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Parity-time-symmetry-enabled broadband quantum frequency-comb generation
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Microcavities stand out as competitive tools in the development of quantum frequency combs (QFCs)
for multiphoton entanglement sources, frequency-multiplexed single-photon sources, and the generation of
high-dimensional entangled states. However, the presence of waveguide dispersion hinders the creation of
broadband QFCs, an issue that becomes increasingly critical as the quality factor of the microcavity increases.
Here, we present a scheme to enhance the spectral range of QFCs by selectively manipulating the pump
resonance via parity-time symmetry. We show that by using pulsed pump light to cover the pump resonance,
frequency-matching conditions can be relaxed and the spectral range of QFCs can thus be significantly extended
near the exceptional point. The proposed method offers a simple, effective, and robust approach to increase the
dimension of QFCs, without severely sacrificing nonlinear efficiency.
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I. INTRODUCTION

Quantum frequency combs (QFCs) allow a large amount
of quantum information encoded in a single spatial mode,
facilitating an exponential acceleration in quantum informa-
tion processing [1]. The capability of generating broadband
quantum frequency combs stands at the forefront of quantum
technology advancements [1–8]. In recent years, researchers
have successfully demonstrated QFCs that enable the gen-
eration of both high-dimensional [5,9] and multiphoton
entangled states [1,6]. More complex quantum states can
thus be generated employing QFCs, such as cluster states,
graph states, and squeezed optical combs [10–15]. Thanks
to the compact, cost-efficient, and stable generation of non-
classical optical states, microcavities are inherently suitable
for generating QFCs [5–9,12,14–25], holding great potential
for enhancing quantum computing [1,4,25–27] and quantum
communication systems [3,25,28,29].

Despite the superiority, microcavities face challenges re-
lated to waveguide dispersion, which can alter the resonance
frequencies from their original positions and disrupt the es-
sential phase-matching condition, limiting the bandwidth of
spontaneous nonlinear processes and thus the dimension of
QFCs [16–20]. One way to address this issue is to fine-tune
the cross-section dimensions to reach near-zero anomalous
dispersion. A variety of broadband QFCs have been generated
in this way [30–32]. Notably, through dispersion engineer-
ing, there is potential to generate entangled photons across
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an octave-spanning frequency range. This technology facil-
itates the establishment of entanglement between bit pairs
spanning both visible and telecommunications light wave-
lengths [33]. However, imperfections in the manufacturing
process may compromise device robustness. Alternatively,
phase-matching conditions can be relaxed by broadening
the resonance linewidths of microcavities, which has been
adopted to demonstrate an expansion of QFCs [18]. Nonethe-
less, the resonance broadening over the entire spectrum may
degrade the nonlinear efficiency significantly and thus de-
crease the photon-pair generation rate (PGR) [34,35].

Recently, the manipulation of microcavity resonance peaks
via parity-time (PT ) symmetry has emerged as an effective
way to alter the intracavity nonlinear interactions, enabling
unique photonic devices with improved performance and ex-
panded capabilities for integrated photonics [36–41]. In this
work, we develop an alternative approach to extend the spec-
tral range of QFCs by introducing PT symmetry in coupled
microring structures. The state evolution of PT -symmetry
coupled microcavities near the exceptional point (EP), i.e.,
mode splitting, merging, and broadening, leads to a rich di-
versity of the intracavity photon density of states (DOS) [40].
By designing the radius ratio of two coupled cavities, only the
pump resonance is manipulated. Meanwhile, by employing
a pulsed pump light, the effective pump frequency-matching
bandwidth is found to be greatly extended on both sides
of the EP. The severe phase-matching conditions of sponta-
neous nonlinear effects can thereby be relaxed. Consequently,
substantial enhancement of the Schmidt mode number along
with the dimensionality of the Hilbert space of the QFCs
[32,42–44], encompassed by multiple pairs of signal and idler
modes, is achieved using the proposed structure with excel-
lent operation robustness. Furthermore, our scheme enables a
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FIG. 1. Schematic diagram of (a) a conventional high-Q microresonator and (b) PT -symmetric coupled microresonators and their
corresponding photon DOS in the main ring. (a) The radius of the main ring is R1, the intrinsic decay rate is γ1, and the coupling coefficient
between the waveguide and the ring is γc. (b) The auxiliary ring (red) with radius R2 is coupled to the main ring with coupling coefficient κ .
Only the pump resonance is manipulated (highlighted in red) due to the RFS distinctions of the two cavities. The dashed Gaussian line shape
represents the launched pulsed pump spectrum. (c), (d) are sketches of JSI among multiple frequency modes of two systems. Compared with
a single-ring system, the PT -symmetric dual-ring system presents a higher frequency dimension.

