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Phase transitions and dynamic currents in a pseudo-Hermitian
system of coupled sites with tunable gain and loss
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The investigation of pseudo-Hermitian systems has garnered widespread attention due to their distinctive
property of purely real eigenvalues splitting into complex conjugate pairs. This transition profoundly modifies
the system’s behavior, specifically giving rise to remarkable dynamical effects. Here we explore the novel char-
acteristics of phase transitions and dynamic currents in a pseudo-Hermitian system of coupled sites with tunable
gain and loss. With tunable gain and loss, we verify that the system uniquely supports two pseudo-Hermitian
configurations, which exhibit distinct symmetries. The phase transitions from the PT -symmetric phase to the
spontaneous broken PT -symmetric phase, along with the associated high-order exceptional points (EPs), are
unambiguously demonstrated in both types of symmetry configurations. We measure the dynamic current within
the four coupled sites, which allows us to probe the EPs and phase transitions between distinct phases. Our results
offer insights into the phase transitions and dynamics of pseudo-Hermitian systems, with potential applications
in the design and manipulation of novel quantum phenomena across various fields including photonics and other
related quantum systems.
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I. INTRODUCTION

In standard quantum mechanics, observables are typi-
cally characterized by Hermitian operators. For a Hermitian
Hamiltonian, expressed as H = H†, its eigenvalues are inher-
ently real and its temporal evolution is unitary, rendering it
suitable for describing isolated systems. However, in practical
scenarios, it becomes imperative to account for the influ-
ence of the surrounding environment on the system. Under
certain circumstances, these environmental effects can be ef-
fectively captured using non-Hermitian Hamiltonians [1,2].
For instance, systems exhibiting gain or loss are frequently
described by non-Hermitian Hamiltonians, H �= H†, where
probability conservation is generally violated and the tempo-
ral evolution is nonunitary [3–6].

Nevertheless, if a non-Hermitian Hamiltonian H satisfies
the pseudo-Hermitian condition H† = ηHη−1 with η being
a linear Hermitian operator, its eigenenergy can be either
purely real or exist as complex conjugate pairs [7]. In 1998,
Bender and colleagues pointed out that a non-Hermitian
Hamiltonian possessing parity-time (PT ) symmetry can
also exhibit a completely real energy eigenvalue spectrum.
Here, P and T represent the operators of parity and time-
reversal transformations, respectively, defined as P (x →
−x, p → −p) and T (x → x, p → −p, i → −i) [8,9]. The
PT -symmetric Hamiltonian, satisfying [H,PT ] = 0, con-
stitutes a special subset of pseudo-Hermitian Hamiltoni-
ans [10]. Notably, it was later demonstrated that non-PT
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invariant systems possessing real eigenvalues are also pseudo-
Hermitian [11,12].

Pseudo-Hermitian systems exhibit a range of intriguing
behaviors [13,14], with a pivotal characteristic being the abil-
ity to induce a spontaneous PT -symmetric phase transition
by adjusting a parameter within the system. In the unbro-
ken PT symmetry phase, the system exhibits a completely
real energy eigenvalue spectrum and all eigenfunctions of
the Hamiltonian simultaneously serve as eigenfunctions of
the PT operator, signifying their PT symmetry. Conversely,
in the spontaneous broken PT symmetry phase, the energy
eigenvalue spectrum transforms into a partially or fully com-
plex spectrum with conjugate-paired eigenvalues and not all
eigenfunctions retain PT symmetry [15,16]. A phase transi-
tion occurs as the system transitions from a PT -symmetric
phase to a spontaneous broken PT -symmetric phase. This
transition is marked by the merging of two eigenvalues and
their corresponding eigenvectors, corresponding to excep-
tional points (EPs) [16–18]. The existence of a continuous set
of EPs that delineate regions with PT -symmetric phase and
spontaneous broken PT -symmetric phase are known as ex-
ceptional lines (ELs) [19]. Furthermore, the higher-order EPs
have been previously reported in pseudo-Hermitian cavity op-
tomechanical system [20,21] and cavity-magnon system [22].
In recent years, pseudo-Hermitian systems have been real-
ized in various experimental setups, such as lasers [23–25],
waveguides [26–30], microwave cavities [31,32], and optical
resonators [33,34], trapped ion [35,36], and hybrid quantum
system [37], to name a few.

The dynamics exhibited by pseudo-Hermitian systems are
distinctly characterized by the occurrence of phase transitions,
providing a deeper understanding of these systems [38,39].
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Notably, while the investigation of PT symmetry has been
studied in various complex optical structures, ongoing re-
search persists in simpler configurations, such as dimers,
trimers, and tetramers [40–42]. This focus may stem from the
fact that these PT -symmetric oligomers serve as fundamen-
tal building blocks for complex PT -symmetric structures.
Hence, elucidating the dynamics of these basic structures
holds significant practical implications [43]. Multiple re-
search teams have delved into the study of PT -symmetric
tetramer systems across diverse contexts [10,40,42,44–49],
highlighting their pivotal role. This field represents a cru-
cial extension of traditional Hermitian systems, attracting
extensive research efforts. For instance, predictions have
been made regarding the photon dynamics in optical pseudo-
Hermitian systems composed of two waveguides [50] or
two coupled cavities [51,52]. Subsequently, the dynamical
behavior of mechanical resonators was probed in a me-
chanical PT -symmetric quadruple-well hybrid optomechan-
ical system [53]. Furthermore, the experimental realization
of ultracold atoms in intricate optical lattices has been
achieved [45,54–56]. Previous investigations on wave packet
dynamics in these systems have revealed that the breaking of
PT symmetry leads to the merging of energy bands, resulting
in distinctive transport behaviors of both light and matter
waves. These behaviors include birefringence, nonreciprocal
diffraction, and bifurcation [57,58]. Additionally, reports have
documented the occurrence of Bloch oscillations in extended
PT -symmetric lattices [59] and their subsequent dynamical
behaviors [60]. Despite the recent significant advancements
in this field, there remains an urgent need for a more thor-
ough investigation of the pseudo-Hermitian characteristics
and the accompanying dynamics within more generalized four
coupled sites pseudo-Hermitian system. There remains a sig-
nificant gap in our understanding of the phase transition, EPs,
and dynamics of such system when non-Hermitian factors
such as gain or loss are introduced. Given the rapid pace
of technological development and the increasing demand for
more efficient and robust quantum devices, the need for such
a comprehensive study is both necessary and timely.

