay rates γi j can also be tuned by varying
the above parameters. One can design a � system with fixed
energy levels and transition rates by assigning constant values
to these parameters. The list of numerically computed values
of the relevant parameters for our � system is given in Table I.
We have used the experimentally feasible parameters [13,37]
in the numerical simulations for our model system.

III. COUNTERDIABATIC DRIVING

The STIRAP process can be implemented with the
three-level � system described in Sec. II. The matrix repre-
sentation of the STIRAP Hamiltonian under the rotating-wave

approximation is

Ĥ (t ) = h̄

2

⎛
⎝ 0 �p(t ) 0

�p(t ) 2� �s(t )
0 �s(t ) 2δ

⎞
⎠, (17)

where �p(t ) and �s(t ) denote the coupling strengths of
the time-dependent pump and Stokes fields for driving the
|3〉 ↔ |1〉 and |3〉 ↔ |2〉 transitions with frequencies ωp and
ωs, respectively. The parameters � and δ denote the one-
photon detuning � = (ω31 − ωp) and two-photon detuning
δ = (ω31 − ωp) − (ω32 − ωs), respectively. Here, the energy
levels of the � system satisfy E1 < E2 < E3. The one-photon
detuning � differs from the cavity-transmon detuning �̃, dis-
cussed in the last section. For a perfectly resonant STIRAP
process, i.e., � = δ = 0, the instantaneous eigenvalues of the
above Hamiltonian are E0 = 0 and E± = ±h̄�0(t )/2, with
�0(t ) =

√
�2

p(t ) + �2
s (t ). The corresponding instantaneous

eigenstates are given by

|n0(t )〉 =
⎛
⎝ cos θ (t )

0
− sin θ (t )

⎞
⎠, |n±(t )〉 = 1√

2

⎛
⎝sin θ (t )

±1
cos θ (t )

⎞
⎠, (18)

where tan θ (t ) = �p(t )/�s(t ). Perfect adiabatic population
transfer from state |1〉 to |2〉 can be achieved by following the
dark state |n0(t )〉 under the local adiabatic condition |θ̇ | �
|�0| that needs to be fulfilled [41].

To speed up the STIRAP protocol, one can apply an addi-
tional coupling field driving the |2〉 ↔ |1〉 transition [5,28,42].
The additional drive is termed a counterdiabatic drive or tran-
sitionless quantum drive, and it can be expressed as

ĤCD(t ) = ih̄
∑

n

[|∂t n(t )〉〈n(t )| − 〈n(t )|∂t n(t )〉|n(t )〉〈n(t )|].
(19)

We derive the Hamiltonian ĤCD(t ) using the adiabatic basis
states |n(t )〉 = (|n0(t )〉, |n±(t )〉), which reads

ĤCD(t ) = h̄

2

⎛
⎝ 0 0 i�a(t )

0 0 0
−i�a(t ) 0 0

⎞
⎠, (20)

where �a(t ) = 2θ̇ (t ) and the overdot denotes the first deriva-
tive with respect to time. We assume that the external drives
are applied to the dressed-state-engineered � system with po-
lariton states by driving the cavity and the transmon qubit. The
Hamiltonian representing the interaction between the cavity,
transmon, and external drive fields is thus given by

Ĥd = h̄

2
(Apâ†e−iωpt + Asâ

†e−iωst + Aaσ̂+e−iωat + H.c.),

(21)
where the pump field and Stokes field with frequencies ωp

and ωs, respectively, are coupled to the cavity through waveg-
uide 1, with coupling strengths Ap and As. The additional
drive field, i.e., counterdiabatic drive with frequency ωa, is
coupled to the transmon qubit through waveguide 2, with
coupling strength Aa. Considering the pump field, Stokes
field, and counterdiabatic drive field are driving the |3〉 ↔
|1〉, |3〉 ↔ |2〉, and |2〉 ↔ |1〉 transitions in the polariton basis,
respectively, we define the amplitudes of the respective Rabi
frequencies of the external drive fields in the polariton basis
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FIG. 3. The schematic diagram of a three-level closed-loop �

system driven by three external classical fields, �p(t ),�s(t ), and
�a(t ), driving the |3〉 ↔ |1〉, |3〉 ↔ |2〉, and |2〉 ↔ |1〉 transitions,
respectively.