favorable balance between nonlinear efficiency and the spec-
trum extension of QFCs through selective manipulation of
only the pump resonance [34,35]. PT -symmetric microcavi-
ties may find important applications in enhancing the quantum
information processing capacity on an integrated platform.

II. PRINCIPLE AND SYSTEM DESIGN

We begin by introducing the general structures of the pro-
posed scheme. For comparison, a single-ring resonator system
is shown in the upper panel of Fig. 1(a). A ring of radius R1

is coupled to a bus waveguide with a coupling strength of γc.
The intrinsic decay rate of the ring is γ1. The corresponding
intracavity DOS of photons is sketched in the lower panel
of Fig. 1(a). Note that DOS is also referred to as intensity
enhancement in classical photonic applications, which is de-
fined as the ratio between intracavity field intensity and the
input field intensity [39,40]. Generically, the central resonance
is designated as the pump resonance (labeled as m = 0) to
facilitate pump light, while the resonances situated symmet-
rically on each side of the pump are identified as the signal
(labeled as 1, 2, . . . , n) and idler (labeled as −1,−2, . . . ,−n)
resonances. The pulsed pump is used to cover the entire pump
resonance, as shown by the shaded gray Gaussian spectrum. In
a single-ring system, the quality (Q) factors of each resonance
are nearly consistent. Figure 1(c) schematically illustrates
the joint spectral intensity (JSI) of photon-pair generated by
spontaneous four-wave mixing (SFWM) across multiple reso-
nances under the pulsed pump, which reveals a constrained set
of frequency modes because of waveguide dispersion-induced
resonance variation.

Figure 1(b) shows the design of the proposed system
consisting of two rings, in which the main ring—the larger
one—is coupled to the auxiliary ring—the smaller one—with
a radius R2. The intrinsic decay rate of the auxiliary ring is
γ2. The coupling strength κ of two rings is variable and can
be precisely controlled by adjusting the gap between the two
rings. It is important to note that the ratio of the radii between
the two rings R1/R2 is not an integer. This design introduces
a large difference in the free spectral range (FSR) between

the two rings [45,46]. As a result, selective coupling of only a
single resonance from the auxiliary ring to the main ring can
be achieved over a large spectral span. Moreover, the intrinsic
loss of the auxiliary ring is set to be larger than the main one,
which is accessible due to the large bending loss associated
with its small radius. The coupled resonance is used as the
pump resonance, which is highlighted in red in Fig. 1(b).
As will be further explained below, the manipulated pump
resonance near the EP features broadened linewidth or mode
splitting under different system settings, providing a relaxed
frequency-matching condition for SFWM. Within this system
configuration, the signal and idler resonances in the main ring
almost remain unaffected. The corresponding sketch of JSI is
shown in Fig. 1(d), illustrating an increase in the number of
frequency modes.

