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Dense dipole-dipole-coupled two-level systems in a thermal bath
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The quantum dynamics of a dense and dipole-dipole-coupled ensemble of two-level emitters interacting via
their environmental thermostat is investigated. The static dipole-dipole interaction strengths are being considered
strong enough but smaller than the transition frequency. Therefore, the established thermal equilibrium of
ensemble’s quantum dynamics is described with respect to the dipole-dipole-coupling strengths. We have demon-
strated the quantum nature of the spontaneously scattered light field in this process for weaker thermal baths as
well as non-negligible dipole-dipole couplings compared to the emitter’s transition frequency. Furthermore, the
collectively emitted photon intensity suppresses or enhances depending on the environmental thermal baths’
intensities.
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I. INTRODUCTION

The mutual interactions among multiple excited two-level
emitters are being mediated by their environmental vacuum
electromagnetic field reservoir. Depending on the interparticle
separations, these interactions diminish or can be enhanced,
respectively [1–9]. Certain of these emission-absorption col-
lective features were demonstrated experimentally which re-
sulted, for instance, in superradiance and subradiance [10–13]
and superabsorption [14–16], as well as in various phase tran-
sitions phenomena [17,18]. Collective interactions are found
useful in explaining the sonoluminescence phenomenon [19]
or the tandem superradiant emission of light and atoms in
a Bose-Einstein condensate [20], respectively. Furthermore,
applications of collective phenomena towards lasing effects in
various frequency ranges are being widely recognized [21,22].

In a thermal electromagnetic field environmental reser-
voir, the quantum dynamics of a small two-level ensemble
changes accordingly. Particularly, it was demonstrated that
the entanglement between two initially independent qubits
can be generated if the two qubits interact with a common
heat bath in thermal equilibrium [23–26]. Larger two-level
ensembles, under the Dicke approximation [1–5] and in a
common thermostat, obey the Bose-Einstein statistics and
there are no critical steady-state behaviors in the ther-
modynamic limit which are typical to laser-driven atomic
ensembles [5,17,18]. Moreover, quantum light features are
characteristic only for few atoms in these setups [27,28].
Contrarily, the electromagnetic fields emitted on the two
transitions of a three-level Dicke-like ensemble, surrounded
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by the thermostat, are strongly correlated or anticorrelated
and exhibit quantum light properties also for larger num-
bers of atoms. This is demonstrated via violation of the
Cauchy-Schwarz inequality [29].

The multiqubit collective phenomena, mediated by envi-
ronmental thermal baths, have attracted an additional interest
recently due to feasible applications related to quantum ther-
modynamics [30–33]. In this respect, the performance of
quantum heat engines [34–39], quantum refrigerators [40,41],
or quantum batteries [42–44] has been shown to improve
considerably due to cooperativity among their constituents.

Motivated by these advances regarding multiqubit ensem-
bles and their applications, here we investigate the quantum
dynamics of a small and strongly dipole-dipole interacting
two-level ensemble in thermal equilibrium with its surround-
ing thermostat. The spontaneously scattered quantum light
features, in this process, were addressed for the case when
the dipole-dipole interaction strength among the two-level
radiators is comparable to, but still smaller than, the transition
frequency of a single emitter, respectively. We have obtained
the corresponding master equation describing this multiqubit
ensemble and solved it analytically in the steady state which
characterizes the established thermal equilibrium. Further-
more, we have demonstrated that the thermal driven small
two-level ensemble emits light which has sub-Poissonian
statistics for weaker thermal baths, i.e., for lower tempera-
tures. For negligible dipole-dipole couplings, it is known, see,
e.g., Ref. [27], that this photon statistics occurs for a few
emitters only and stronger thermal baths that may prevent its
detection because of the thermal photon background. The col-
lectively spontaneously scattered photon intensity enhances
for stronger as well as weaker thermal baths due to dipole-
dipole interactions among the involved two-level emitters,
while it suppresses for moderately intense to moderately weak
intensities of the environmental heat reservoirs, respectively.
Actually, strong dipole-dipole interactions are characteristics
of Rydberg atoms and the dipole-dipole coupling among
two Rydberg atoms separated by 15 µm was experimentally
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demonstrated in [45]. Therefore, ensembles of two-level Ry-
dberg atoms [46–50] may form a physical platform where the
effects described here might be realized experimentally.

This paper is organized as follows. In Sec. II we describe
the analytical approach and the system of interest, while in
Sec. III we discuss the first- and the second-order photon
correlation functions, respectively. Section IV presents and
analyzes the obtained results. The article concludes with a
summary given in Sec. V.

II. THEORETICAL FRAMEWORK

We consider an ensemble of N dipole-dipole-coupled two-
level emitters, each having the transition frequency ω0, and
interacting with the environmental thermal reservoir at tem-
perature T . The atomic subsystem is being densely packed so
that its linear dimensions are smaller than the photon emission
wavelength λ, i.e., within the Dicke approximation [1–4].
The static dipole-dipole-coupling strength δ ∼ d2/r3 [4,14],
where r is the mean distance among any of the atomic pairs
characterized by the dipole d , is strong such that the ratio
δ/ω0 < 1 is not negligible and may play a relevant role over
the established thermal equilibrium features. Also, the dipole-
dipole-coupling strength is taken equal for any atomic pair—a
reasonable approximation in the Dicke limit [4]. Alternatively,
one can assume a Gaussian-distributed atomic cloud to ob-
tain an averaged dipole-dipole-coupling strength δ; see, e.g.,
Ref. [51]. Hence the Hamiltonian describing this system in
the dipole and rotating-wave approximations [1–6,17] can be
represented as follows: H = H0 + Hi, where