as

�p ≈ ApC31, �s ≈ AsC32, �a ≈ AaQ21, (22)

where the parameters C31,C32, and Q21 are the transition
matrix elements already defined in Sec. II. Here, �p,�s, and
�a denote the peak Rabi frequencies of the external drives
coupled to the closed-loop � system in the polariton basis, as
shown in Fig. 3. Here, the Gaussian envelopes of the pump
and Stokes fields are considered and stated as

�p(t ) =�pe− t2

2σ2 , (23)

�s(t ) =�se
− (t−ts )2

2σ2 . (24)

Using Eqs. (17)–(20), one can obtain

�a(t ) = − ts
σ 2

sech

[
− ts

σ 2

(
t − ts

2

)]
, (25)

with the assumption of �p = �s for brevity. Equation (25)
shows that the counterdiabatic drive should have a Rabi fre-
quency �a = −ts/σ 2 with a sec-hyperbolic shape for the
given pump and Stokes fields. Assuming that the intrin-
sic phases of the pump field, the Stokes field, and the CD
drive field are φp, φs, and φa, respectively, we can write
the total Hamiltonian of the system under the rotating-wave
approximation as

ˆ̃H (t ) = h̄

2
[�p(t )|3〉〈1| + �s(t )|3〉〈2| − i�a(t )|2〉〈1| + H.c.],

(26)
where the relative phase of the closed-loop � system is
−π/2 (i.e., φ = φa + φs − φp = −π/2 or eiφ = −i) as per
Eq. (20) under the resonant driving conditions (δ = � = 0),
ωp = ω31, ωs = ω32, and ωa = ω21. In order to solve the
time evolution of the system, we adopt the Lindblad master
equation [43,44]

˙̂ρ = 1

ih̄
[ ˆ̃H, ρ̂] +

3∑
j=1

L(Ô j )ρ̂, (27)

where L(Ô j )ρ = (2Ô j ρ̂Ô†
j − ρ̂Ô†

j Ô j − Ô†
j Ô j ρ̂ )/2 repre-

sents the Lindblad superoperator. Here, the operators Ô j

FIG. 4. (a) The pulse sequence of the three external classical
drive fields, �p(t ),�s(t ), and �a(t ). (b) The time evolution of popu-
lations P1, P2, and P3 during the STIRAP (�a = 0) and saSTRIAP
protocols. The parameters used for the simulation are �p/2π =
25.5 MHz, �s/2π = 25.5 MHz, ts = −30 ns, σ = 20 ns, and all the
parameters given in Table I.

denote the jump operators given by Ô1 = √
γ31|1〉〈3|, Ô2 =√

γ32|2〉〈3|, and Ô3 = √
γ21|1〉〈2|. We substitute the drive

fields given in Eqs. (23)–(25) in Eq. (26) and numerically
solve the time evolution of the system using the Lind-
blad master equation given in Eq. (27). The well-established
mesolve routine in QUTIP [45,46] is used for solving the time-
dependent Lindblad master equations. The numerical results
are discussed in the following section.

IV. RESULTS AND DISCUSSION

We split this section into three parts describing the sig-
nificant findings of this work. Section IV A highlights the
dynamics of coherent population transfer in our system. The
sensitivity of the coherent transfer protocols to variations in
the parameters is discussed in Sec. IV B. We quantitatively
compare the efficiencies of coherent population-transfer pro-
tocols by numerically computing the fidelity in Sec. IV C.