In this study, we address this knowledge gap by introducing
a four coupled sites system that incorporates distinct pairs of
gain and loss. The four coupled sites system exhibits a high
degree of symmetry, which simplifies the theoretical analysis
while retaining the essential features of pseudo-Hermitian
systems. Furthermore, such a system can be engineered to
exhibit tunable gain and loss, thereby inducing the desired
pseudo-Hermitian behavior. This makes it an excellent model
for experimentally studying the effects of pseudo-Hermiticity
in a controlled setting. Our intention is to propose a theoretical
model that captures the essential features of pseudo-Hermitian
systems and to demonstrate the generality of our findings.

Our primary focus is on exploring the phase transition and
dynamical characteristics of this system, aiming to contribute
to the understanding of non-Hermitian quantum physics.
By analytically deriving the pseudo-Hermitian condition and
considering various structures of gain and loss within the
quadruple wells, we classify the system into two distinct
configurations. The phase transitions and EPs emerge in both
types of symmetric systems, each exhibiting unique charac-
teristics. Leveraging the phase diagram of eigenenergy, we

numerically calculate the dynamic current of this quadruple-
well system, finding it amenable to predicting properties of the
energy spectrum. Our findings provide a potential avenue for
investigating the pseudo-Hermitian characteristics, encom-
passing both phase transition and EPs. This study enhances
our fundamental understanding of non-Hermitian quantum
physics.

The paper is organized as follows. In Sec. II, we introduce
the physical model of a four coupled sites system with con-
trollable gain and loss. Using the general pseudo-Hermitian
condition, we verify that the system uniquely supports two
pseudo-Hermitian configurations: Configuration A, featuring
equal-strength gain (loss) in diagonal wells, and Configuration
B, featuring equal-strength gain (loss) in adjacent wells. In
Sec. III, we study the phase transition and high-order EPs.
There are three distinct phase regions: Phase I (exact PT -
symmetric phase), Phase II (partially broken PT phase), and
Phase III (completely broken PT phase). The phase diagrams
for the two distinct configurations are obtained. Finally, we
analytically studied the dynamics of the system in Sec. IV,
derived the dynamic current, and investigated the dynamical
characteristics in different phase regions. Conclusions are pre-
sented in Sec. V.

II. PHYSICAL MODEL OF A FOUR COUPLED SITES
SYSTEM: TWO PSEUDO-HERMITIAN CONFIGURATIONS

WITH TUNABLE GAIN AND LOSS

We consider a four coupled sites system (or quadruple-
well system), where the four distinct wells are labeled as
1, 2, 3, 4, respectively. The system can exhibits two distinct
types of coupling mechanisms: the coupling strength K be-
tween first well (third well) and second well (fourth well)
and the coupling strength J between second well (first well)
and third well (fourth well). In a realistic scenario, it is cru-
cial to account for the damping within the quadruple-well
system [61]. Additionally, experimental manipulations can
introduce a gain or loss [62,63]. Consequently, we incorpo-
rate gain or loss with strength γ j into each potential well
in our theoretical model, rendering it non-Hermitian. This
non-Hermitian configuration is schematically illustrated in
Fig. 1(a). Therefore, the Hamiltonian operator for this non-
Hermitian system reads [64]

Ĥ = −K (b†
1b2 + b†

3b4 + H.c.) − J (b†
2b3 + b†

4b1 + H.c.)

+ i
4∑

j=1

γ jb
†
jb j, (1)

where b†
j (b j ) is bosonic creation (annihilation) operator and

γ j > 0 (γ j < 0) is the gain (loss) strength on the jth well. For
convenience, we set K = 1 as the energy unit hereafter.

Taking the eigenstate of each well {|1〉, |2〉, |3〉, |4〉} as the
basis vector, the quantum state of the system can be expanded
as

|ψ (t )〉 = a1(t )|1〉 + a2(t )|2〉 + a3(t )|3〉 + a4(t )|4〉, (2)

where aj (t ) ( j = 1, 2, 3, 4) are the time-dependent probabil-
ity amplitudes. The dynamics of the system can be described
by the Schrödinger equation, id|ψ (t )〉/dt = Ĥ |ψ (t )〉. Hence,
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FIG. 1. (a) Schematic diagram of the four coupled sites sys-
tem (or quadruple-well system) under consideration. The coupling
strengths between the wells are designated as K and J , while γ j

signifies the gain or loss associated with the jth well. Notably, this
system uniquely supports two distinct pseudo-Hermitian configura-
tions, each exhibiting unique symmetries as depicted in (b) and (c).
(b) In the pseudo-Hermitian configuration designated as Configura-
tion A, considers equal gain (α) and loss (−α) for the first well and
third well, and equal gain (β) and loss (−β) for the second well and
fourth well. (c) Alternatively, in the pseudo-Hermitian configuration
labeled as Configuration B, considers equal gain (α) and loss (−α)
for the first well and second well, and equal gain (β) and loss (−β)
for the third well and fourth well. These configurations highlight
the versatility and complexity of non-Hermitian quantum systems,
enabling the exploration of novel quantum phenomena and potential
applications.

we can have the coupling equation of the probability ampli-
tudes a j (t ) ( j = 1, 2, 3, 4) in each well as

i
d

dt
a1(t ) = iγ1a1(t ) − Ka2(t ) − Ja4(t ),

i
d

dt
a2(t ) = iγ2a2(t ) − Ka1(t ) − Ja3(t ),

i
d

dt
a3(t ) = iγ3a3(t ) − Ka4(t ) − Ja2(t ),

i
d

dt
a4(t ) = iγ4a4(t ) − Ka3(t ) − Ja1(t ),

(3)

which dominated by an effective non-Hermitian Hamiltonian

Heff =

⎛
⎜⎜⎝

iγ1 −K 0 −J
−K iγ2 −J 0

0 −J iγ3 −K
−J 0 −K iγ4

⎞
⎟⎟⎠. (4)

Our primary emphasis is on elucidating the pseudo-
Hermitian characteristics of this specific non-Hermitian sys-
tem. It is a well-documented fact that any pseudo-Hermitian
Hamiltonian exhibits eigenvalues that are either strictly real or
exist as complex conjugate pairs [12,65,66]. Given this funda-
mental property, we proceed to analyze the secular equations,
specifically expressed as Det(Heff − λI) = 0, i.e.,

∣∣∣∣∣∣∣∣
iγ1 − λ −K 0 −J

−K iγ2 − λ −J 0
0 −J iγ3 − λ −K

−J 0 −K iγ4 − λ

∣∣∣∣∣∣∣∣
= 0, (5)

and the complex conjugate expression Det(H∗
eff − λI) = 0,

i.e.,∣∣∣∣∣∣∣∣
−iγ1 − λ −K 0 −J

−K −iγ2 − λ −J 0
0 −J −iγ3 − λ −K

−J 0 −K −iγ4 − λ

∣∣∣∣∣∣∣∣
= 0, (6)

should yield the same roots. Here, I represents the identity
matrix. By expanding the determinants in Eq. (5) and Eq. (6)
and subsequently comparing their respective coefficients, we
deduce that the system parameters adhere to the following
constraints:

γ1 + γ2 + γ3 + γ4 = 0,

γ1γ2γ3 + γ1γ2γ4 + γ1γ3γ4 + γ2γ3γ4 = 0. (7)

Hence, the non-Hermitian system described by Eq. (1) ought
to fulfill the universal pseudo-Hermitian condition, which is
formulated as follows:

γi = −γ j = α

γk = −γl = β
(i �= j �= k �= l ). (8)

The constraint condition Eq. (8) necessitates the equilibrium
between the total gain and total loss within the system. Guided
by the derived pseudo-Hermitian condition Eq. (8), we strate-
gically introduce gain and loss pairs at distinct sites of the
quadruple-well system. Consequently, the system can be cat-
egorized into two distinct scenarios, depicted in Figs. 1(b)
and 1(c), respectively labeled as Configuration A and Con-
figuration B, based on their unique symmetry configurations.

In the pseudo-Hermitian configuration designated as Con-
figuration A, as schematically illustrated in Fig. 1(b), identical
gain and loss are imposed on opposing wells, respectively.
Specifically, this involves introducing equal gain (α) and loss
(−α) in the first well and third well, respectively, while ap-
plying equivalent gain (β) and loss (−β) in the second well
and fourth well, respectively. Consequently, the Hamiltonian
can be reformulated to reflect these specific gain and loss
configurations,

H (1)
eff =

⎛
⎜⎜⎝

iα −K 0 −J
−K iβ −J 0

0 −J −iα −K
−J 0 −K −iβ

⎞
⎟⎟⎠. (9)

It is obvious that this Hamiltonian is pseudo-Hermitian and
satisfies PT symmetry, whose P operator is [67]

P (1) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠. (10)

The time-reversal operator T is the complex conjugation op-
eration defined as T iT −1 = −i.

Meanwhile, in the pseudo-Hermitian configuration desig-
nated as Configuration B, schematically depicted in Fig. 1(c),
identical gain and loss are imposed on adjacent wells, re-
spectively. Precisely, this involves introducing equal gain (α)
and loss (−α) in the first well and second well, respec-
tively, while applying equivalent gain (β) and loss (−β) in
the third well and fourth well, respectively. Notably, even in
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this configuration, the system retains its pseudo-Hermitian
and PT -symmetric properties, which can be expressed
mathematically as

H (2)
eff =

⎛
⎜⎜⎝

iα −K 0 −J
−K −iα −J 0

0 −J iβ −K
−J 0 −K −iβ

⎞
⎟⎟⎠. (11)

The P operator for Eq. (11) is shown as [67]

P (2) =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (12)

These configurations highlight the versatility and complexity
of non-Hermitian quantum systems, enabling the exploration
of novel quantum phenomena and potential applications.

III. PHASE TRANSITIONS
IN PSEUDO-HERMITIAN SYSTEMS

A. Three phases

We now turn our attention to the phase transitions
supported by the non-Hermitian system in the two pseudo-
Hermitian configurations, namely Configuration A and Con-
figuration B. Our focus is particularly on the influence
of symmetry on these phase transitions. For the pseudo-
Hermitian configurations in both the Configuration A and the
Configuration B, the eigenvalues of the respective systems for
these two scenarios are expressed as follows:

E = ±
√

�1 ± √
�2

2
. (13)

The eigenvalues of the system in both Configuration A and
Configuration B are parameterized by �1 and �2, which are
defined as follows: for Configuration A, �1 = 2J2 + 2K2 −
α2 − β2 and �2 = [4K2 − (α − β )2][4J2 − (α + β )2]; while
for Configuration B, �1 = 2J2 + 2K2 − α2 − β2 and �2 =
4J2[4K2 − (α − β )2] + (α2 − β2)2. Both �1 and �2 encom-
pass the entirety of the system’s parameters, comprehensively
reflecting their collective influence on the eigenvalues.

Based on Eq. (13), the system under investigation can be
systematically classified into three distinct phases, each char-
acterized by the interplay of two independent parameters, �1

and �2. Figure 2 presents a clear demarcation of these three
phases on the (�1,�2) parameter plane, offering a compre-
hensive visualization of the system’s phase diagram. (i) Phase
I representing exact PT -symmetric phase, where �2 > 0 and
�1 >

√
�2, all four energy levels are real. (ii) Phase II defin-

ing partially broken PT -symmetric phase, where �2 > 0 and
�2

1 < �2, two energy levels are real (±
√

�1 + √
�2), while

the other two form a conjugate pair (±
√

�1 − √
�2). (iii)

Phase III corresponding to completely broken PT -symmetric
phase, where �2 < 0 or �1 < 0 and �2

1 > �2 > 0, all four
energy levels exhibit conjugate pairs. The intricate structure
of eigenvalues, as described by Eq. (13), demonstrates the
profound impact of gain and loss on the system’s eigenvalue
landscape.

FIG. 2. The three distinct phases on the parameter plane
(�1, �2). When �2 > 0 but with �1 >

√
�2, all four energy levels

are purely real, representing the exact PT -symmetric phase, labeled
as Phase I. Conversely, for �2 > 0 and �2

1 < �2, two energy levels
remain real, whereas the remaining two form a complex conjugate
pair, signifying the partially broken PT -symmetric phase, denoted
as Phase II. Lastly, for the conditions �2 < 0 or �1 < 0 with �2

1 >

�2 > 0, all four energy levels exhibit two complex conjugate pairs,
representing the completely broken PT -symmetric phase, labeled as
Phase III. The two solid blue lines correspond to exceptional lines
(ELs) that are comprised of a series of second-order exceptional
points (EP2). Notably, Phase III is further subdivided by a green
dashed line (�2 = 0, �1 < 0) into Phase IIIa and Phase IIIb based
on whether the real parts of the conjugate pairs are nonzero or zero,
by the green dashed line.