H0 =
∑

k

h̄ωka†
kak + h̄ω0Sz − h̄δ

∑
j �=l

S+
j S−

l (1)

and

Hi = i
∑

k

{(�gk · �d )a†
kS− − H.c.}. (2)

Here, the collective atomic operators S+ = ∑N
j=1 S+

j =∑N
j=1 |e〉 j j〈g| and S− = [S+]† obey the usual commuta-

tion relations for su(2) algebra, namely, [S+, S−] = 2Sz and
[Sz, S±] = ±S±, where Sz = ∑N

j=1 Sz j = ∑N
j=1(|e〉 j j〈e| −

|g〉 j j〈g|)/2 is the bare-state inversion operator. Further, |e〉 j

and |g〉 j are the excited and ground state of the emitter j,
respectively, while a†

k and ak are the creation and the anni-
hilation operators of the environmental electromagnetic field
(EMF) thermal reservoir, which satisfy the standard bosonic
commutation relations, that is, [ak, a†

k′ ] = δkk′ and [ak, ak′ ] =
[a†

k, a†
k′ ] = 0 [52]. In the Hamiltonian (1), the free energies

of the environmental EMF thermal modes and atomic subsys-
tems are represented by the first two terms, respectively. The
dipole-dipole interaction Hamiltonian is given by the third
term of the Hamiltonian (1). Since S+S− = ∑

j �=l S+
j S−

l +∑
j Sz j + N/2, the Hamiltonian H0, can be represented as

H0 =
∑

k

h̄ωka†
kak + h̄ω̄0Sz − h̄δ̃S+S−, (3)

where ω̄0 = ω0 + δ̃, while the constant N/2 is being dropped.
Note here that the Hamiltonian describing many two-level

radiators is an additive function, i.e., it consists of a sum of
individual Hamiltonians, characterizing separately each two-
level emitter. From this reason, the dipole-dipole-coupling
strength δ was divided on N − 1, i.e., δ̃ = δ/(N − 1), since
there are N (N − 1) terms describing the dipole-dipole inter-
acting atoms; see, e.g., Ref. [4]. The Hamiltonian (2), i.e., Hi,
accounts for the interaction of the whole ensemble with the
environmental thermostat. There, �gk = √

2π h̄ωk/V �ep is the
coupling strength among the few-level emitters and the ther-
mal EMF modes. Here, �ep is the photon polarization vector
with p ∈ {1, 2} and V is the quantization volume, respectively.

The general form of the master equation, describing the
atomic subsystem alone in the interaction picture, is given
by [5]

d

dt
ρ(t ) = − 1

h̄2 Trf

{∫ t

0
dt ′[HI (t ), [HI (t ′), ρ(t ′)]]

}
, (4)

where

HI (t ) = U (t )HiU
−1(t ), (5)

with U (t ) = eiH0t/h̄, and the notation Trf{· · · } means the trace
over the thermal EMF degrees of freedom. The explicit ex-
pression of the interaction Hamiltonian in the interaction
picture is then

HI = i
∑

k

(�gk · �d )a†
kei(ωk−ω̂)t S− + H.c., (6)

where

ω̂ = ω̄0 + 2δ̃Sz. (7)

Next, one substitutes the Hamiltonian (6) in the equation (4)
and performs the trace over the thermal EMF degrees of
freedom taking as well into account the operator nature of the
exponential function. Subsequently, under the Born-Markov
approximations, one arrives at the following master equa-
tion describing the atomic subsystem only:

d

dt
ρ(t ) + i[ω̄0Sz − δ̃S+S−, ρ]

= −
[

S+,
�̂(ω̂)

2

(
1 + n̄(ω̂)

)
S−ρ

]

−
[

S−, S+ �̂(ω̂)

2
n̄(ω̂)ρ

]
+ H.c. (8)

Here �̂(ω̂) = 2d2ω̂3/(3h̄c3) is the emitters’ spontaneous de-
cay rate, while n̄(ω̂) = [exp (h̄ω̂/kBT ) − 1]−1 is the mean
thermal photon number, both at the eigenvalues of ω̂, respec-
tively.

While finding the general solution of the master equa-
tion (8) is not a trivial task at all for a many-atom sample, it
possesses a steady-state solution. One can observe, by a direct
substitution in Eq. (8), that the expression

ρs = Z−1e−βHa (9)

is a steady-state solution of it with the parameter Z being
the normalization constant determined by the requirement
Tr{ρs} = 1. Here,

Ha = h̄ω̄0Sz − h̄δ̃S+S− (10)
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and β = (kBT )−1, whereas kB is the Boltzmann’s constant.
Considering an atomic coherent state |n〉, denoting a sym-
metrized N-atom state in which N − n particles are in the
lower state |g〉 and n atoms are excited to their upper
state |e〉, and that S−|n〉 = √

n(N − n + 1)|n − 1〉, S+|n〉 =√
(N − n)(n + 1)|n + 1〉, and Sz|n〉 = (n − N/2)|n〉, one can

calculate the steady-state expectation values of any atomic
correlators of interest.