III. THEORY OF THE QFC GENERATION BY
PT -SYMMETRIC COUPLED MICRORINGS

Next, we elaborate on the underlying physics of relaxing
the frequency-matching condition for SFWM using the mode
coupling near the EP. Theoretically, the state of QFCs gen-
erated from the main ring can be derived using first-order
perturbation theory under the interaction picture [32,47],

|ψ〉 = γW L1

2π

∫∫
dωsdωiφ(ωs, ωi )â

†
s (ωs)â†

i (ωi ) |vac 〉, (1)

where γ is the nonlinear coefficient, W is the energy of
a single pulse, and L1 = 2πR1 is the circumference of the
main ring. â†

s (ωs), â†
i (ωi ) are the creation operators of signal

and idler photons, respectively. |vac〉 is the vacuum state.
φ(ωs, ωi ) is the joint spectral amplitude (JSA) of the two-
photon state [43,44,48],

φ(ωs, ωi ) =
∑
m=1

∫
dωpFp(ωp)Fp(ωs + ωi − ωp) fp(ωp)

× fp(ωs + ωi − ωp) f ∗
m(ωs) f ∗

−m(ωi)sinc

(
�m

2

)
,

(2)
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where fm is the mth resonance, fp is the pump reso-
nance, and Fp is the spectrum of the launched pulsed pump.
Term sinc(�m/2) is the waveguide dispersion-induced phase
mismatch, in which �m = 	βL1 is the phase mismatch accu-
mulated over one round trip of the ring. 	β is the mismatch of
the propagation constants of four involving photons. Note that
the square of the modulus of the JSA, |φ(ωs, ωi )|2, is com-
monly known as JSI [42,48], which gives the two-dimensional
probability distribution of photons associated with signal and
idler frequencies. Then the cavity resonances in the single-
ring case shown in Fig. 1(a) can be modeled as Lorentzian
line shapes [39,47],

fm(ω) = √
RFS

√
2γc,m

(ω − ωm) − iγtot,m
, (3)

where ωm is the central frequency of the mth resonance, and
γtot,m = γ1,m + γc,m is the total decay rate of the mth reso-
nance containing the intrinsic energy decay rate γ1,m and the
coupling-induced energy decay rate γc,m. RFS is the FSR of
the main ring. The full width at half maximum (FWHM) of
resonance 	ωm satisfies 	ωm = 2γtot,m. The Q factor of the
resonance can be simply associated with the total decay rate,
yielding Qm = ωm/2γtot,m. Accordingly, the DOS of photons
within the microcavity can be expressed as | fm(ω)|2.

Regarding the pump resonance in the dual-ring sys-
tem shown in Fig. 1(b), consider the operator vector Â† =
(Â†

1 Â†
2)

T
(where Â†

1, Â†
2 are the pump light generation oper-

ators in the main ring and the auxiliary ring, respectively).
According to coupled mode theory (CMT), Â† obeys the
equation of motion idÂ†/dt = Ĥ Â† − i

√
γc(Â†

in 0)
T

, where
the non-Hermitian Hamiltonian Ĥ is [39,40,46]

Ĥ =
[
ω0 − i(γ1 + γc) κ

κ ω0 − iγ2

]
. (4)

Here, ω0 is the central frequency of pump resonance (assum-
ing the two rings are aligned at ω0); Â†

in is the generation
operator of the input pump light. The coupled supermodes
in the PT -symmetric system can be characterized by the
complex eigenfrequencies of the Hamiltonian, calculated as

ω± =
[
ω0 − i

2
(γ1 + γc + γ2)

]
± 1

2

√
4κ2 − (γ1 + γc − γ2)2.

(5)

The EP of the system is at κ = |γ1 + γc − γ2|/2. Furthermore,
for the dual-ring system, the pump resonance fp(ω) in the
main ring can be derived as

fp(ω) = √
RFS

√
2γc(ω − ω0 − iγ2)

(ω − ω+)(ω − ω−)
. (6)

According to Eqs. (5) and (6), we can regulate the shape of the
pump resonance in a PT -symmetric system by setting proper
parameters, especially by tuning the coupling strength κ . For
other resonances that are not coupled with the auxiliary ring,
fm(ω) can be used, as given by Eq. (3).