The symmetry exhibited by the energy spectrum of the
system around zero energy is intimately linked to the presence
of a PT symmetric traceless matrix. To provide a clearer
understanding of the system’s phase transition, we have the-
oretically calculated and presented in Fig. 3 the real (Er) and
imaginary (Ei) parts of the eigenvalues in Configuration B.
In this scenario, the prescribed gain and loss are applied to
the first well and second well, while the third well and fourth
well possess equal and adjustable gain or loss. As the gain or
loss parameter (β) traverses from −3 to 3, the characteristics
of the system’s four energy levels undergo transformations,
signifying the occurrence of a phase transition within the
system. Figure 3 illustrates the energy spectrum diagram for
distinct phase regions, highlighting the system’s operation in
three distinct phases. The solid blue line, dashed cyan line,
dashed purple line, and dashed red line represent the four
energy levels. The blue region corresponds to the exact PT -
symmetric phase, characterized by an entirely real spectrum
(Phase I). The pink region represents the partially broken PT -
symmetric phase, featuring one pair of conjugate energy levels
(Phase II). Finally, the red region signifies the completely
broken PT -symmetric phase, encompassing two pairs of con-
jugate energy levels (Phase III). Furthermore, the parameter
space of β is partitioned into three sections. Notably, there
exist second-order exceptional points (EP2) and fourth-order
exceptional points (EP4), which correspond to the coalescing
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FIG. 3. The real (a) and imaginary (b) parts of the eigenvalue
as a function of β for the pseudo-Hermitian configurations within
Configuration B. The distinct regions represented by the blue, red,
and pink areas correspond to the exact PT -symmetric phase (labeled
as Phase I), the partially broken PT -symmetric phase (labeled as
Phase II), and the completely broken PT -symmetric phase (labeled
as Phase III), respectively. Here, as examples, the parameters are set
to K = J = 1, α = 0.657.

of two and four energy levels, respectively. These EPs mark
critical transitions within the system’s phase structure.

B. Comparing phase transitions of two pseudo-Hermitian
configurations with distinct symmetry

We now undertake a comparative analysis of phase transi-
tions in two pseudo-Hermitian configurations (Configuration
A and Configuration B), each exhibiting distinct symmetries.
By scrutinizing the inherent characteristics of each config-
uration, our objective is to gain a profound understanding
of the underlying mechanisms that govern these transitions.
Thereby enhancing our understanding of the intricate inter-
play between symmetry, coupling, and phase transitions in
non-Hermitian quantum systems.

Herein, we meticulously illustrate the phase transitions
exhibited by two distinct pseudo-Hermitian configurations,
namely Configuration A and Configuration B, across the com-
prehensive parameter space (J, α, β). Utilizing the real and
imaginary components of the system’s eigenvalues, the entire
parameter space is meticulously partitioned into three regions:
I, II, and III. These regions are characterized by their unique
eigenspectra: Region I features four fully real eigenvalues,
signifying the exact PT -symmetric phase; Region II displays

FIG. 4. Phase diagrams on the parameter plane (J, β) for two
distinct pseudo-Hermitian cases exhibiting different symmetry con-
figurations, as depicted in (a) for Configuration A and (b) for
Configuration B, respectively. These phase diagrams reveal three
distinct phases that are clearly delineated by a series of exceptional
lines, which correspond to EP2. Notably, the intersection points of
two such exceptional lines represent EP4. It is evident that there are
significant differences between the pseudo-Hermitian scenarios with
different symmetry configurations. Regions I, II, and III are the exact
PT -symmetric phase, the partially broken PT -symmetric phase,
and the completely broken PT -symmetric phase, respectively. The
blue solid curve represents the EP2 with one defective eigenstate,
the purple solid and the green dashed curves indicate the EP2 with
two defective eigenstates; the dashed green curve divides region III
into two subregions IIIa and IIIb, where the real part of eigenvalues
are nonzero and zero. The red cross marks the higher order EP4,
indicating that the intersection of two types of EP2 curves. Here, the
parameters α = 0 and K = 1.

two real and two pure imaginary eigenvalues, indicative of the
partially broken PT -symmetric phase; and Region III exhibits
four complex eigenvalues, marking the completely broken
PT -symmetric phase.

It is noteworthy that within Region III, there may exist sub-
regions characterized by either four purely complex spectra
or four purely imaginary spectra. For the sake of clarity and
discussion, these subregions are designated as Phase IIIa and
Phase IIIb, respectively. The boundaries demarcating these
phase regions are determined by Eq. (13), which defines the
exceptional lines. These lines encompass EP2, and the inter-
section of two such ELs represents an EP4, a higher-order
exceptionality.

In Fig. 4, the phase diagrams are plotted on the parameter
plane (J, β) for two distinct pseudo-Hermitian configurations,
each exhibiting unique symmetry configurations. Specifically,
Fig. 4(a) represents Configuration A while Fig. 4(b) corre-
sponds to Configuration B. These diagrams clearly depict
three distinct phases, delineated by a series of ELs that cor-
respond to EP2. Notably, the intersection points of two such
ELs represent EP4, a higher-order exceptional point. The ex-
ceptional curves demarcate the transitions between distinct
phases. Specifically, the purple solid line and green dashed
line correspond to �2 = 0 in Eq. (13), signifying the emer-
gence of a pair of two-state merging EP2. These lines serve
as the boundary separating regions I and III, where the PT
symmetry is broken in zone III. The green dashed curve,
in particular, designates the dividing line between regions
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characterized by complex and purely imaginary eigenvalues
in Fig. 4(a).

In Fig. 4(b), the blue solid curve results from the condi-
tion �2

1 = �2, which marks the presence of another two-state
EP2. This curve defines the transition from the PT -symmetric
phase in region I to the partially broken PT -symmetric phase
in region II. The red cross indicates the intersection point of
two exceptional curves, representing the coalescence of two
pairs of two-state energy levels into a single EP4. By leverag-
ing the phase diagram depicted in Fig. 4, we are able to predict
the critical conditions for the existence of PT -symmetric and
broken PT -symmetric phases within the pseudo-Hermitian
model. This analysis provides a comprehensive understanding
of the phase transitions and EPs in this non-Hermitian quan-
tum system.

For Configuration A, the critical points for the phase tran-
sition between real spectra and complex spectra are given by
�2 = 0 (PT broken phase transition point). For α = 0 [as
shown in Fig. 4(a)], which can be expressed as

β
(1)
c1 = ±2J (or = ±2K ). (14)

When β reaches the critical value of βc1, the system enters an
EP2 state, exhibiting a pair of two-state coalescence. In this
state, the central two levels merge, resulting in the emergence
of two defect eigenstates. The spectrum of these eigenstates
consists of merged conjugate pairs. Notably, under the condi-
tion J = Jc1 = K , the critical value of βc1 is given by ±2K .
When this condition is satisfied, all four levels of the system
coalesce, indicating that the system transitions to an EP4 state.
On the other hand, when �2

1 = �2 �= 0, the equation lacks
a solution. Consequently, the system in the Configuration A
does not exhibit a phase transition boundary between fully
real spectra, partially real spectra, and partially real spectra
merging with fully complex spectra. As a result, the system
lacks a Phase II in this scenario.