For a negligible ratio of the dipole-dipole-coupling
strength over the transition frequency ω0, i.e., δ/ω0 → 0, the
master equation (8) would turn into the usual master equa-
tion describing a collection of two-level atoms collectively
interacting via their thermal reservoir [3,5,27] in the Dicke
limit, namely, ρ̇(t ) + i[ω̄0Sz − δ̃S+S−, ρ] = −�(ω0)(1 +
n̄(ω0))[S+, S−ρ]/2 − �(ω0)n̄(ω0)[S−, S+ρ]/2 + H.c., where
the overdot means differentiation with respect to time;
see Appendix A. Its steady-state solution is known, i.e.,
ρs = Z−1 exp [−h̄ω0Sz/kBT ], see, e.g., Refs. [5,27], and the
corresponding steady-state atomic quantum dynamics does
not depend on δ as long as the dipole-dipole interactions are
too weak.

Therefore, in the next sections, we shall focus on the
quantum statistics of the spontaneously scattered photons in
the process of dipole-dipole interacting two-level emitters via
their environmental thermal reservoir and for non-negligible
dipole-dipole-coupling strengths such that δ/ω0 < 1. In this
regard, we introduce, respectively, the first- and the second-
order photon correlation functions describing this feature.

III. PHOTON CORRELATION FUNCTIONS

The first- and the unnormalized second-order photon
correlation functions at position �R can be represented as fol-
lows [52–55]:

G1( �R, t ) = 〈 �E (−)( �R, t ) �E (+)( �R, t )〉,
G2( �R, t ) = 〈: �E (−)( �R, t ) �E (+)( �R, t )

× �E (−)( �R, t ) �E (+)( �R, t ) :〉, (11)

where

�E (−)( �R, t ) =
∑

k

�gka†
k (t )e−i�k· �R,

�E (+)( �R, t ) =
∑

k

�gkak (t )ei�k· �R, (12)

while : f ( �R, t ) : indicates normal ordering. In the far-zone
limit of experimental interest R = | �R| � λ, one can express
the first- and second-order correlation functions via the col-
lective atomic operators. In this respect, one solves formally
the Heisenberg equations for EMF operators {a†

k (t ), ak (t )}
using the Hamiltonian (6). Then, introducing those solutions
in Eqs. (11) and integrating over all involved variables, see,
e.g., Ref. [56], one arrives finally at

G1( �R, t ) = 	(R)〈S+(t )ω̂4S−(t )〉,
G2( �R, t ) = 	(R)2〈S+(t )ω̂2S+(t )ω̂4S−(t )ω̂2S−(t )〉. (13)

Here 	(R) = d2(1 − cos2 ζ )/(c4R2), while ζ is the angle
between the direction of vector �R and the dipole �d .

The normalized second-order photon-photon correlation
function, defined in the usual way, namely,

g(2)(t ) = G2( �R, t )

G1( �R, t )2
, (14)

takes the next form in the steady state,

g(2)(0) = 〈S+ω̂2S+ω̂4S−ω̂2S−〉
〈S+ω̂4S−〉2

. (15)

Note that g(2)(0) < 1 characterizes sub-Poissonian, g(2)(0) >

1 super-Poissonian, and g(2)(0) = 1 Poissonian photon
statistics.

In the following section, we shall investigate the second-
order photon-photon correlation function (15) with the help
of the steady-state solution (9). Actually, the focus will be on
comparing g(2)(0) when δ/ω0 → 0, a case which is known
in the scientific literature, with the situation considered here,
namely, when δ/ω0 �= 0 but still δ/ω0 < 1.

IV. RESULTS AND DISCUSSION

We start our discussions by presenting some limiting cases
of the second-order photon-photon correlation function given
by Eq. (15). Particularly, for η → 0, where

η = δ

ω0
,

we recover the known results (see, e.g., Ref. [27]), namely,

g(2)(0) = 6(N + 3)(N − 1)

5N (N + 2)
, if x → 0,

g(2)(0) = 2 − 2

N
, when x � 1, (16)

where

x = h̄ω0

kBT
.

However, for η �= 0 and strong thermal baths, i.e., x → 0, and
to the second order in the small parameter η, we have obtained
that

g(2)(0) = 6(N + 3)(N − 1)

5N (N + 2)

+ 48(N + 3)(N2 + 2N − 18)η2

25N (N − 1)(N + 2)
. (17)

Contrary, for weaker thermal baths when x � 1, we have
obtained the following expression for the second-order
photon-photon correlation function:

g(2)(0) = 2

(
1 − 1

N

)(
N − 1 − (N − 3)η

(N − 1)(1 − η)

)4

× exp

(
− 2ηx

N − 1

)
. (18)

Notice that Eqs. (17) and (18) turn, respectively, into
those given by Eq. (16), when η → 0. Moreover, the
photon statistics, characterized by Eq. (18) for larger val-
ues of the parameter x differs considerably between the
cases η = 0 and η �= 0, respectively. However, if T = 0
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FIG. 1. Steady-state second-order photon-photon correlation
function g(2)(0) as a function of x = h̄ω0/(kBT ) for a two-atom
system, N = 2. Here the solid line is plotted for a negligible dipole-
dipole-coupling strength, i.e., δ/ω0 → 0, whereas the dashed one
stands for δ/ω0 = 0.1. The short-dashed curve is plotted based on
Eq. (18), which is valid for x � 1.

then {G1( �R), G2( �R)} = 0 and the normalized second-order
correlation function g(2)(0) loses its meaning.