Figure 2(a) plots the real parts Re(ω± − ω0) (the res-
onant frequency deviations from ω0) and imaginary parts
Im(ω±) (the decay rates of ω±) of the supermodes with
respect to the coupling strength κ , using Eq. (5). Without

FIG. 2. Illustration of the pump resonance evolution within the
PT -symmetric system. (a) System eigenfrequency evolution vary-
ing coupling strength κ . The real parts and imaginary parts of the
supermodes correspond to the resonant frequencies and decay rates,
respectively. The EP satisfies κ = |γ1 + γc − γ2|/2. The gray dashed
lines on the Re(ω± − ω0) map represent the linewidths of the su-
permodes. (i)–(v) are five typical system states. (i) The single-ring
system, κ = 0; (ii) the PT -symmetry broken regime, κ = 1.7 GHz;
(iii) the EP, κ = 3.3 GHz; (iv) the PT -symmetric regime, κ =
5.1 GHz, where the synthetic resonance features mode splitting and
the interband ripple is less than 3 dB; (v) the PT -symmetric regime,
κ = 11.7 GHz, where the two supermodes are completely split. (b)
Sketches of corresponding photon DOS within the main ring.

loss of generality, we use widely reported device parame-
ters based on the silicon nitride-on-insulator (SNOI) platform
[7,9,14,16,20,32,33]. Parameter settings are R1 = 115 µm,
R2 = 7.7 µm, γ1 = 360 MHz, γc = 270 MHz, and γ2 =
7.2 GHz. The radius of the main ring is chosen to align
with the WDM grids, with the FSR of the main ring close
to 200 GHz under the condition that the group index of the
silicon nitride waveguide is np = 2.1. In Fig. 2(a), the vertical
distance between the two gray dashed lines encircling the
eigenfrequencies on the Re(ω± − ω0) map are the linewidths
of the supermodes [39]. Position (i) represents κ = 0, where
the auxiliary ring is decoupled from the main ring, which
means that the system is equivalent to a single-ring system
shown in Fig. 1(a). The DOS of the coupled resonance ω+
is correspondingly drawn in Fig. 2(b)(i). When the system
operates in the PT -symmetry broken regime [also known
as the split-dissipation regime, position (ii), κ = 1.7 GHz],
the real parts of the supermodes degenerate. The supermode
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with less loss is characterized by a modestly broadened pro-
file with a FWHM of 2Im(ω+), as shown in Fig. 2(b)(ii).
As the coupling strength κ increases, the system transitions
across the EP from the PT -symmetry broken regime into
the regime where PT symmetry is restored. At the EP [at
position (iii) the purple circle, κ = 3.3 GHz], the resonance
undergoes significant broadening without mode splitting. In
the PT -symmetric regime [also known as the split-frequency
regime, positions (iv) and (v), κ = 5.1 and 11.7 GHz, re-
spectively], the two supermodes bifurcate (mode splitting)
but feature the same linewidth. Although the real parts of
the eigenfrequencies of the two supermodes bifurcate, the
two supermodes may not separate entirely in the transmission
spectrum, as depicted in the regime between Figs. 2(a)(iii)
and 2(a)(iv). Here the pump resonance is highly suitable for
accommodating a broadband pulsed light, with a synthesized
linewidth estimated by Re(ω+) − Re(ω−) + 2Im(ω+) [39].
In addition, the frequency-matching range counterintuitively
becomes larger in certain regimes even after two supermodes
are severely split, i.e., between regimes shown by cases (iv)
and (v), a phenomenon that will be explained in the following.