For Configuration B, the phase transition between real and
complex spectra is also characterized by critical points derived
from the condition �2 = 0. Specifically, considering the case
where α = 0 as depicted in Fig. 4(b), the critical points are
expressed as

β
(2)
c1 = ±

√
2
√

J2 ±
√

J2(J2 − 4K2). (15)

When J attains the critical value of Jc1 = 2K , a remarkable
phenomenon occurs: the four energy levels coalesce, indicat-
ing that the system transitions to an EP4 state. On the other
hand, when �2

1 = �2 �= 0, a distinct behavior is observed. In
this scenario, the two central energy levels merge at E = 0,
signifying the emergence of an EP2 state with two-state co-
alescence. This state is accompanied by the presence of a
defective eigenstate. Furthermore, the critical conditions for
the balance between gain and loss are given by

β
(2)
c2 = ±J2 − K2

K
. (16)

Notably, when J attains another critical value of Jc2 = K , the
four energy levels once again coalesce, signifying that the
system transitions to an EP4 state. These findings provide
crucial insights into the phase behavior and critical conditions
of the system in Configuration B.

Next, we delve into the scenario where α �= 0. In this
scenario, all four wells of the system experience either gain or
loss. To gain insights into the system’s behavior, we present
phase diagrams in the (α, β) parameter plane for both Config-
uration A (top row) and Configuration B (bottom row). These
diagrams are plotted for various values of J (ranging from
J = 0.5, J = 1, to J = 2, from left to right). The phase di-
agram regions depicted in these figures exhibit similarities to
those shown in Fig. 5. The curves within these diagrams repre-
sent boundaries that delineate distinct phases. Specifically, the
green and blue curves correspond to �2 = 0, signifying the
occurrence of a pair of two-state coalescences in an EP2 state.
Furthermore, the solid blue curve indicates �2

1 = �2, which
represents the merging of two states in an EP2 state. Crucially,
the intersections of these curves represent EP4 states, marking
points where the system exhibits a higher-order EP. These
phase diagrams provide a comprehensive understanding of
the system’s behavior in the presence of gain and loss and
highlight the critical conditions leading to different types of
EPs.

The critical conditions for phase transitions can be derived
for both Configuration A and Configuration B. In the Config-
uration A, the transition between the real and complex spectra
occurs precisely when �2 = 0. This condition translates to the
following critical points:

β
(1)
c1 = ±2J − α, and ± 2K + α. (17)

At this critical point, the system enters an EP2 state, charac-
terized by a pair of two-state coalescences. This coalescence
results in the merging of the two spectra above and below
the critical point, leading to the emergence of two defective
eigenstates with a spectrum consisting of a merged conjugate
pair. Notably, in this scenario, the system does not exhibit a
Phase II, as evident in Figs. 5(a)–5(c).

On the other hand, when �2
1 = �2 �= 0, a unique phe-

nomenon occurs. The two central energy levels converge at
E = 0, creating a two-state merging EP2 system. This merg-
ing is accompanied by the emergence of a defect eigenstate.
The critical gain and loss parameters that satisfy this condition
are given by

β
(1)
c2 = −K + J2

K + α
, and K + J2

−K + α
. (18)

For the Configuration B, the equation governing the critical
curves is more intricate. Therefore, we omit the explicit form
here but emphasize that similar critical conditions exist in this
model, albeit with a more involved mathematical description.
However, it is worth noting that the analysis of these critical
conditions provides crucial insights into the phase transitions
and EPs behavior in non-Hermitian quantum systems.

IV. DYNAMIC CURRENT
OF PSEUDO-HERMITIAN SYSTEM

In this section, we systematically investigate the dynamics
within pseudo-Hermitian systems, focusing particularly on
elucidating the dynamical characteristics across distinct phase
regions.
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FIG. 5. Phase diagram in the parameter space (β, α) is presented for both Configuration A (top panel) and Configuration B (bottom
panel). The regions labeled as I, II, IIIa, and IIIb correspond to the phases indicated in Fig. 4, ensuring consistency in notation. Notably, the
intersection points discernible within these diagrams signify the presence of an EP4. At these precise intersections, the matrix possesses a
single eigenvector. The parameters used in the diagrams are J = 0.5 for (a), (d), J = 1 for (b), (e), and J = 2 for (c), (f), respectively. These
phase diagrams provide a comprehensive understanding of the system’s behavior across different parameter ranges in both Configuration A
and Configuration B. Here, the parameter K = 1.

A. Probability amplitudes in distinct phases

Both Configuration A and Configuration B possess linear
characteristics, allowing for analytical solutions. The prob-
ability amplitudes, as defined in Eq. (2), can be derived
by incorporating their respective initial conditions. Assum-
ing an initial preparation in the first well, i.e., |ψ (0)〉 =
[1, 0, 0, 0]T , the analytical expressions for the probability
amplitudes in both Configuration A and Configuration B are
detailed in Appendix. Additionally, numerical solutions of
Eq. (3) can be obtained, providing further insights into the
system’s dynamics. Consequently, the population distribution
within the system is visualized in Fig. 6.

Initially, a loss and a gain are imposed on the first well and
second well, respectively, with β set to 3. In this configuration,
the system resides in the completely broken PT -symmetric
Phase IIIb. As β is gradually incremented, the system tran-
sitions to Phase IIIa. However, it should be noted that the
dynamics in both these phases remain unstable and divergent.
This instability stems from the fact that Phase IIIb exhibits
a purely imaginary energy spectrum, causing exponential di-
vergence [shown in Fig. 6(a)], whereas Phase IIIa possesses a
complex conjugate pair of eigenvalues, leading to oscillatory
divergence [as shown in Fig. 6(b)].

A significant transition occurs when β reaches 1, marking
the transition to the exact PT -symmetric Phase I. Within this
phase, the system exhibits stable dynamics, oscillating in a
quasiperiodic manner as depicted in Fig. 6(c). Of particular
interest is the propagation characteristics within the partially

broken PT -symmetric phase. Here, a key feature is the expo-
nentially growing dynamics superimposed with oscillations,
stemming from the imaginary and real parts of the eigenval-
ues, respectively, as evident in Fig. 6(d).

The aforementioned analysis underscores the potential of
engineering PT symmetry for quasistable propagation of
appropriately emitted wave packets. Even in the stationary
dynamics of the PT -broken phase, such propagation can be
parametrically tuned based on the choice of loss-gain pa-
rameters. This tunable nature offers intriguing possibilities
for controlling and manipulating quantum systems in non-
Hermitian settings.