Figures 1 and 2 depict the photon statistics of the spon-
taneously scattered photons by a dipole-dipole interacting
few-atom system, i.e., for N = 2 and N = 3, respectively,
via their environmental thermostat; see also Appendix B.
Particularly, the solid lines are plotted for a negligible dipole-
dipole-coupling strength, i.e., δ/ω0 → 0, whereas the dashed
ones stand for δ/ω0 = 0.1. The short-dashed curves represent
Eq. (18), which is valid for x � 1. Interestingly, the photon
statistics turns into a quantum photon statistics, i.e., g(2)(0) <

1, when η �= 0 and for lower temperatures, that is, x � 1.
This behavior is typical for several dipole-dipole interacting
atoms; see also [57,58]. From this reason, in Fig. 3 we plot
the steady-state second-order photon-photon correlation func-
tion g(2)(0) for N = 7 dipole-dipole interacting atoms which
supports it. Thus the thermal mediated dipole-dipole interac-
tions among two-level emitters in a several-atom Dicke-like
sample are responsible for the sub-Poissonian photon statis-
tics of the spontaneously scattered photons. In the absence
of the dipole-dipole interactions, that is, when η → 0, sub-
Poissonian photon statistics occurs in this system only for N ∈
{1, 2, 3} and for higher environmental temperatures, i.e., x �
1; see Figs. 1 and 2. Also, one can observe a nice concordance
with the limiting cases of the second-order photon-photon
correlation function g(2)(0), given by Eqs. (16)–(18) and the
plots in Figs. 1–3.

While this tendency, i.e., the occurrence of sub-Poissonian
photon statistics for bigger values of x = h̄ω0/(kBT ), per-
sists for larger atomic ensembles, it will be less useful
since the photon flux might be too weak in this case. To
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0

FIG. 2. Same as in Fig. 1, but for N = 3.
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FIG. 3. Log-linear plot of the steady-state second-order photon-
photon correlation function g(2)(0) as a function of x = h̄ω0/(kBT ),
for N = 7. Other involved parameters are as in Fig. 1.

clarify this issue, one represents the cooperative intensity of
spontaneously scattered EMF by the dipole-dipole interacting
two-level emitters in a weaker thermal environment, i.e., for
x � 1, as follows:

G1( �R)/	(R) = N (1 − η)4 exp (−x(1 − η)). (19)

On the other hand, from Eq. (18) when setting g(2)(0) = 1,
one can obtain the η’s ranges in order for the sub-Poissonian
photon statistics to occur for N � 1 and x � 1, namely,

η > (N/x) ln (
√

2). (20)

Note here that η = (N/x) ln (
√

2) is the condition for Pois-
sonian, whereas η < (N/x) ln (

√
2) is for super-Poissonian

photon statistics, respectively. Although Eq. (20) is not dif-
ficult to fulfill, the photon intensity, given by Eq. (19), will
be too low for larger ensembles and weaker thermal baths,
x � 1. The reason consists in the Bose-Einstein nature of
the atomic statistics, meaning that in a thermal environment
at equilibrium, the two-level emitters tend to reside in their
ground state for {N, x} � 1. Under these circumstances, less
atoms get excited and, therefore, the spontaneously generated
EMF might be weak, as well. Finally, the photon statistics
changes from sub-Poissonian to super-Poissonian if δ → −δ

and x � 1.
Note that from Eq. (19) follows that for weaker ther-

mal baths when x � 1, but still T �= 0, G1( �R, η �= 0) >

G1( �R, η = 0); see Fig. 4. However, from the general expres-
sion of the intensity, i.e., Eq. (13), one has that G1( �R, η �=
0) < G1( �R, η = 0), within moderately weak, x > 1, to mod-
erately intense, x � 1, heat baths, respectively. This will turn
again to G1( �R, η �= 0) > G1( �R, η = 0) for stronger thermal
baths, i.e., when x → 0; see Fig. 4. Particularly, for higher

0 2 4 6 8 10
0.8

1

1.5

2

x

In
te
ns
ity

ra
tio

FIG. 4. Log plot of the ratio G1( �R, η �= 0)/G1( �R, η = 0) as a
function of x = h̄ω0/(kBT ) for η = 0.1. The solid line is plotted for
N = 2 and the dashed one for N = 3, while the short-dashed curve
is for N = 7, respectively.
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environmental temperatures when x → 0, one has that

G1( �R, η �= 0)

G1( �R, η = 0)
= 1 + 72η2 + 2064η4/7. (21)

Generalizing, the thermal mediated dipole-dipole inter-
actions are responsible for sub-Poissonian statistics of the
spontaneously scattered photons by a small two-level en-
semble, in a weak thermal bath and within the Dicke limit.
Furthermore, due to the presence of the dipole-dipole interac-
tions between the two-level emitters, the collectively scattered
spontaneous emission light suppresses or enhances depending
on the intensities of the environmental thermal baths; see
also [59]. These behaviors can be understood if one uses the
symmetrical cooperative multiatom Dicke states [1,4]. The
symmetric atomic Dicke states shift, because of the dipole-
dipole interaction among the two-level emitters, leading to
different collective populations of these states in a thermal
environment; see Appendix B demonstrating this particularly
for a N = 2 atomic sample.

In principle, the relationship among the quantum nature of
the spontaneously scattered photons in this process and the
ensemble’s quantum thermodynamics would be an interesting
issue to address in future investigations.