A. Coherent population transfer

We investigate the population dynamics in each energy
level of the � system described in Sec. III. Figure 4(a)
shows the pulse sequence of three external drive fields applied
to the polariton-state-� system by driving the cavity mode
or the transmon qubit. The Lindblad master equations for
the STIRAP and saSTIRAP protocols for the � system are
numerically solved by using the Hamiltonian (26) to study
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FIG. 5. The time evolution of populations P1, P2, and P3 during
the STIRAP (�a = 0) and saSTRIAP protocols with cross talk be-
tween the |3〉 ↔ |1〉 and |3〉 ↔ |2〉 transitions. The parameters used
for the simulation are �p/2π = 25.5 MHz, �s/2π = 25.5 MHz,
ts = −30 ns, σ = 20 ns, and all the parameters given in Table I.

the population dynamics. A counterdiabatic drive is applied
to the � system to realize the saSTIRAP by coupling the
|2〉 ↔ |1〉 transition, as mentioned in the last section. Fig-
ure 4(b) substantiates that one can achieve faster coherent
population transfer from level |1〉 to |2〉 by applying the CD
protocol compared to the STIRAP in the � system in the
polariton basis. The populations P1, P2, and P3 denote the pop-
ulations in polariton states |1〉, |2〉, and |3〉, which are simply
the density-matrix elements ρ̂11, ρ̂22, and ρ̂33, respectively, in
the polariton basis.

The numerical results indicate that 80.92% of the popula-
tion can be transferred from the ground state to the metastable
state by the STIRAP protocol with experimentally feasible
parameters for our model system [13,37]. However, one can
achieve a much higher efficiency of 98.16% population trans-
fer with the saSTIRAP protocol with the same parameters.
There is a possibility of cross talk among the |3〉 ↔ |1〉
and |3〉 ↔ |2〉 transitions in the presence of applied pump
and Stokes fields which resonantly couple the |3〉 ↔ |1〉 and
|3〉 ↔ |2〉 transitions, respectively. The transition frequency of
the |3〉 ↔ |1〉 transition is close to that of the |3〉 ↔ |2〉 tran-
sition that leads to the cross talk. In that case, the interaction
Hamiltonian (26) can be rewritten as

ˆ̃H ′(t ) = ˆ̃H + h̄

2
[�p(t )ei(ωs−ωp)t |3〉〈2|

+ �s(t )ei(ωp−ωs )t |3〉〈1| + H.c.]. (28)

The cross-driving terms may seem to alter the energy levels of
the three-level system by inducing intensity-dependent Stark
shifts, thereby impacting the efficiency of the coherent popu-
lation transfer. However, the Stark shifts in the energy levels
induced by the cross-driving terms are very small (∼10−5) in
magnitude compared to the unperturbed energies of the polari-
ton states and can be neglected as the peak Rabi frequencies
�p and �s are very small compared to ω3 j , where j = 1, 2.
The time evolution of the populations and the efficiency of co-
herent population transfer in the presence of the cross-driving
terms are depicted in Fig. 5. There are noticeable small oscil-
lations in the populations (predominantly for STIRAP). The

FIG. 6. The efficiency of the STIRAP (top) and saSTIRAP (bot-
tom) protocols in the parameter space of (a) and (c) the pulse width
σ and the normalized pulse separation |ts|/σ and (b) and (d) the one-
photon detuning � and the two-photon detuning δ. The parameters
used for the numerical simulation are ts = −30 ns, σ = 20 ns, and
the parameters used in Fig. 4.

numerical simulation of the Lindblad master equation with
the Hamiltonian (28) suggests that we can achieve 80.75%
(98.10%) population-transfer efficiency for the STIRAP (sa-
STIRAP) protocol, even in the presence of the cross-driving
terms in the Hamiltonian (with ωp − ωs = ω21). Therefore,
the cross talk among the |3〉 ↔ |1〉 and |3〉 ↔ |2〉 transitions
in our closed-loop � system is not significantly detrimental to
the efficiency of the coherent population transfer. Moreover,
the efficiency of these protocols is also dependent on other
important parameters, such as the pulse amplitudes and the
pulse widths of the external drive fields, normalized pulse
separation, etc., that we elaborate on in the following section.

