
PHYSICAL REVIEW A 110, 023710 (2024)

Deconstructing squeezed light: Schmidt decomposition versus the Whittaker-Shannon interpolation
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We develop a formalism to describe squeezed light with large spectral-temporal correlations. This description
is valid in all regimes, but is especially applicable in the long pulse to continuous-wave limit where the photon
density at any particular time is small, although the total number of photons can be quite large. Our method
relies on the Whittaker-Shannon interpolation formula applied to the joint temporal amplitude of squeezed light,
which allows us to “deconstruct” the squeezed state. This provides a local description of the state and its photon
statistics, making the underlying physics more transparent than does the use of the Schmidt decomposition.
The formalism can easily be extended to more exotic nonclassical states where a Schmidt decomposition is not
possible.
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I. INTRODUCTION

Squeezed light is of interest for applications in quantum
sensing and imaging [1,2], and as a resource for quantum
computing [3]. For light propagating in one direction in a
quasi-one-dimensional (quasi-1D) structure, such as an op-
tical fiber or a channel waveguide in an integrated photonic
structure [4], or even light propagating in free space under the
approximation that diffraction is negligible, a squeezed state
can be written as

|�〉 = e
β

2

∫
dω1dω2γ (ω1,ω2 )a†(ω1 )a†(ω2 )−H.c.|vac〉, (1.1)

where for simplicity only one polarization and one transverse
mode is considered. We label the lowering operator at a fre-
quency shifted by ω from a center reference frequency ωo by
a(ω) (see Appendix A),

[a(ω1), a†(ω2)] = δ(ω1 − ω2), (1.2)

and |vac〉 is the vacuum state. Here γ (ω1, ω2) is the joint
spectral amplitude,∫

|γ (ω1, ω2)|2dω1dω2 = 1, (1.3)

and β is the squeezing amplitude. Unless otherwise indicated,
we take integrals to range from −∞ to ∞.

Often the properties of interest can be captured by simple
functions of frequencies, such as correlation functions of the
form

G(1)(ω) = 〈�|a†(ω)a(ω)|�〉, (1.4a)

G(2)(ω1, ω2) = 〈�|a†(ω1)a†(ω2)a(ω2)a(ω1)|�〉, (1.4b)
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etc. For a pulse of light where |β| � 1, the state is only
slightly different from the vacuum state,

|�〉 ≈ |vac〉 + β

2

∫
dω1dω2γ (ω1, ω2)a†(ω1)a†(ω2)|vac〉,

(1.5)

where higher-order terms in β have been neglected, and there
is only a small probability amplitude for a two-photon state.
Then

G(1)(ω) → |β|2
∫

|γ (ω,ω′)|2dω′, (1.6a)

G(2)(ω1, ω2) → |β|2|γ (ω1, ω2)|2. (1.6b)

In this paper we consider the evaluation of quantities such as
these, even when |β| is not much less than one. A standard
strategy in such a situation is to decompose the joint spectral
amplitude in terms of Schmidt modes. If there is only one
or a few Schmidt modes, as might occur for squeezed light
generated by a short pump pulse in time, the expressions for
correlation functions of the squeezed light in terms of Schmidt
modes can be easily evaluated even if |β| is large, and they
immediately identify much of the physics. But large values
of |β| can also arise for squeezed light generated by pump
pulses that are very long, and even if their intensities are very
weak. Here, although the rate at which pairs of photons are
generated may be quite small, the total number of pairs of
photons generated diverges as the pump pulse approaches cw
excitation, and thus both |β| and the Schmidt number diverge.
Our goal is to identify strategies that allow for the calculation
of quantities such as correlation functions to be done quickly
for such states, and in a way that makes the physics of the
squeezed light clear.