V. SUMMARY

We have investigated the steady-state quantum dynamics of
an ensemble of dipole-dipole interacting two-level emitters,
in the Dicke limit, which is mediated by the environmen-
tal thermostat. Particularly, the focus was on the quantum
nature of the collective spontaneously scattered photons in
this process. We have demonstrated that the dipole-dipole
interaction among the two-level emitters is responsible for
sub-Poissonian photon statistics scattered by a small ensemble
consisting from few to several atoms, respectively. The quan-
tum light effect occurs when the energy of a free atom is larger
than the corresponding one due to the thermal reservoir. This
quantum feature survives for larger ensembles; however, the
photon intensity might be too weak in this case. Without the
dipole-dipole interactions among the two-level radiators, the
sub-Poissonian statistics occurs for few atoms and stronger
thermal baths only. The collectively scattered spontaneous
emission light intensity suppresses or enhances depending on
the intensities of the environmental thermal baths.
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APPENDIX A: MASTER EQUATION FOR WEAK
DIPOLE-DIPOLE INTERACTING TWO-LEVEL

EMITTERS, i.e., δ/ω0 → 0

For the sake of comparison, let us discuss here the situation
of weak dipole-dipole interaction strengths, compared to the
transition frequency. The Hamiltonian describing N two-level

emitters in a thermal bath is then H = HF + HA + HAF , where

HF =
∑

k

h̄ωka†
kak (A1)

is the free energy of the thermal reservoir, while

HA =
N∑

j=1

h̄ω0Sz j (A2)

is the corresponding free energy of the atomic subsystem.
The interaction among the two subsystems, assumed weak,
is given by the following Hamiltonian:

HAF = i
∑

k

N∑
j=1

(�gk · �d j )(a
†
kS−

j e−i�k·�r j − H.c.), (A3)

where all the involved parameters or operators have the
usual meaning. Eliminating the thermal reservoir degrees of
freedom, see, e.g., Ref. [6], in the usual way and in the Born-
Markov approximations, one arrives at the following master
equation describing the two-level ensemble in a thermal heat
bath:

ρ̇(t ) − i
N∑

j �=l

δi j[S
+
j S−

l , ρ]

= −
N∑

j,l=1

χ jl{(1 + n̄(ω0))[S+
j , S−

l ρ]

+ n̄(ω0)[S−
j , S+

l ρ]} + H.c., (A4)

where

δ jl = 3�(ω0)

4

{
[cos2 ξ jl − 1]

cos(ω0r jl/c)

(ω0r jl/c)

+ [1 − 3 cos2 ξ jl ]

[
sin(ω0r jl/c)

(ω0r jl/c)2
+ cos(ω0r jl/c)

(ω0r jl/c)3

]}

are the vacuum-induced dipole-dipole interactions among any
two atoms, separated by r jl = |�r j − �rl |, whereas

χ jl = 3�(ω0)

2

{
[1 − cos2 ξ jl ]

sin(ω0r jl/c)

(ω0r jl/c)

+ [1 − 3 cos2 ξ jl ]

[
cos(ω0r jl/c)

(ω0r jl/c)2
− sin(ω0r jl/c)

(ω0r jl/c)3

]}

are the corresponding incoherent couplings contributing to
the spontaneous decay [6]. Here, ξ jl are the angles between
the dipole moments �d , assumed identical for all atoms and
parallel, and �r jl .

For small interparticle separations compared to the emis-
sion wavelength, i.e., ω0r jl/c → 0 in the Dicke limit, one has
that χ jl → �(ω0)/2, while δ jl reduces to the static dipole-
dipole interaction potential, i.e., δ jl → 3�(ω0)/[4(ω0r jl/c)3],
and j �= l . Now introducing the collective atomic operators
and considering that the dipole-dipole interactions are equal
for any atomic pair, we obtain the corresponding master
equation given at the end of Sec. II. Notice here that al-
though δ/ω0 → 0, the dipole-dipole-coupling strength δ can
be smaller and of the same order or larger than the single-
emitter spontaneous decay rate �; however, also �/ω0 → 0.
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Actually, the above master equation (A4) given in the
Dicke limit is valid only if the static dipole-dipole-coupling
strength δ, or generally the dipole-dipole interaction, is neg-
ligible compared to the transition frequency ω0, that is,
δ/ω0 → 0. This is because we have obtained the correspond-
ing expression for the dipole-dipole interactions δ jl assuming
weak interaction among the atomic and thermal reservoir
subsystems, respectively, that is, one cannot get something
stronger than the free energy of the atomic subsystem given
by HA. Therefore, for stronger dipole-dipole interactions δ,
but still δ/ω0 < 1 which is the case considered here, the static
dipole-dipole interaction potential should be included in the
Hamiltonian HA, namely,

HA =
N∑

j=1

h̄ω0Sz j − h̄δ
∑
j �=l

S+
j S−

l , (A5)

and eliminate the thermal bath degrees of freedom as it is
described in Sec. II. The positions r j of the atoms are excluded
in the Dicke limit since the stronger contribution to the dipole-
dipole interaction comes from the static dipole-dipole part
which is already included in HA; see also the Hamiltonian (1),
that is, H0 = HF + HA.