IV. RELAXING THE FREQUENCY-MATCHING
CONDITION AND EXTENDING THE DIMENSION

OF QFCs

To understand how dispersion constrains the dimension
of QFCs and how the effective pump bandwidth influences
the SFWM process, we analyze the JSA of two-photon
QFCs. Consider the joint integral term O(ωs + ωi ) =∫

dωpFp(ωp)Fp(ωs + ωi − ωp) fp(ωp) fp(ωs + ωi − ωp)
extracted from Eq. (2). Physically, the FWHM of O(ωs + ωi )
gives the frequency-matching regions of the pump light on
the JSA map [49], which is defined here as the effective
pump bandwidth Beff . When the bandwidth of the injected
pulsed pump light, Fp(ωp), significantly exceeds that of the
resonance linewidth, Beff is predominantly defined by the
term

∫
dωp fp(ωp) fp(ωs + ωi − ωp). It is noteworthy that this

term adopts a self-convolution form:
∫

dy F (y)F (x−y), in
which x = ωs + ωi is the sum frequency of signal and idler
lights, and y = ωp is the pump light frequency.

Figure 3(a) maps the integral term |O| with respect to the
coupling strength κ . Figure 3(b) plots normalized |O| with
respect to frequency detuning (ωs + ωi − 2ω0) at five typical
parameters (same as in Fig. 2). From (i) to (iii), Beff equals
7.05, 11.36, and 22.39 GHz, respectively. It is easy to find that
Beff increases as κ increases, as the system evolves from the
PT -symmetry broken regime to the EP, since the linewidth
of the pump resonance is proportional to κ [see Fig. 2(a)].
In the PT -symmetric regime, as shown in cases (iv) and
(v), the self-convolution operation can, to a certain extent,
compensate for the mode splitting, thereby further increasing
the effective pump bandwidth. At (iv) and (v), Beff = 43.81
and 66.49 GHz, respectively. Figure 3(c) explains the self-
convolution of split pump resonances. In the convolution
profile, each point is determined by the overlapping area of
pump resonances. This phenomenon persists until the two
supermodes are completely separated [κ > 15 GHz, as can be
seen in Fig. 3(a)].

Figures 4(a)–4(c) briefly sketch the JSA maps covering
four resonance pairs. On this map, the diagonal line signifies

FIG. 3. Illustration of the effective pump bandwidth and
frequency-matching region. (a) Effective pump bandwidth Beff vari-
ations with respect to coupling strength κ . (i)–(v) are five typical
parameters corresponding to Fig. 2. (b) Normalized integral term |O|
at different system states and the definition of Beff . (c) Schematic
diagram of self-convolution of split pump resonances in the PT -
symmetric regime.

the condition for frequency matching, ωs + ωi = 2ω0. The
discrete diamond islands represent the combined location
formed by signal and idler resonance pairs (as plotted on
the coordinate axis), i.e., f ∗

m(ωs) f ∗
−m(ωi ) [50,51]. A uniform

gray grid is superimposed on the background to illustrate
the waveguide dispersion-induced mismatch in the resonant
frequencies. The deviation of the center of f ∗

m(ωs) f ∗
−m(ωi )

from the diagonal line on the JSA map gives the extent
of resonance frequency deviation from the zero-dispersion
position. Such deviation can be approximated by

√
2D2m2/2,

where D2 is extracted from the Taylor series at the pump
frequency ωm = ω0 + mD1 + (1/2)D2m2 (higher orders
are omitted) [18,46]. Here, D1/2π = RFS = 200 GHz,
and D2 = −(c/n0)β2D2

1 = 12 MHz with the anomalous
group velocity dispersion β2 = −50 ps2/km. c is the light
velocity in the vacuum and n0 = 1.92 is the effective
refractive index. Next, Beff ’s are marked by the shaded areas
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FIG. 4. Schematic diagram explaining the broadening of the
effective pump bandwidth for relaxing the frequency-matching con-
dition. (a)–(c) are brief sketches of JSA composition showing the
extended QFC dimension. (d) Local dispersion-induced resonances
deviation

√
2D2m2/2 with respect to the mode number on the JSA

map, and the range of Beff . The shaded gray, yellow, and red areas
represent Beff = 7.05, 22.39, and 66.49 GHz, respectively, corre-
sponding to cases (i), (iii), and (v) in Figs. 2 and 3.