B. Dynamic current in distinct phases and EPs

Here, we derive an expression for the dynamic current cir-
culating around the four-site loop, as schematically illustrated
in Fig. 1(a). Employing the continuity equation at each site
within the four-potential well system, we obtain the relevant
expression for the current flow. Notably, the specific form of
the continuity equation at the nth site involves the intricate
interplay between the wave functions and their associated
dynamics [68,69], leading to the expression,

∂t (b
†
nbn) = i[b†

nbn, Ĥ ] = In,n+1 − In−1,n, (19)

where the Hamiltonian operator Ĥ is given by Eq. (1). This
expression encapsulates the essential physics governing the
current flow within the four-site loop and serves as a crucial
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FIG. 6. The dynamics of probability amplitudes |aj (t )|2 ( j =
1, 2, 3, 4) in each well within the pseudo-Hermitian Configuration
B. Specifically, (a), (b), (c), and (d) present the temporal evolution
of these amplitudes in Phase IIIb, Phase IIIa, Phase I, and Phase II,
respectively, corresponding to distinct values of β (−3,−2, −0.8,
and 1). The other relevant parameters are fixed at K = J = 1, and
α = 1. The lines and points depicted in the figure represent the nu-
merical and analytical results, respectively, and they align perfectly
with each other, validating the consistency of our calculations and
the accuracy of our methods. This comprehensive analysis allows for
a deeper understanding of the dynamical characteristics in different
phase regions within the pseudo-Hermitian framework.

component in our analysis. In Eq. (19), we have introduced
the local dynamic current operator In,n+1, which accounts for
the transfer of excitations between two adjacent sites n and
n + 1 (we assume modular arithmetic for the site numbers),

In,n+1 = −ig(b†
nbn+1 − b†

n+1bn), (20)

where g is the coupling strength between well, for example,
g = K for n = 1, 3 and g = J for n = 2, 4. Here, we have
used cyclic boundary conditions, corresponding to the quadri-
lateral geometry sketched in Fig. 1(a).The bosonic creation
(annihilation) operators of the system are denoted by b†

n (bn),
and b5 = b1. Similarly, the dynamic particle current operator
of the system can be defined as

I = I1,2 + I2,3 + I3,4 + I4,1. (21)

Notably, the particle current definition of Eq. (19) does not
explicitly depend on the loss and gain in the system, instead,
these features enter the consideration indirectly through the
operators a∗

nan+1. We denote the dynamic current of the whole
system as

〈I〉 = −iK[a2(t )a∗
1(t ) + a4(t )a∗

3(t ) − c.c.]

− iJ[a1(t )a∗
4(t ) + a3(t )a∗

2(t ) − c.c.]. (22)

Hence, the dynamic current I in different phases of the
PT -symmetric quadruple-well potential can be obtained by

FIG. 7. The dynamic current I in the Hermitian scenario
(α = β = 0). The red solid, blue dashed, and magenta dotted curves
for J = 0.5, J = 1, and J = 2, respectively.

numerical and analytical methods according to the dynamics
of the system.

For comparative purposes, in Fig. 7, we initially illus-
trate the dynamic current in the Hermitian scenario, where
(α = β = 0). Under this condition, the dynamic current ex-
hibits periodic characteristics, and the time-averaged current
is zero. The direction of the dynamic current is determined
by the magnitudes of K and J . Specifically, when (J < K)
(for instance, (J = 0.5), the dynamic current proceeds in a
clockwise direction. Conversely, for (J > K) [i.e., (J = 2)],
the current is counterclockwise. Notably, when (J = K), the
dynamic current fails to form. These observations provide a
basis for effectively regulating the periodicity, amplitude, and
direction of the dynamics.

Now, we turn our attention to exploring the dynamic
current in the non-Hermitian scenario. To elucidate the dis-
tinguishing features of the dynamical current I in Phase I,
particularly its dependence on the parametric gain and loss
strengths, as well as the coupling strength, we direct our
attention to the parameter space within the phase diagram of
Configuration A, prominently displayed in the top panel of
Fig. 5. The manifestation of the dynamical current I in Phase
I is illustrated in Fig. 8. By modulating the gain-loss intensity
β in the second and fourth wells, while keeping constant the
loss-gain parameter α in the first and third wells, as well as
the coupling strength J , we observe that the system operates
within Phase I. In this regime, the dynamical current exhibits
quasiperiodic oscillatory patterns, with a notable increase in
the amplitude of these oscillations as the gain-loss intensity
β is progressively enhanced. This phenomenon is clearly
demonstrated in Fig. 8(a). The time-averaged current in the
exact PT symmetric phase is close to zero.

Meanwhile, the current is a function of coupling amplitude
J . Here, the gain-loss parameters α and β are fixed and the
system works in Phase I. Hence, the dynamic current under
different coupling J is obtained in Fig. 8(b). At first, the
coupling will not change the quasiperiodicity regardless of the
coupling J , but the strong coupling will protect the periodicity
of the dynamic current shown in Fig. 8(b). The amplitude of
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FIG. 8. The dynamic current I in the exact PT symmetric phase.
(a) The dynamic current I for various values of β, while fixing
α = 0.5 and J = 1. The red solid, blue dashed, and magenta dot-
ted curves for β = 0.3, β = 0.8, and β = 1.2, respectively. (b) The
dynamic current I for various values of coupling J , while fixing α =
0.0 and β = 0.5. The red solid, blue dashed, and magenta curves,
and orange dashed for J = 0.5, J = 0.8, and J = 1.0, and J = 2.0,
respectively.

dynamic current will decrease with the increment of coupling
J also. For example, J < 1, the dynamic current direction
is shifted in the negative direction, and J > 1, the current
direction is offset in the positive direction. Note that when
α = β (α = −β), the dynamic current is evenly distributed
between the positive and negative ends of the axis without
offset. Therefore, the current in Phase I is stable and quasiperi-
odic shown in Fig. 8. The peak value of the current increases
with the increase of β, and the larger the value of J , the smaller
the peak value of the current. The oscillation period is not
affected by the coupling parameter J .

The dynamic current in the partially broken PT -symmetric
phase is also an important aspect of this system. When we take
values of α and β in the Phase II region in Figs. 5(e) and 5(f).
Figure 9 shows that the dynamic current is unstable and the
size of the dynamic current increases exponentially with time.
Larger gain or loss strength and coupling strength lead to
a faster change rate of current. When J � 1, the direction
of dynamic current in Phase II region is directly related to
the phase diagram region. It is worth mentioning that when

FIG. 9. Dynamic current I as a function of time t , in the partially
broken PT -symmetric phase example with Configuration B. (a)
J = 1 and α = 0.5, the dashed blue line is β = 2, and the solid red
line is β = 2. (b) J = 1

2 , the solid red line is α = 0.5 and β = −2,
the dashed blue line is α = 0.5 and β = 2, the dotted magenta line
is α = −0.5 and β = −2, and the dotted green line is α = −0.5 and
β = 2.