B. Sensitivity to parameters

This section benchmarks the efficiency of the STIRAP and
saSTIRAP protocols with the variation in the parameters used
for numerical analysis. At the end of these protocols, we quan-
tify the population-transfer efficiency by the final population
in state |2〉. All the simulations in the rest of the paper are
performed by using the Hamiltonian (28) in the Lindblad
master equation (27) to include the effect of cross driving on
the efficiency of coherent population transfer. Figures 6(a) and
6(c) show how the efficiency varies in the parameter space
of the pulse width σ and the normalized pulse separation
|ts|/σ for the STIRAP and saSTIRAP protocols, respectively.
The parameters σ = 20 ns and ts = −30 ns for �p/2π =
�s/2π = 25.5 MHz lie in the highly efficient bright yellow
regions in both panels. Figure 6(b) shows that the resonant
driving condition (� = δ = 0) is ideal for highly efficient
coherent population transfer in the STIRAP protocol. The
nonzero two-photon detuning δ and single-photon detuning
� give rise to nonadiabatic excitations and are detrimental to
the efficiency of population transfer [47]. Figure 6(d) shows
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FIG. 7. Efficiency of the coherent population transfer with the
saSTIRAP protocol in the parameter space of the peak Rabi fre-
quencies of the pump and Stokes fields �p/s (here, �p = �s) and
the CD drive �a/(−ts/σ

2). The parameters used for the numerical
simulation are ts = −30 ns, σ = 20 ns, and the other parameters
given in Table I.

the saSTIRAP protocol is more robust against one-photon
detuning � than two-photon detuning δ. These plots further
indicate that the saSTIRAP protocol is more efficient and
robust than the STIRAP protocol for a closed-loop � system
in circuit QED.

The variation in the efficiency of coherent population trans-
fer in the parameter space of the peak Rabi frequencies of the
pump and Stokes fields �p/s and the CD drive (normalized
with the numerical value of −ts/σ 2) is illustrated in Fig. 7.
We can observe that higher efficiency of coherent population
transfer can be achieved with higher Rabi frequencies of the
pump and Stokes fields. However, optimal efficiency can be
achieved in the presence of a CD drive with a peak Rabi
frequency −ts/σ 2 even with the lower Rabi frequencies of the
pump and Stokes fields.

C. Fidelity

In quantum information theory and quantum mechanics,
the quantitative measure of the closeness of a quantum state at
a final time t to the ideal target state is given by fidelity F [1]
and is defined as

F (ρ̂ideal, ρ̂t ) = Tr
√√

ρ̂idealρ̂t

√
ρ̂ideal, (29)

where the density-matrix operators ρ̂t and ρ̂ideal describe the
quantum state of the system at any time t and the ideal target
state (here, ρ̂22). In Fig. 8(a), we show the time evolution of
the fidelity between the quantum state of the system and the
target state |2〉. One can observe that the fidelity of the saSTI-
RAP protocol is significantly higher than that of STIRAP over
the operation time of the protocols.

Our numerical calculation suggests that the final fidelity for
the saSTIRAP protocol is 99.04%, much higher than that of
89.86% for STIRAP, as shown by a dotted green curve and

FIG. 8. (a) The fidelity of the STIRAP (saSTIRAP) protocol with
radiative transitions is shown by the solid yellow (dotted green)
line, and the dash-dotted red (dashed blue) line shows the fidelity
with the radiative transition rates (γ21, γ32, and γ31) set to zero. The
inset depicts the final fidelities of population transfer for all the
cases. (b) The time evolution of the populations in the STIRAP and
saSTIRAP protocols with the radiative transition rates (γ21, γ32, and
γ31) set to zero. The numerical simulation uses all the parameters
used in Fig. 6

a solid yellow curve in the inset of Fig. 8(a), respectively.
The dash-dotted red and dashed blue lines in Fig. 8(a) show
the fidelity of both protocols in the absence of the radiative
transition rates, which is presented as an ideal scenario for
achieving the maximum fidelity of population transfer. We
can observe a significant increment in the fidelity for each
protocol without the radiative decay of the polariton states,
suggesting that higher fidelity can be achieved by reducing the
decay rates of the cavity and the transmon qubit. Figure 8(b)
shows the time evolution of the populations for each protocol
without the radiative transitions, indicating higher efficiency
of the population transfer. The wiggly pattern of the curves
in both Figs. 8(a) and 8(b) can be attributed to the impact of
cross-driving terms in the Hamiltonian (28). The numerical
simulations suggest that 84.61% of the population can be
transferred with 91.98% fidelity with the STIRAP protocol
without the radiative decay of the polariton states. The sa-
STIRAP protocol can transfer 99.94% of the population with
99.97% fidelity with zero radiative transitions. Thus, we can
realize more efficient, robust, and coherent population transfer
by increasing the coherence time of the transmon qubit and
superconducting microwave resonator, reducing the radiative
transitions in the polariton basis.
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FIG. 9. The variation in the efficiency (final population P2) and
fidelity of coherent population transfer at the end of the saSTIRAP
protocol with the variation in the relative phase φ of the closed-loop
� system. The parameters used for the simulation are �p/2π =
25.5 MHz, �s/2π = 25.5 MHz, ts = −30 ns, σ = 20 ns, and all the
parameters given in Table I.