We begin by introducing the temporal representation of
the joint spectral amplitude γ (t1, t2) and some of its general
features in Sec. II. Then in Sec. III we consider a natural
first approach, which is to use the Schmidt decomposition of
γ (t1, t2) even if the Schmidt number is very large. We find
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that this approach does not directly make the physics of the
state |�〉 apparent, and this motivates our search for other
ways to “deconstruct” the joint amplitude of the squeezed
light that better elucidate the physics. In Sec. IV we introduce
a new approach suggested by the time-correlation functions
of the light; it works well if there is significant degeneracy in
the amplitudes of the Schmidt decomposition. In Sec. V we
generalize this, based on the Whittaker-Shannon interpolation
formula, in a scheme that is applicable even if there is no such
degeneracy. We argue that this new way of “deconstructing”
the joint amplitude does make the physics of the state more
apparent, and in Sec. VI we compare it to the Schmidt de-
composition. Then using our formalism we provide a “local
decomposition” of the squeezed state, and demonstrate its
use in calculations in Sec. VII. We give a discussion of the
“strongly squeezed limit” within our framework in Sec. VIII,
and end in Sec. IX with a realistic example of a joint spectral
amplitude for a squeezed state generated in a ring resonator
structure. Our conclusions and suggestions for future work are
presented in Sec. X.

II. JOINT TEMPORAL AMPLITUDE

Besides the expression (1.1) for a squeezed state that is
based on an integral over frequencies (or wave numbers), it
will be useful to have an expression based on integrals over
time (or position). For simplicity we assume group-velocity
dispersion can be neglected and that light propagates with a
velocity v; then putting

a(t ) =
∫

dω√
2π

a(ω)e−iωt , (2.1)

and with

γ (t1, t2) ≡
∫

dω1dω2

2π
γ (ω1, ω2)e−iω1t1 e−iω2t2 (2.2)

identifying the “joint temporal amplitude,” we can write
Eq. (1.1) as

|�〉 = e
β

2

∫
dt1dt2γ (t1,t2 )a†(t1 )a†(t2 )−H.c.|vac〉. (2.3)

We take γ (ω1, ω2) and γ (t1, t2) to identify the spectral
and temporal representations of a “joint amplitude” and refer
to their absolute squares |γ (ω1, ω2)|2 and |γ (t1, t2)|2 as the
spectral and temporal representations of a “joint intensity.”
While due to time-ordering corrections we would expect the
joint amplitude to change as the pump intensity and thus β is
increased [5], here we neglect such effects for simplicity and
take the joint amplitude to be fixed when we consider varying
β below.

Of course, the ket |�〉 [Eq. (1.1) or (2.3)] is a Schrödinger
ket at a particular time, say t = 0. The variables t1, t2 can be
thought of as surrogates for position, where a(t1) is identified
with the electric field at z = −vt1; equivalently, if the ket |�〉
were allowed to evolve in time, a(t ) would identify the field
operator at z = 0 at time t (see Appendix A).

Corresponding to the frequency correlation functions
[Eq. (1.4)] we can also introduce time-dependent first- and
second-order correlation functions [6]

G
(1)

(t1, t2) = 〈�|a†(t1)a(t2)|�〉, (2.4a)

G
(2)

(t1, t2) = 〈�|a†(t1)a†(t2)a(t2)a(t1)|�〉. (2.4b)

FIG. 1. Schematic of a joint intensity represented in time on the
left and frequency on the right. The horizontal width of the joint
temporal (spectral) amplitude is denoted by Tp (Bc), which is the
effective pulse duration (bandwidth). The narrow horizontal width at
t2 = 0 is denoted by Tc = 1/Bc and is the coherence time of photon
pairs.

The “equal-time” first-order correlation function, given by
G

(1)
(t ) ≡ G

(1)
(t, t ), is the “photon-density” of the pulse of

light, and is used to predict the counting rate of an ideal
photodetector; indeed, if we integrate over all time, then

Npulse =
∫

G
(1)

(t )dt (2.5)

is the expected photon number in the pulse. The second-order
correlation function G

(2)
(t1, t2) has a similar interpretation and

is used to predict the probability of detection coincidences at
the indicated times.

We will primarily be interested in joint intensities of the
form shown schematically in Fig. 1, where there are large
spectral-temporal correlations; however, the formalism we in-
troduce is valid for a general joint amplitude. We characterize
the joint intensity by two quantities, Tp and Bc, indicated in
Fig. 1. The quantity Tp is an effective measure of the duration
of the generated pulse of squeezed light. The second quantity,
Bc, is an effective measure of the bandwidth of generated
photons. Associated with this bandwidth we define a time
Tc = 1/Bc, which is on the order of the narrow width of the
joint temporal intensity; see Fig. 1. The time Tc identifies the
“coherence time,” the typical range of |t2 − t1| over which
|γ (t1, t2)|2 is non-negligible.