J = β = α = 1, the dynamic current is always equal to zero.
In the phase figure Fig. 5(e), we take the diagonal line α = β

as the boundary and take the value above the diagonal bound-
ary, and the direction of the current is positive (clockwise
along the well 1 → 2 → 3 → 4). For example, when β = 2,
the corresponding blue solid line is shown in Fig. 9(a). When
α and β are below the diagonal line, the dynamic current is
negative (counterclockwise along the well 4 → 3 → 2 → 1).
For example, when β = −2, the corresponding red dashed
line is shown in Fig. 9(a). It is worth noting that when J < 1,
the direction of the current is not directly related to the phase
diagram region, but only shows correlation in some regions
shown as Fig. 9(b). Taking the system in Fig. 5(f) for example,
here, J = 1

2 , and others are selected as α = 0.5, β = ±2 and
α = −0.5, β = ±2 for dynamic current, respectively. Hence,
the direction of the current is not uniform shown in Fig. 9(b)
above the diagonal α = β in the phase diagram Fig. 5(f). This
is not consistent with the result for J � 1.

When the system works in region Phase III, the dynamic
current is in Fig. 10, we depict the dynamics current I of the
system when it is in the PT symmetry fully broken Phase
III. Obviously, it shows a completely different behavior com-
pared with the case in the PT -symmetric phase. As shown in
Fig. 10(a), when α = 2, β = −2, the system has four complex
energy eigenvalues, and in general, the eigenstate strength
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FIG. 10. Dynamic current I as a function of time t , in the com-
pletely broken PT -symmetric phase for Configuration B. (a) Log
image of the current over time in region Phase IIIa with α = 2 and
β = −2. The part where the red solid line and the blue dashed
line coincide means that the direction of the current is positive, and
only the blue dashed line means that the direction of the current is
negative. (b) Dynamic current as a function of time in region Phase
IIIb, the solid blue line is α = −4 and β = −2, the dashed red line is
α = 4 and β = 2. Other parameters J = 1.

increases and oscillates with time. The oscillation is caused
by four distinct eigenstates (with a real energy part), while the
increase in intensity is caused by having an intrinsic energy
(with an imaginary energy part). As a result, the dynamic
current in the Phase IIIa is oscillatory and the amplitude of
the oscillations gradually increases over time.

As shown in Fig. 10(a), the overlap of the red and blue
dashed lines represents the positive dynamic current, while
only the blue dashed line represents the negative. In region
Phase IIIb, the current variation characteristics are the same
as in region Phase II. If two set parameters α = 4, β = 2 and
α = −4, β = −2 are set, the dynamic current is presented in
Fig. 10(b).

The examination of the dynamic current at EP is crucial for
understanding the system’s behavior in non-Hermitian quan-
tum physics. Figure 11 illustrates the distinct characteristics
of the dynamic current at EP. In the PT -symmetric phase,
the dynamic current exhibits quasiperiodic oscillations, in-
dicative of the system’s stability. Conversely, in the broken
PT -symmetric phase, the current diverges with monotone
exponential growth, reflecting the system’s instability.

Notably, within the complex energy spectrum (Phase IIIa),
the dynamic current not only diverges but also oscillates,

FIG. 11. The dynamic current behavior at EPs. (a) EP2 for tran-
sition from Phase I to Phase II (taking α = −1, β = 0.5 as an
example). (b) EP4 for transition from Phase I to Phase IIIb (taking
α = 0, β = 2 as an example). (c) EP2 for transition from Phase I
to Phase IIIa (taking α = −1, β = 1 as an example). The coupling
parameter J = 1. These figures provide a comprehensive overview
of the dynamic current’s behavior at EPs, illustrating how it varies
across different phase transitions and parameter settings.

demonstrating a unique combination of behaviors. As the EP
is approached, the branches of the spectrum coalesce, ulti-
mately becoming pairwise doubly degenerate at the EP. This
degeneracy is characterized by a single oscillation frequency,
underlying the system’s unique dynamical response.

At the EP, where exponential growth and oscillation over-
lap (transitions from Phase I to Phase II and from Phase I
to Phase IIIb), the rapid oscillation persists. However, the
negative imaginary part of the energy spectrum introduces
an exponential growth component to the dynamic current.
This combined behavior is clearly observed in Figs. 11(a)
and 11(b), where the exponential growth of the oscillation is
evident.

In contrast, within the complex energy spectrum Phase IIIa,
the dynamic current oscillates rapidly, and its amplitude in-
creases significantly, as depicted in Fig. 11(c). This increase in
amplitude highlights the enhanced oscillatory behavior in this
phase, providing further insights into the system’s dynamics
in the presence of an EP. The analysis of the dynamic current
at EPs offers a comprehensive understanding of the system’s
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behavior in different phases, particularly in the complex en-
ergy spectrum, where the interplay between oscillation and
exponential growth is pronounced.

It is imperative to clarify that the characteristics of the
dynamic current in the same phase, regardless of the two
pseudo-Hermitian scenarios, are indeed congruous. Conse-
quently, in the aforementioned context, we have chosen to
exemplify only one of the two pseudo-Hermitian scenarios.

V. CONCLUSIONS

We delved into the intricate behavior of a non-Hermitian
quadruple-well potential. By introducing two pairs of gain
and loss mechanisms, we have unlocked additional degrees of
freedom that significantly enhance our ability to manipulate
PT phase transitions and engender higher-order EPs. Excep-
tional points are significant in non-Hermitian systems and can
lead to unique physical phenomena [29]. The occurrence of a
third-order EPs for a pseudo-Hermitian cavity optomechan-
ical system has been explored [20,21]. A pivotal aspect of
our investigation lies in the derivation of a universal pseudo-
Hermitian condition for this quadruple-well potential system.
We definitively establish that the system uniquely supports
two distinct pseudo-Hermitian configurations, each exhibiting
distinct symmetries. This condition serves as a gateway to
understanding how such a non-Hermitian system can exhibit
both PT -symmetric and broken PT -symmetric behaviors,
along with the occurrence of high-order EPs (EP4), in both
configurations.