The variation in the final efficiency (solid red line) and
fidelity (dashed blue line) shown in Fig. 9 substantiates that
the relative phase in the closed-loop � system must be −π/2
as given in Eqs. (20) and (26) to achieve maximum efficiency
of coherent population transfer through saSTIRAP. For sim-
plicity, we consider that the inherent phases of the pump and
Stokes fields are zero, and the CD drive has an inherent phase
−π/2. One can achieve coherent population transfer with a
maximum efficiency of 98.09% with 99.04% fidelity when
φ = −π/2 for the given parameters.

V. CONCLUSION

In conclusion, we theoretically investigated a physically
conceivable model for implementing STIRAP and saSTIRAP
in a driven circuit QED system. A circuit QED system resem-
bles the famous Jaynes-Cummings model, which gives rise
to hybridized cavity-qubit dressed states or polariton states.
Further, these dressed states can be mixed with a strong
microwave field driving the qubit, thereby forming doubly
dressed polariton states. Thus, the driving field can tune the
energy levels and decay rates of these polariton states. The
dressed-state-engineered polariton states can allow a � or
closed-loop �-type configuration under the so-called nesting
regime of the drive field’s frequency [33].

Our numerical analysis suggests that STIRAP- and
saSTIRAP-assisted coherent population transfer in a closed-
loop resonant � configuration is highly robust and efficient
and may achieve efficiency comparable to or better than
that of the current state-of-the-art coherent population-transfer
protocols in SQCs [6,25,26]. The impact of cross driving
was taken into account in the numerical simulations, which
marginally reduces the efficiency (∼0.06%) of the population
transfer in our model system. The two-photon detuning, as
well as large single-photon detuning, limits the efficiency of
both the STIRAP and saSTIRAP methods due to nonadia-
batic excitation-induced population losses that compromise

the robustness of the protocol [3]. Furthermore, we showed
that the saSTIRAP protocol is more robust than the STIRAP
protocol against the variation in other relevant parameters
like pulse width σ , normalized pulse separation |ts|/σ , and
one-photon detuning �. The significant 17% enhancement of
the efficiency of population transfer in saSTIRAP over the
STIRAP technique supports this claim.

Our theoretical model can be realized experimentally
with currently available on-chip fabrication technologies with
SQCs. Furthermore, this work will pave the way for the imple-
mentation of modified versions of STIRAP, such as fractional
STIRAP [48], frequency-modulated STIRAP [49], etc., and
the sped-up versions (using STA techniques) of these proto-
cols with �-type configurations in SQCs. The CD driving can
also be used for fast preparation of the entangled states, such
as the Schrödinger-cat states in circuit QED [50]. There have
been many recent investigations for implementing robust, ef-
ficient geometric and holonomic quantum phase gates using
the STA techniques in superconducting quantum circuits that
may be prepared with � systems in circuit QED [51,52]
for quantum computing and quantum information processing.
One can also implement the other STA techniques to speed
up the transfer protocol with such systems in circuit QED and
compare the efficiency and fidelity.