III. SCHMIDT MODES

A natural approach to try to elucidate the physics of a
squeezed state and calculate the correlation functions given
by Eq. (2.4) is to employ a Schmidt decomposition of the
joint amplitude, since the squeezed state can then be written
as a direct product of squeezed states associated with the
supermodes introduced via the Schmidt decomposition. That
is the strategy we explore in this section.

In writing Eq. (1.1) for the squeezed state we took the
origin of γ (ω1, ω2) to indicate the same frequency ωo with
respect to which both ω1 and ω2 are referenced—this is the
case of so-called “degenerate” squeezing—and here without
loss of generality the joint amplitude can be taken as symmet-
ric in its variables [γ (ω2, ω1) = γ (ω1, ω2), or equivalently
γ (t2, t1) = γ (t1, t2)]. From a Takagi factorization [7,8] we can
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then construct the Schmidt decomposition,

γ (ω1, ω2) =
∑

n

√
pn fn(ω1) fn(ω2),

γ (t1, t2) =
∑

n

√
pn f n(t1) f n(t2), (3.1)

where the Schmidt weights pn � 0 sum to unity. The elements
of the sets { fn(ω)} and { f n(t )} of mutually orthogonal and
normalized functions are related by

f n(t ) =
∫

dω√
2π

fn(ω)e−iωt . (3.2)

As usual, we take the set { fn(ω)} of elements with pn �= 0 to
be expanded to be a complete set of functions, assigning pn =
0 to the added elements, and correspondingly for the { f n(t )}.

The Schmidt number K of the expansion (3.1), which char-
acterizes the effective number of spectral or temporal modes
in the sum (3.1), is given by

K =
(∑

n

p2
n

)−1

. (3.3)

It serves as an effective measure of the correlation in the
dependence of the joint amplitude on its two variables; in
the limit of a Schmidt number of unity the joint amplitude
is simply a product of the same function of each variable,
and there is no correlation at all in its dependence on those
variables.

We can introduce another measure of the correlation of the
dependence of the joint amplitude on its two variables by

K = TpBc = Tp

Tc
. (3.4)

Clearly when Tp is much greater than Tc then the dependence
of the joint amplitude on its two variables is highly correlated
(see Fig. 1), and then K � 1. Of course, at the moment we
have only defined Tp and Bc in a “rough-and-ready” way,
and such then is our definition of K; we make the definition
more precise below. Often similarly defined quantities are
introduced and referred to as the “time-bandwidth product.”
So to avoid confusion we henceforth refer to K as an “effective
Schmidt number.”

Confusions with the phrase “time-bandwidth product”
can arise because of different definitions used for “time”
and “bandwidth.” For example, Fedorov et al. calculate a
time-bandwidth product by taking the width of the “uncondi-
tional” (“single-particle”) and “conditional” (“coincidence”)
widths of the joint intensity; for a general double-Gaussian
joint amplitude (considered below), they show that the time-
bandwidth product is exactly equal to the Schmidt number
[9–11]. Alternatively, Brecht and Silberhorn calculate the
time-bandwidth product taking the conditional and uncondi-
tional widths of the “chronocyclic Wigner function,” which
for their double-Gaussian model is equal to the Schmidt
number, even when a chirp is included [12]. The agreement—
either exact or approximate—between the time-bandwidth
product and the Schmidt number suggest a deeper connection
between the two quantities.

However, there is an older and more rigorous meaning of
the term time-bandwidth product from classical information
theory: For a one-dimensional bandlimited signal, it is the
number of orthogonal functions optimally concentrated within
a given timewidth needed to describe the signal [13], and in
this context is referred to as the “Shannon number” [14,15].
Generalizations of the Shannon number exist for higher di-
mensional signals where one calculates the time-bandwidth
product using the bandwidth and timewidth area, volume,
etc. [14–17]. Recent work has made the connection between
the Shannon number from classical information theory to the
Schmidt number in quantum information theory; see, for ex-
ample, Pires et al. [17] or Pors et al. [18] for both a theoretical
and experimental investigation.

In this spirit we define K more precisely by defining Tp

and Bc more precisely. We assume that those quantities are
chosen as small as possible but subject to the condition that, to
within the level of approximation adopted in calculations, they
cover the range of the joint amplitude in time and frequency,
respectively. This means that the typical ways used to mea-
sure bandwidth or frequency—such as the standard deviation,
full-width-at-half-max etc.—are too narrow. In particular, we
choose Bc to be large enough that frequencies larger than
2πBc/2 can be completely neglected, and we can treat the
joint spectral amplitude as effectively bandwidth limited. For
this reason the effective Schmidt number K will generally be
larger than, but typically on the order of, other conventions
used for the time-bandwidth product.