APPENDIX B: TWO DIPOLE-DIPOLE INTERACTING
ATOMS IN A THERMAL BATH

Here we shall discuss the two-atom cooperative dynamics
in a thermal bath using the Dicke collective states for N = 2.
Introducing the collective two-atom Dicke states [2]

|E〉 = |e1e2〉,
|S〉 = (|e1g2〉 + |e2g1〉)/

√
2,

|A〉 = (|e1g2〉 − |e2g1〉)/
√

2,

|G〉 = |g1g2〉,
and taking into account that

S+
1 = (

RES − REA + RSG + RAG
)
/
√

2

and

S+
2 = (RES + REA + RSG − RAG)/

√
2,

one obtains, from (1) and (2), the following Hamiltonians in
the cooperative two-atom bases:

H0 =
∑

k

h̄ωka†
kak + h̄ω0(REE − RGG) − h̄δRSS,

Hi = i
√

2
∑

k

(�gk · �d )((RES + RSG)ak − H.c.), (B1)

where the atomic operators acting in the two-atom collective
bases are defined as follows: Rαβ = |α〉〈β| and satisfying the
commutation relations [Rαβ, Rβ ′α′ ] = Rαα′δββ ′ − Rβ ′βδα′α and
{α, β ∈ E , S, G}. The antisymmetrical state |A〉 was dropped
since it does not couple to the environmental electromagnetic
field reservoir.

Introducing the Hamiltonian Hi, but in the interaction pic-
ture, in Eq. (4) and performing the trace over the thermal
EMF degrees of freedom, one arrives at the following master

equation describing the two dipole-dipole interacting atoms in
a thermal environment, namely,

d

dt
ρ(t ) + i[ω0(REE − RGG) − δRSS, ρ]

= −γ (+)(1 + n̄(+) )([RES, RSEρ] + [RSG, RSEρ])

− γ (−)(1 + n̄(−) )([RSG, RGSρ] + [RES, RGSρ])

− γ (+)n̄(+)([RSE , RESρ] + [RGS, RESρ])

− γ (−)n̄(−)([RGS, RSGρ] + [RSE , RSGρ]) + H.c., (B2)

where

n̄(±) = n̄(ω0 ± δ), γ (±) = �(ω0 ± δ)

are given at the corresponding transition in the two-atom
basis; see also [49]. Notice here that Eq. (B2) implies that
ω0 � δ, meaning that the corrections to the obtained results
are of the order of (δ/ω0)2. Now, one can obtain the equa-
tions of motion for the variables of interest. For instance, the
populations in the two-atom collective states are given by the
following equations:

d

dt
〈REE 〉 = −2γ (+)(1 + n̄(+) )〈REE 〉 + 2γ (+)n̄(+)〈RSS〉,

d

dt
〈RGG〉 = 2γ (−)(1 + n̄(−) )〈RSS〉 − 2γ (−)n̄(−)〈RGG〉, (B3)

with

〈REE (t )〉 + 〈RSS (t )〉 + 〈RGG(t )〉 = 1.

Their steady-state solutions are, respectively,

〈REE 〉s = μ(−)μ(+)

1 + μ(−)(1 + μ(+) )
,

〈RSS〉s = μ(−)

1 + μ(−)(1 + μ(+) )
,

〈RGG〉s = 1

1 + μ(−)(1 + μ(+) )
, (B4)

where μ(±) = exp [−x(1 ± η)], and recalling that x =
h̄ω0/kBT and η = δ/ω0 with η < 1.

For a dipole-dipole interacting two-atom sample, the
steady-state second-order correlation function, g(2)(0), is rep-
resented as follows:

g(2)(0) = (1 − η2)4〈REE 〉s

((1 + η)4〈REE 〉s + (1 − η)4〈RSS〉s)2
. (B5)

This expression is equivalent with the one which would be
obtained from Eq. (15), with the help of the solution (9)
when taking N = 2. Because of strong dipole-dipole inter-
actions among the two-level emitters one has that 〈RSS (δ �=
0)〉s �= 〈RSS (δ = 0)〉s for η < 1 and x varying from zero up to
several units, whereas 〈REE (δ �= 0)〉s ≈ 〈REE (δ = 0)〉s. Actu-
ally, the transition frequencies among the two-atom collective
states would modify in the presence of dipole-dipole in-
teraction among the two-level emitters, namely, (ω0 − δ) is
the frequency of the |G〉 ↔ |S〉 transition, whereas (ω0 + δ)
is the frequency of the |S〉 ↔ |E〉 two-atom transition, re-
spectively. The mean thermal photon numbers corresponding
to these frequencies, i.e., n̄(±), are different as well in the
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presence of dipole-dipole interaction. That is why the popu-
lation on the symmetrical state |S〉 differs, while on the most
excited state |E〉 is almost the same, regardless of the dipole-
dipole-coupling strength δ. This will lead to behaviors shown
in Fig. 1 for g(2)(0)δ �=0 and g(2)(0)δ=0, respectively. If the

dipole-dipole-coupling strength δ changes the sign, i.e., δ →
−δ, the photon statistics modifies too, that is, from sub-
Poissonian to super-Poissonian photon statistics. Again, this
happens due to the change of the transition frequencies among
the two-atom cooperative states.
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[13] M. O. Araújo, I. Kresić, R. Kaiser, and W. Guerin, Superradi-
ance in a large and dilute cloud of cold atoms in the linear-optics
regime, Phys. Rev. Lett. 117, 073002 (2016).

[14] K. Higgins, S. Benjamin, T. Stace, G. Milburn, B. W. Lovett,
and E. Gauger, Superabsorption of light via quantum engineer-
ing, Nat. Commun. 5, 4705 (2014).