APPENDIX A: THE DOUBLY DRESSED POLARITON
STATES

Assuming that, initially, there is no external drive applied
to the transmon qubit through waveguide 2 (i.e., �d = 0), the
Hamiltonian (2) can be identified as a circuit QED system rep-
resented by the Jaynes-Cummings model. The Hilbert space
of the circuit QED Hamiltonian is thus spanned by the states
|g, 0〉 and the hybrid cavity-qubit states (dressed states) |±, n〉,
as discussed in Sec. II A. The corresponding eigenenergies of
the dressed states given by Eq. (5) can be further simplified as

E±,n = h̄ω̃r (n + 1) ± h̄

2

√
�̃2 + 4g2(n + 1)


 h̄ω̃r (n + 1) ± h̄�̃

2

(
1 + 2g2(n + 1)

�̃2

)


 h̄ω̃r (n + 1) ± h̄�̃

2
± h̄g2(n + 1)

�̃
. (A1)

In the large-detuning or dispersive regime (i.e., �̃ � g),
these states can be approximately mapped to the product
states (i.e., |e, n〉, |g, n〉). Therefore, it can be approxi-
mately assumed that |g, 0〉 ∼ |g, 0〉, |−, 0〉 ∼ |e, 0〉, |+, 0〉 ∼
|g, 1〉, |−, 1〉 ∼ |e, 1〉, |+, 1〉 ∼ |g, 2〉, and so on. The gener-
alization of the above approximation for a few lower-level
states can be expressed as |−, n〉 ∼ |e, n〉 and |+, n〉 ∼ |g, n +
1〉. The expressions for the energies of these levels can be
stated as

ωg,n ≈ ω+,n−1

≈ E+,n−1/h̄ 
 nω̃r + �̃/2 + ng2/�̃

≈ n(ω̃r + χ ) + �̃/2 (A2)
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and

ωe,n ≈ ω−,n

≈ E−,n/h̄ 
 (n + 1)ω̃r − �̃/2 − (n + 1)g2/�̃

≈ n(ω̃r − χ ) + ω̃r − �̃ + �̃/2 − χ

≈ n(ω̃r − χ ) + (ω̃q − χ ) + �̃/2, (A3)

where χ = g2/�̃ is the dispersive frequency shift. To oper-
ate in the so-called nesting regime (i.e., ωg,0 < ωe,0 < ωe,1 <

ωg,1) in the driven circuit QED system after the application
of the external classical drive field to the transmon qubit,
the drive-field frequency must satisfy the nesting condition
ωq − 3χ < ωd < ωq − χ . The drive field applied to the trans-
mon qubit further mixes the dressed states. States |g, 0〉 and
|−, 0〉 ∼ |e, 0〉 are dressed by the drive field with Rabi fre-
quency �d and the driving frequency ωd , and we get doubly
dressed polariton states

|1〉 = − sin
θl

2
|e, 0〉 + cos

θl

2
|g, 0〉, (A4)

|2〉 = cos
θl

2
|e, 0〉 + sin

θl

2
|g, 0〉, (A5)

where tan θl = 2�d
(ω̃q−χ ) . The transition frequency (ωi j = ωi −

ω j) between states |1〉 and |2〉 is given by

ω21 =
√

(ω̃q − χ )2 + 4�2
d . (A6)

Similarly, The doubly dressed polariton states obtained
by mixing states |+, 0〉 ∼ |g, 1〉 and |−, 1〉 ∼ |e, 1〉 can be
expressed as

|3〉 = − sin
θu

2
|g, 1〉 + cos

θu

2
|e, 1〉, (A7)

|4〉 = cos
θu

2
|g, 1〉 + sin

θu

2
|e, 1〉, (A8)

where tan θu = 2�d
(−ω̃q+3χ ) and the corresponding energy split-

ting between states |3〉 and |4〉 is given by

ω43 =
√

(ω̃q − 3χ )2 + 4�2
d . (A9)

APPENDIX B: DERIVATION OF THE COUNTERDIABATIC
DRIVE

The expression for the counterdiabatic drive field can be
derived by using Eq. (20) as follows:

�a(t ) = 2θ̇ = 2

(
�s(t )�̇p(t ) − �p(t )�̇s(t )

�2
p(t ) + �2

s (t )

)

= −2ts/σ 2

2 cosh
[(

t2
s − 2tts

)
/2σ 2

]
= −ts

σ 2
sech

[(
t2
s − 2tts

)
/2σ 2

]
, (B1)

where we have used the approximation �p = �s (i.e., the
Rabi frequencies of the pump and the Stokes fields are equal)
for the simplicity of calculation.
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