In a later section we argue that generally the Schmidt num-
ber K and effective Schmidt number K satisfy the inequality

K � K. (3.5)

One might generally expect this to be true based on a physical
argument: Suppose we have squeezed light propagating with
an arbitrary joint amplitude with some Schmidt number K
and effective Schmidt number K. Now if the squeezed light is
sent through a dispersive medium, the joint spectral amplitude
is multiplied by a complex but separable phase that does not
change the Schmidt number. However, we know that in a
dispersive medium the bandwidth remains constant but the
pulse duration broadens, and so K will generally increase.
Thus, in general one might indeed expect that K � K. Below
we discuss when the near exact equality holds.

We find that we can use the effective Schmidt number K
to introduce a “weak squeezing” regime characterized by the
condition

|β|√
K

� 1, (3.6)

and a “strong squeezing” regime characterized by the condi-
tion

|β|√
K

� 1. (3.7)

If neither of these conditions are satisfied we refer to the
squeezing as “moderate.”

Now as a first example of the use of the Schmidt decompo-
sition to evaluate the correlation functions, consider a general
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normalized two-photon state,

|II〉 = 1√
2

∫
dt1dt2γ (t1, t2)a†(t1)a†(t2)|vac〉

= 1√
2

∑
n

√
pnA†

nA†
n|vac〉, (3.8)

where we defined operators associated with the supermodes
as

A†
n ≡

∫
dt f n(t )a†(t ), (3.9)

and so

a(t ) =
∑

n

f n(t )An. (3.10)

To write the inverted form [Eq. (3.10)] we have taken the
adjoint of Eq. (3.9) and used the completeness relation of the
set of functions { f n(t )}. The set of operators {An} and their
adjoints satisfy the usual harmonic-oscillator commutation
relations. Just as the expressions (3.1) can be written in time
or frequency form, so the first of (3.8) and (3.9) can also be
written involving integrals over frequency of the correspond-
ing quantities. We find

G
(1)

(t )||II〉 ≡ 〈II|a†(t )a(t )|II〉 = 2
∑

n

pn| f n(t )|2, (3.11)

and

G
(2)

(t1, t2)||II〉 ≡ 〈II|a†(t1)a†(t2)a(t2)a(t1)|II〉

= 2

∣∣∣∣∣∑
n

√
pn f n(t1) f n(t2)

∣∣∣∣∣
2

.
(3.12)

In the first we have a contribution of | f n(t )|2 from each
Schmidt mode with a weight pn, while in the second the
amplitudes associated with each of the Schmidt modes add;
the factor of two of course arises because we have pairs of
photons.

Moving to a squeezed state, in the limit |β| � 1 we can
write (2.3) as

|�〉 → |vac〉 + β√
2
|II〉 + · · · (3.13)

[cf. (1.5)], and we find

G
(1)

(t ) →
∑

n

|βn|2| f n(t )|2 = |β|2
∫

|γ (t, t ′)|2dt ′,

G
(2)

(t1, t2) →
∣∣∣∣∣∑

n

βn f n(t1) f n(t2)

∣∣∣∣∣
2

= |β|2|γ (t1, t2)|2,
(3.14)

where βn = β
√

pn [cf. (1.6)]. Treating |γ (t1, t2)|2 as a nor-
malized probability distribution, for Npulse = |β|2 � 1 we find

G
(1)

(t ) is the probability distribution reduced by integrating
over the second time variable, and G

(2)
(t1, t2) is proportional

to |γ (t1, t2)|2 itself, the norm squared of the joint temporal
amplitude at the two corresponding times.