along with the diagonal line. When the islands formed by
signal and idler resonances are covered by the effective
frequency-matching region, i.e., Beff/2 >

√
2D2m2/2, the

photon pairs can be created, as the islands highlighted in
red in Figs. 4(a)–4(c) [the pump frequency-matching regions
correspond to Figs. 3(b)(i), 3(b)(iii), and 3(b)(v), indicated by
the same colors]. Therefore, the maximum mode number of
QFCs, M, dictated by the effective pump bandwidth Beff and
the dispersion D2 can be estimated by

M =
√

Beff√
2D2

. (7)

The critical impact of the effective pump bandwidth and
local dispersion on the maximum mode number is further
visualized in Fig. 4(d), evaluated across 99 mode pairs. The
local dispersion is shown by the black line and Beff is shown
by the shaded areas. It is clear that by broadening the effective
pump bandwidth with the assistance of a pulsed pump, the
frequency-matching range can be significantly extended to re-
sist the impact of dispersion; i.e., M increases as Beff expands.
Note that the phase-mismatch term sinc(�m/2) in Eq. (2) also
affects the bandwidth and dimension of QFCs. However, the
impact of this term is trivial compared to that introduced by
the frequency mismatch of resonances, especially in a ring
with a small radius [18,32]. In our model, the influence of this
term only becomes noticeable when m exceeds 100.

FIG. 5. Effective pump frequency-matching ranges and the sim-
ulated JSI distribution among 99 pairs of modes without and with
resonance manipulation. (a) Normalized pump frequency-matching
regions within the first pair of signal and idler mode (1, −1) at
different system settings (Beff = 7.05, 11.36, 22.39, and 66.49 GHz).
(b) The JSIs ranging across 99 pairs of modes extracted from a
single-ring system. The Schmidt number is 17.87. (c) The JSI from
the pump resonance manipulated dual-ring system. The coupling
strength is κ = 11.7 GHz in the PT -symmetric regime. The Schmidt
number is 46.08. Note that in (b), (c), the PGRs are normalized to the
first pair of mode (1,−1) of each system.

Figure 5(a) gives the effective pump frequency-matching
regions on the JSI map, i.e., |O|2, within the first pair of
modes (m,−m) = (1,−1), using real system parameters.
Figure 5(a)(i) is a single-ring case (κ = 0). Figures 5(a)(ii)–
5(a)(iv) are the manipulated pump resonance cases, where
the state of the coupled dual-ring system is operated in the
PT -symmetry broken regime (κ = 1.7 GHz), at the EP (κ =
3.3 GHz), and in the PT -symmetric regime (κ = 11.7 GHz),
respectively. The signal and idler axes are converted into
wavelength. The system operated at the EP exhibits a broader
frequency-matching range than the single-ring case. In ad-
dition, the effective pump matching bandwidth is further
extended in the PT -symmetric regime thanks to the mode
splitting.

Next, the JSIs across 99 pairs of modes (spanning a spectral
range of approximately 158.4 nm) are numerically simulated,
as drawn in Figs. 5(b) and 5(c). The PGRs are calculated
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FIG. 6. Schmidt number, Hilbert space dimensionality of the
QFCs, and the trend of effective pump bandwidth changes with
respect to the coupling strength κ . The red circles and blue lines are
the Schmidt numbers (Hilbert space dimensionality) of real systems
and the corresponding effective pump bandwidth. respectively. The
colors of the background correspond to Figs. 2(b) and 3(b). The
maximum is reached at κ = 11.7 GHz, where mode splitting occurs
within the PT -symmetric regime. This indicates that appropriate
mode splitting can further enhance the effective pump bandwidth.
(i)–(v) correspond to the same region in Figs. 2–4.