[15] D. Yang, S.-h. Oh, J. Han, G. Son, J. Kim, J. Kim, M. Lee,
and K. An, Realization of superabsorption by time reversal of
superradiance, Nat. Photon. 15, 272 (2021).

[16] J. Q. Quach, K. E. McGhee, L. Ganzer, D. M. Rouse, B. W.
Lovett, E. M. Gauger, J. Keeling, G. Cerullo, D. G. Lidzey, and
T. Virgil, Superabsorption in an organic microcavity: Toward a
quantum battery, Sci. Adv. 8, eabk3160 (2022).

[17] A. V. Andreev, V. I. Emel’yanov, and Y. A. Il’inskii, Coopera-
tive Effects in Optics: Superfluorescence and Phase Transitions
(IOP, London, 1993).

[18] G. Ferioli, A. Glicenstein, I. Ferrier-Barbut, and A. Browaeys,
A non-equilibrium superradiant phase transition in free space,
Nat. Phys. 19, 1345 (2023).

[19] P. Mohanty and S. V. Khare, Sonoluminescence as a cooperative
many body phenomenon, Phys. Rev. Lett. 80, 189 (1998).

[20] S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger,
D. E. Pritchard, and W. Ketterle, Superradiant Rayleigh scat-
tering from a Bose-Einstein condensate, Science 285, 571
(1999).

[21] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland,
and J. K. Thompson, A steady-state superradiant laser with
less than one intracavity photon, Nature (London) 484, 78
(2012).

[22] B. W. Adams, Ch. Buth, S. M. Cavaletto, J. Evers, Z. Harman,
C. H. Keitel, A. Pálffy, A. Picon, R. Röhlsberger, Y. Rostovtsev,
and K. Tamasaku, X-ray quantum optics, J. Mod. Opt. 60, 2
(2013).

[23] A. M. Basharov, Entanglement of atomic states upon collective
radiative decay, JETP Lett. 75, 123 (2002).

[24] D. Braun, Creation of entanglement by interaction with a com-
mon heat bath, Phys. Rev. Lett. 89, 277901 (2002).

[25] F. Benatti, R. Floreanini, and M. Piani, Environment induced
entanglement in Markovian dissipative dynamics, Phys. Rev.
Lett. 91, 070402 (2003).

[26] M. Cattaneo, G. L. Giorgi, S. Maniscalco, and R. Zambrini,
Local versus global master equation with common and sepa-
rate baths: superiority of the global approach in partial secular
approximation, New J. Phys. 21, 113045 (2019).

[27] S. S. Hassan, G. P. Hildred, R. R. Puri, and R. K. Bullough,
Incoherently driven Dicke model, J. Phys. B: At. Mol. Phys. 15,
2635 (1982).

[28] B. Mohan and M. A. Macovei, Incoherent excitation of few-
level multi-atom ensembles, J. Phys. B: At., Mol., Opt. Phys.
46, 035503 (2013).

[29] M. Macovei, J. Evers, and C. H. Keitel, Quantum correlations
of an atomic ensemble via an incoherent bath, Phys. Rev. A 72,
063809 (2005).

[30] H. E. D. Scovil and E. O. Schulz-DuBois, Three-level masers
as heat engines, Phys. Rev. Lett. 2, 262 (1959).

[31] R. Kosloff and A. Levy, Quantum heat engines and refriger-
ators: continuous devices, Annu. Rev. Phys. Chem. 65, 365
(2014).

[32] S. Vinjanampathy and J. Anders, Quantum thermodynamics,
Contemp. Phys. 57, 545 (2016).

[33] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Fundamen-
tal aspects of steady-state conversion of heat to work at the
nanoscale, Phys. Rep. 694, 1 (2017).

[34] M. Campisi and R. Fazio, The power of a critical heat engine,
Nat. Commun. 7, 11895 (2016).

[35] W. Niedenzu and G. Kurizki, Cooperative many-body enhance-
ment of quantum thermal machine power, New J. Phys. 20,
113038 (2018).

[36] F. Carollo, F. M. Gambetta, K. Brandner, J. P. Garrahan, and
I. Lesanovsky, Nonequilibrium quantum many-body Rydberg
atom engine, Phys. Rev. Lett. 124, 170602 (2020).

023712-7

https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevA.2.889
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1103/PhysRevLett.125.263601
https://doi.org/10.1103/PRXQuantum.3.010201
https://doi.org/10.1103/PhysRevA.107.L051701
https://doi.org/10.1103/PhysRevLett.30.309
https://doi.org/10.1103/PhysRevLett.54.1917
https://doi.org/10.1103/PhysRevLett.76.2049
https://doi.org/10.1103/PhysRevLett.117.073002
https://doi.org/10.1038/ncomms5705
https://doi.org/10.1038/s41566-021-00770-6
https://doi.org/10.1126/sciadv.abk3160
https://doi.org/10.1038/s41567-023-02064-w
https://doi.org/10.1103/PhysRevLett.80.189
https://doi.org/10.1126/science.285.5427.571
https://doi.org/10.1038/nature10920
https://doi.org/10.1080/09500340.2012.752113
https://doi.org/10.1134/1.1469496
https://doi.org/10.1103/PhysRevLett.89.277901
https://doi.org/10.1103/PhysRevLett.91.070402
https://doi.org/10.1088/1367-2630/ab54ac
https://doi.org/10.1088/0022-3700/15/16/014
https://doi.org/10.1088/0953-4075/46/3/035503
https://doi.org/10.1103/PhysRevA.72.063809
https://doi.org/10.1103/PhysRevLett.2.262
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1038/ncomms11895
https://doi.org/10.1088/1367-2630/aaed55
https://doi.org/10.1103/PhysRevLett.124.170602


MIHAI A. MACOVEI PHYSICAL REVIEW A 110, 023712 (2024)

[37] J. Kim, S.-h. Oh, D. Yang, J. Kim, M. Lee, and K. An, A
photonic quantum engine driven by superradiance, Nat. Photon.
16, 707 (2022).