More generally, using the Schmidt decomposition (3.1) and
the supermode operators (3.9), which are all independent, we
can write the squeezed ket (2.3) as

|�〉 =
⊗

n

Sn |vac〉n , (3.15)

where |vac〉n is the vacuum state for the corresponding super-
mode and

Sn = e
βn
2 A†

nA†
n−H.c.. (3.16)

With the standard result [19]

S†
nAnSn = cnAn + eiθ snA†

n, (3.17)

where we have put β = |β|eiθ and

cn ≡ cosh (|βn|), (3.18)

sn ≡ sinh (|βn|). (3.19)

Using the expression (3.10) to write a(t ) in terms of
the { f n(t )}—and using (3.17) to evaluate 〈�|A†

nAm|�〉 and
〈�|A†

nA†
mApAq|�〉—from (2.4), we have

G
(1)

(t ) =
∑

n

| f n(t )|2s2
n,

G
(2)

(t1, t2) = G
(2)
coh(t1, t2) + G

(2)
incoh(t1, t2), (3.20)

where

G
(2)
coh(t1, t2) =

∣∣∣∣∣∑
n

sncn f n(t2) f n(t1)

∣∣∣∣∣
2

, (3.21a)

G
(2)
incoh(t1, t2) = 1

2

∑
n,m

|snsm[ f n(t1) f m(t2) + f n(t2) f m(t1)]|2,

(3.21b)

and the average photon number is

Npulse =
∑

n

s2
n. (3.22)

Of the two contributions to G
(2)

(t1, t2), the “coherent” term
G

(2)
coh(t1, t2) [20], which involves the square of a sum, is the

generalization to a squeezed state of the term G
(2)

(t1, t2) for
the two-photon state (3.12), and the only term that survives in
G

(2)
(t1, t2) in the limit |β| � 1, cf. (3.14). The “incoherent”

term G
(2)
incoh(t1, t2) [20] involves the sum of squares, and will

only be significant at larger values of |β|. Note that the cor-
responding expressions for G(1)(ω) and G(2)(ω1, ω2) take the
same form as Eq. (3.20), with f n replaced by fn, t1 by ω1, etc.

A. Example 1: The double Gaussian

A simple model for the joint amplitude is a double-
Gaussian function,

γ (ω1, ω2) =
√

1

πσpσc
e
− (ω1−ω2 )2

4σ2
c e

− (ω1+ω2 )2

4σ2
p , (3.23a)

γ (t1, t2) =
√

σpσc

π
e− σ2

c (t1−t2 )2

4 e− σ2
p (t1+t2 )2

4 , (3.23b)

023710-4



DECONSTRUCTING SQUEEZED LIGHT: SCHMIDT … PHYSICAL REVIEW A 110, 023710 (2024)

FIG. 2. For the double-Gaussian, from left to right we plot the joint temporal intensity divided by its maximum value with the axes
normalized by T DG

p , the joint spectral intensity divided by its maximum value with the axes normalized by 2πBDG
c , and the Schmidt amplitudes

pn up to n = 39.

where σp and σc are the two parameters. The Schmidt modes
are harmonic-oscillator wave functions. This can be seen by
noting that the reduced density operator of “particle 1” is
equal to the density operator of a harmonic oscillator in ther-
mal equilibrium; its eigenfunctions are the Schmidt modes,
and they are obviously the harmonic-oscillator wave func-
tions. The details can be worked out from this, or more
mathematically from the Mehler kernel [21,22]. For σc � σp,
the Schmidt decompositions are given by (3.1), with

γ (ω1, ω2) =
∑
n�0

√
pnHn(ω1)Hn(ω2), (3.24a)

γ (t1, t2) =
∑
n�0

√
pnHn(t1)Hn(t2), (3.24b)

and

pn = 4σcσp

(σc + σp)2

(
σc − σp

σc + σp

)2n

, (3.25)

with a Schmidt number

K = σ 2
c + σ 2

p

2σcσp
. (3.26)

Here f n(t ) = Hn(t ), where

Hn(t ) = Hn
(

t
t0

)
e−t2/(2t2

0 )√
2nn!π1/2t0

, (3.27)

with Hn(x) the Hermite polynomials, is the standard
coordinate-representation harmonic-oscillator energy eigen-
function, but with t playing the role of x and

t0 ≡
√

1

σpσc
(3.28)

playing the role of a reference length x0 that is often intro-
duced [23]. fn(ω) = Hn(ω), where

Hn(ω) = (−i)n

√
t0

2nn!π1/2
Hn(ωt0)e−ω2t2

0 /2 (3.29)

is the standard momentum-representation harmonic-oscillator
energy eigenfunction [23], with ω playing the role of p.