by 〈ψ |ψ〉 and are normalized to the first pair of modes
(m,−m) = (1,−1) of each system. The Schmidt mode num-
bers K are determined through the Schmidt decomposition
of the JSIs [18,42–44,48,51]. Figure 5(b) gives the JSI in a
single-ring system [using Eq. (2)]. The Schmidt number is
K = 17.87 and the corresponding Hilbert space dimensional-
ity is K × K = 319. The maximum mode number M predicted
by Eq. (7) is M = 20.2 (close to the K). Using a significantly
broadened effective pump bandwidth device [Fig. 5(a)(iv)],
the calculated Schmidt number is up to K = 46.08, and the
Hilbert space dimensionality is boosted to 2119, as shown
in Fig. 5(c). The predicted mode number is M = 50.6 in this
case. The Schmidt number K proportionally rises with

√
Beff ,

in accordance with the maximum mode number M predicted
by Eq. (7). Note that the dimensionality of the corresponding
Hilbert space scales with Beff .

Finally, κ is varied to explore the impact of the coupling
strength between two cavities on the evolution of the dimen-
sionality of the Hilbert space, as depicted by red circles in
Fig. 6. The background colors correspond to the same regions
(i)–(v) as those identified in Figs. 2 and 3. In the designed PT -
symmetric dual-ring system, as κ increases, the dimension of
the QFCs continues to increase until κ = 11.7 GHz. Corre-
spondingly, the effective pump bandwidth Beff calculated by
Eq. (7) is represented by the blue line, which shows a con-
sistent trend with the dimension increase of the QFCs. When
κ exceeds 11.7 GHz, the dimension begins to decline even
though the effective pump bandwidth continues to increase.
This is due to the strong mode splitting within the range of
the effective pump frequency-matching [see bifurcations in
Fig. 3(a)] region. When κ exceeds 17.1 GHz, the definition of
Beff becomes invalid due to the intraband ripples larger than

3 dB. Good agreement has been found between the Schmidt
number K and Beff over a wide coupling regime, indicating
that Eq. (7) offers a convenient and rapid method for estimat-
ing the Schmidt number of QFCs.

It is worth noting that the high-Q cavities feature nar-
row linewidths, thus suffering from more strict frequency-
matching conditions since the dimension of QFCs in high-Q
cavities is limited not only by the pump resonance but also
the linewidths of signal and idler resonances. This has been
discussed thoroughly in Ref. [18], where the authors exploited
a reconfigurable resonator to lower the Q of the cavity by over-
coupling the resonator to the bus waveguide. However, the
additional losses introduced to all the resonances can severely
harm the SFWM efficiency [34,35]. Our scheme decouples the
linewidths relation of pump and signal and idler resonances,
relieving the reduction of efficiency by only manipulating the
pump resonance. Using a pulsed pump, we provide a more
effective way to deal with the trade-off between the SFWM
efficiency and the spectral range of the QFCs, particularly in
high-Q cavities.

V. CONCLUSION

In conclusion, we have analyzed the decisive roles of ef-
fective pump bandwidth and dispersion on the dimensions of
QFCs, and proposed the expansion of the dimensions of QFCs
through the manipulation of pump resonance utilizing PT
symmetry. By designing a dual-ring coupled system and by
controlling the system parameters, the pump resonance can
exhibit broadening or mode splitting. We have shown that
PT symmetry facilitates powerful spectrum manipulation,
effectively broadening the pump frequency-matching range
on both sides of the EP with the help of a pulsed pump,
leading to the generation of higher-dimensional quantum mi-
crocombs. QFCs spanning over a 200 nm spectral range have
been predicted. The corresponding Schmidt number of QFCs
is increased from 17.87 to 46.08, and the Hilbert space di-
mensionality is boosted from 319 to 2119. We anticipate that
broadband QFC generation based on the spectral manipula-
tion of microcavities achieved through PT symmetry can find
applications in a wider range of fields in integrated quantum
optics; for instance, it may be used for the high-dimensional
entanglement state [1,4,5,9], and complex quantum state gen-
eration [10–15].

The data underlying the results presented in the study are
available upon reasonable request from the corresponding
author(s).
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