[38] S. Kamimura, H. Hakoshima, Y. Matsuzaki, K. Yoshida, and Y.
Tokura, Quantum-enhanced heat engine based on superabsorp-
tion, Phys. Rev. Lett. 128, 180602 (2022).

[39] M. A. Macovei, Performance of the collective three-level quan-
tum thermal engine, Phys. Rev. A 105, 043708 (2022).

[40] M. Kloc, K. Meier, K. Hadjikyriakos, and G. Schaller, Superra-
diant many-qubit absorption refrigerator, Phys. Rev. Appl. 16,
044061 (2021).

[41] D. Kolisnyk and G. Schaller, Performance boost of a collective
qutrit refrigerator, Phys. Rev. Appl. 19, 034023 (2023).

[42] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S.
Vinjanampathy, and K. Modi, Enhancing the charging power of
quantum batteries, Phys. Rev. Lett. 118, 150601 (2017).

[43] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M.
Polini, High-power collective charging of a solid-state quantum
battery, Phys. Rev. Lett. 120, 117702 (2018).

[44] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti,
and M. Polini, Extractable work, the role of correlations, and
asymptotic freedom in quantum batteries, Phys. Rev. Lett. 122,
047702 (2019).

[45] S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A.
Browaeys, Coherent dipole–dipole coupling between two single
Rydberg atoms at an electrically-tuned Förster resonance, Nat.
Phys. 10, 914 (2014).

[46] M. Gross, P. Goy, C. Fabre, S. Haroche, and J. M. Raimond,
Maser oscillation and microwave superradiance in small
systems of Rydberg atoms, Phys. Rev. Lett. 43, 343 (1979).

[47] T. Wang, S. F. Yelin, R. Cote, E. E. Eyler, S. M. Farooqi,
P. L. Gould, M. Kostrun, D. Tong, and D. Vrinceanu, Super-
radiance in ultracold Rydberg gases, Phys. Rev. A 75, 033802
(2007).

[48] M. Saffman, Quantum computing with atomic qubits and Ryd-
berg interactions: Progress and challenges, J. Phys. B: At., Mol.,
Opt. Phys. 49, 202001 (2016).

[49] A. Stokes and A. Nazir, A master equation for strongly inter-
acting dipoles, New J. Phys. 20, 043022 (2018).

[50] L. Hao, Z. Bai, J. Bai, S. Bai, Y. Jiao, G. Huang, J. Zhao, W.
Li, and S. Jia, Observation of blackbody radiation enhanced
superradiance in ultracold Rydberg gases, New J. Phys. 23,
083017 (2021).

[51] J. R. Ott, M. Wubs, P. Lodahl, N. A. Mortensen, and R. Kaiser,
Cooperative fluorescence from a strongly driven dilute cloud of
atoms, Phys. Rev. A 87, 061801(R) (2013).

[52] D. F. Walls and G. J. Milburn, Quantum Optics (Springer,
Berlin, 1995).

[53] R. J. Glauber, The quantum theory of optical coherence, Phys.
Rev. 130, 2529 (1963).

[54] R. J. Glauber, Coherent and incoherent states of the radiation
field, Phys. Rev. 131, 2766 (1963).

[55] R. Loudon, The Quantum Theory of Light (Clarendon, Oxford,
1983).

[56] N. Enaki and M. Macovei, Cooperative emission in the process
of cascade and dipole-forbidden transitions, Phys. Rev. A 56,
3274 (1997).

[57] R. Holzinger, M. Moreno-Cardoner, and H. Ritsch, Nanoscale
continuous quantum light sources based on driven dipole emit-
ter arrays, Appl. Phys. Lett. 119, 024002 (2021).

[58] S. Ribeiro and S. A. Gardiner, Quantum emission of light with
densely packed driven dipoles, Phys. Rev. A 105, L021701
(2022).

[59] J. Pellegrino, R. Bourgain, S. Jennewein, Y. R. P. Sortais, A.
Browaeys, S. D. Jenkins, and J. Ruostekoski, Observation of
suppression of light scattering induced by dipole-dipole inter-
actions in a cold-atom ensemble, Phys. Rev. Lett. 113, 133602
(2014).

023712-8

https://doi.org/10.1038/s41566-022-01039-2
https://doi.org/10.1103/PhysRevLett.128.180602
https://doi.org/10.1103/PhysRevA.105.043708
https://doi.org/10.1103/PhysRevApplied.16.044061
https://doi.org/10.1103/PhysRevApplied.19.034023
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1038/nphys3119
https://doi.org/10.1103/PhysRevLett.43.343
https://doi.org/10.1103/PhysRevA.75.033802
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/1367-2630/aab29d
https://doi.org/10.1088/1367-2630/ac136c
https://doi.org/10.1103/PhysRevA.87.061801
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevA.56.3274
https://doi.org/10.1063/5.0049270
https://doi.org/10.1103/PhysRevA.105.L021701
https://doi.org/10.1103/PhysRevLett.113.133602