In Fig. 2 we plot the joint intensities |γ (t1, t2)|2 and
|γ (ω1, ω2)|2 for σc/σp = 50, as well as the Schmidt weights
pn as a function of n. For σc � σp, the Schmidt number
(3.26) is approximately given by K ≈ σc/(2σp) = 25, indeed
we find numerically that KDG = 25.01. The joint intensities in
Fig. 2 vary over the widths T DG

p and BDG
c which we set to be

T DG
p = a√

2σp

, Bc = a

2π

σc√
2
, T DG

c = 2π
√

2

aσc
, (3.30)

and choose a = 2
√

2π for convenience. This choice of a is
large enough that the joint temporal and spectral amplitudes
can essentially be taken to be confined within the ranges of
T DG

p and BDG
c , respectively, as can be gleaned from Fig. 2 and

will in fact be confirmed by our calculations in later sections.
Then the effective Schmidt number is

KDG = a2

2π

σc

2σp
≈ 4KDG = 100. (3.31)

To illustrate the behavior of the photon statistics for a large
range of photon numbers, we consider the three values of β =
0.1, 5, and 10, corresponding to |β|/√KDG = 0.01, 0.5, 1,
and so ranging from weak to moderate squeezing. We dedicate
Sec. VIII to the discussion of the strongly squeezed limit.

In Fig. 3 we plot G
(1)

(t ) for the three values of β. The
expectation value of the number of photons is determined
by (3.22), and for β = 0.1, 5, and 10 we have, respectively,
Npulse ≈ 0.01, 35, and 383; we take an effective photon flux
(photons per unit time) to be given by 
 = Npulse/T DG

p . We

also plot the contribution to each G
(1)

(t ) from a number of
the Schmidt modes [see (3.20)]. For each value of β, the
photon density at any particular time t involves contributions
from many Schmidt modes, and we cannot associate it with
one or even a few Schmidt modes. Clearly as β increases
the contribution from the n = 0 Schmidt mode increases
and the shape of the photon density narrows. This occurs
because the scaling of each contribution with |βn| is nonlinear
and depends on the quantities cn and sn (3.18); since for the
double-Gaussian the Schmidt amplitudes pn decrease as n
increases, |β0| has the largest contribution. This behavior sug-
gests that in the strongly squeezed limit the photon statistics
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FIG. 3. For the double-Gaussian, from left to right we plot G
(1)

(t )/
 and a few contributions from different Schmidt modes in Eq. (3.20)
with the horizontal axis normalized by T DG

p for β = 0.1, 5, and 10. In each plot the n = 0 term is the largest Schmidt mode contribution and
they get smaller as n increases.

can be well approximated by the first few Schmidt modes, a
point to which we return in Sec. VIII.

In Fig. 4 we turn to G
(2)

(t1, t2) with again the three values
of β considered above. In the top row we show this function
for the different values of β; at low β the result is propor-
tional to the square of the absolute value of the joint temporal
amplitude [see Fig. 2, Eq. (3.14)], while for larger β there
are significant corrections to this. In the bottom panel we
plot G

(2)
(t/2,−t/2), which corresponds to moving along a

diagonal that runs from the upper-left to the lower-right of
the plots in the first row; we give the coherent and incoherent
contributions separately.

The situation here is of course more complicated than
that for G

(1)
(t ), because the expression (3.20) for G

(2)
(t1, t2)

is more complicated than a simple sum over contributions
from the individual Schmidt modes. But we see that at least
in the weak squeezing regime the coherent contribution to
G

(2)
(t/2,−t/2) dominates, and it is nonzero only over a range

of t much less than the range of t over which the individual
Schmidt modes are nonzero; clearly the interference terms
between the different Schmidt modes in (3.20) play a critical
role in the result for G

(2)
(t1, t2).