When considering symmetric wells with identical gain or
loss characteristics, our analysis reveals that the system is
confined to displaying exactly PT -symmetric phase (Phase I),
characterized by entirely real eigenvalues, or completely bro-
ken PT -symmetric phase (Phase III), marked by the presence
of solely complex eigenvalues. However, the situation be-
comes far more intricate when adjacent wells share the same
gain or loss. In such scenarios, the system not only manifests
the aforementioned exactly PT -symmetric and completely
broken PT -symmetric phases but also exhibits an interme-
diary phase (Phase II), distinguished by the coexistence of
two real eigenvalues and a pair of complex conjugate imag-
inary eigenvalues. Crucially, the phase regions of the system
can be meticulously classified based on the spectra of the
real and imaginary components of the Hamiltonian’s eigen-
values. This classification provides a comprehensive road
map for understanding the system’s behavior across different

parameter configurations. Furthermore, by presenting phase
diagrams encompassing the entire parameter space, we offer
a comprehensive visualization of how coupling constants and
gain or loss intensities influence PT phase transitions.

Moreover, our investigation extends to the dynamic cur-
rents in proximity to various phase regions and EPs. In the
precisely PT -symmetric phase (Phase I), we observe stable
quasiperiodic oscillations, reflecting the system’s robustness
against perturbations. In contrast, broken PT -symmetric
phase (Phase III) exhibit a more complex dynamical land-
scape, with stable oscillations coexisting with exponential
growth, driven by the real and imaginary parts of the energy
levels, respectively. Finally, in the completely broken PT -
symmetric phase, Phase IIIa displays exponentially increasing
oscillations, while Phase IIIb is characterized by an even more
drastic exponential divergence. The dynamic current exhibited
at EPs demonstrates distinctive behavior during transitions
between various phases. We should emphasize that the var-
ious dynamic currents arise without imparting nonreciprocal
characteristics to the system. This observation highlights the
profound influence of gain and loss on the system’s dynamics,
encompassing even nonreciprocal transport phenomena. This
intriguing phenomenon holds immense potential for practi-
cal applications and has garnered considerable attention. For
instance, recent studies have focused on the nonreciprocal
transport with imbalanced on-site gain and loss [70,71]. The
intricate interplay between gain, loss, phase transitions, and
dynamics elucidated in this study deepens our understand-
ing of non-Hermitian quantum systems, while also offering
valuable insights into the design and manipulation of novel
quantum phenomena in various fields including photonics and
quantum systems.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (Contracts No. 12005173 and No.
12365004) and by the Natural Science Foundation of Gansu
Province (Contract No. 20JR10RA082).

APPENDIX: ANALYTICAL SOLUTION
OF PROBABILITY AMPLITUDES

The analytical solutions of Eq. (2) in Configuration A un-
der the initial condition |ψ (0)〉 = [1, 0, 0, 0]T is expressed
as

a1(t ) = (C4 − C1) sinh(θ1) + (C3 − C2) sinh(θ2) + (C1 + C4) cosh(θ1) + (C2 + C3) cosh(θ2),

a2(t ) = iK (α + β )

B
[cosh(θ1) − cosh(θ2)] + D1 sinh(θ1) + D2 sinh(θ2), a3(t ) = (2JK )

B
[cosh(θ2) − cosh(θ1)],

a4(t ) = iJ (α − β )

B
[cosh(θ1) − cosh(θ2)] + D3 sinh(θ1) + D4 sinh(θ2).

Here A = α2 + β2 − 2J2 − 2K2, B =
√

4J2 − (α + β )2
√

4K2 − (α − β )2, θ1 = t
√

A+B√
2

, θ2 = t
√

A−B√
2

,

C1 = (
√

2
√

A + B − 2α)(α2 − β2 + B) + 4J2(α − β ) + 4K2(α + β )

4B
√

A + B
,

C2 = (2α − √
2
√

A − B)(−α2 + β2 + B) + 8J2(α − β ) + 8K2(α + β )

4B
√

A − B
,
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C3 = (2α + √
2
√

A − B)(−α2 + β2 + B) + 4J2(α − β ) + 4K2(α + β )

4B
√

A − B
,

C4 = (2α + √
2
√

A + B)(α2 − β2 + B) − 4J2(α − β ) − 4K2(α + β )

4B
√

A + B
,

D1 = iJ ((α − β )2 + B − 4K2)√
2B

√
A + B

, D2 = iJ (−(α − β )2 + B + 4K2)√
2B

√
A − B

,

D3 = iK ((α + β )2 + B − 4J2)√
2
√

A + B
, D4 = iK (−(α + β )2 + B + 4J2)√

2B
√

A − B
.

Meanwhile, the analytical expression of Eq. (2) under Configuration B are given by

a1(t ) = (C′
1 − C′

4) sinh(θ ′
1) + (C′

2 + C′
3) sinh(θ ′

2) − (C′
1 + C′

4) cosh(θ ′
1) + (C′

3 + C′
2) cosh(θ ′

2),

a2(t ) = D′
1 sinh(θ ′

1) + D′
2 sinh(θ ′

2),

a3(t ) = 2JK

B′ [cosh(θ ′
2) − cosh(θ ′

1)] −
√

2JK (α + β )

B′√A + B′ sinh(θ ′
1) +

√
2JK (α + β )

B′√A − B′ sinh(θ ′
2),

a4(t ) = iJ (α − β )

B′ [cosh(θ ′
1) − cosh(θ ′

2)] + D′
3 sinh(θ ′

1) + D′
4 sinh(θ ′

2).

Here B′ =
√

(α2 − β2)2 + 4J2[4K2 − (α − β )2], θ ′
1 = t

√
A+B′√

2
, θ ′

2 = t
√

A−B′√
2

,

C′
1 = (2α − √

2
√

A + B′)(α2 − β2 + B′) + 4J2(β − α)

4
√

2B′√A + B′ , C′
2 = (2α − √

2
√

A − B′)(−α2 + β2 + B′) + 4J2(α − β )

4
√

2B′√A − B′ ,

C′
3 = (2α + √

2
√

A − B′)(−α2 + β2 + B′) + 4J2(α − β )

4
√

2B′√A − B′ , C′
4 = 4J2(α − β ) − (2α + √

2
√

A + B′)(α2 − β2 + B′)

4
√

2B′√A + B′ ,

D′
1 = iK (α2 − β2 + B′ − 4J2)√

2B′√A + B′ , D′
2 = iK (−α2 + β2 + B′ + 4J2)√

2B′√A − B′ , D′
3 = iJ ((α − β )2 + B′ − 4K2)√

2B′√A + B′ ,

D′
4 = iJ (−(α − β )2 + B′ + 4K2)√

2B′√A − B′ .
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