Furthermore, the incoherent contribution at β = 5 has a
structure that consists partly of a broad background and partly

FIG. 4. For the double Gaussian, from left to right we plot G
(2)

(t1, t2)/
2 (top) and the coherent and incoherent contribution to
G

(2)
(t/2, −t/2)/
2 (bottom) with the axes normalized by T DG

p for β = 0.1, 5, and 10.
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of a contribution that mirrors the coherent contribution. Now
note that the expression (3.21) for G

(2)
incoh(t1, t2) can also be

very generally written as

G
(2)
incoh(t1, t2) = G

(1)
(t1)G

(1)
(t2) + |G(1)

(t1, t2)|2, (3.32)

and the broad background in G
(2)
incoh(t/2,−t/2) can be under-

stood as arising from the first term on the right-hand-side.
The contribution that mirrors the coherent contribution can
be understood as arising from the second term, and in fact it
is absent if we consider nondegenerate squeezed light, where
signal and idler frequencies are well separated with different
center frequencies [24]. The corresponding contribution to
G(2)

incoh(ω1, ω2) is often discussed and referred to as the “au-
tocorrelation” [25]. In any case, clearly the different features
of G

(2)
(t/2,−t/2) certainly do not follow in any simple way

from the features of individual Schmidt modes, but arise from
the interference of many of these modes.

As β increases, the range of G
(2)

(t, t ) narrows, as does
the range of the photon density. However, the coherent and
incoherent contribution along G

(2)
(t/2,−t/2) broaden. Thus

as the squeezing parameter is increased, the photon statistics
begin to look uncorrelated. This behavior matches that of the
photon density, in that as β increases fewer Schmidt modes
are important in calculating the correlation functions. We also
note that the incoherent contribution is approximately twice
the coherent contribution, a point to which we return to in
Sec. VIII.

While there are many features of interest here, we empha-
size that both the value of G

(1)
(t ) at a particular t , and that of

G
(2)

(t1, t2) at a particular t1 and t2, receive contributions from
many of the Schmidt modes. The same holds for the corre-
sponding functions G(1)(ω) and G(2)(ω1, ω2). The structure of
the Schmidt modes themselves, in and of itself, does not help
us understand the structure of the correlation functions.

B. Example 2: The sinc hat

This difference between the features of the Schmidt modes
and the features of G

(1)
(t ) and G

(2)
(t1, t2) is not specific to the

double-Gaussian joint amplitude. Consider another form,

γ (ω1, ω2) = α(ω1 + ω2)φ

(
ω1 − ω2

2

)
, (3.33)

γ (t1, t2) = α

(
t1 + t2

2

)
φ(t1 − t2), (3.34)

where

α(ω) = 1√

p

sinc

(
πω


p

)
, (3.35)

φ(ω) = 1√

c

for − 
c

2
� ω � 
c

2
= 0 otherwise (3.36)

ᾱ(t ) = 1√
Tp

for − Tp

2
� t � Tp

2
= 0 otherwise, (3.37)

φ(t ) = 1√
Tc

sinc

(
πt

Tc

)
, (3.38)

with Tp = 2π/
p and Tc = 2π/
c, and as usual α(ω), α(t )
and φ(ω), φ(t ), are Fourier transform pairs [cf. (3.2)]. Since
both γ (ω1, ω2) and γ (t1, t2) are products of a “sinc” function

and “top-hat” function we refer to this example as the “sinc-
hat” joint amplitude.

For the sinc-hat joint amplitude, the Schmidt modes must
be found numerically. In Fig. 5 we plot the joint intensities
|γ (t1, t2)|2 and |γ (ω1, ω2)|2, as well as the Schmidt weights
pn as a function of n, for Tp/Tc = 24. We see below that for
large Tp/Tc we have K ≈ Tp/Tc, and indeed here we numeri-
cally find KSH = 24.78.

Evaluating γ (t1, t2) along the line t1 = t2 those variables
range from −Tp/2 to Tp/2, and similarly along ω1 = −ω2,
γ (ω1, ω2) ranges from −
c/2 to 
c/2. Naïvely one would
guess that we should set T SH

p → Tp and 2πBSH
c → 
c or

equivalently T SH
c → Tc, however, this is only the range of t

along the diagonal (or antidiagonal in frequency) and the joint
amplitude exists beyond it. In Appendix B we show that

T SH
p = Tp + Tc

2
, (3.39)

and

BSH
c = 
c

2π
+ 1

2


p

2π
, T SH

c = TcTp

Tp + Tc/2
. (3.40)

This leads to an effective Schmidt number

KSH =
(
Tp + Tc

2

)2

TpTc
= 1 + Tp

Tc
+ Tc

4Tp
, (3.41)

and for Tp/Tc = 24, KSH ≈ 25 to very good approximation. In
Sec. V we discuss this near equality.

In Fig. 6 we plot G
(1)

(t ) for the same three values of β used
in the example above, corresponding here to photon numbers
Npulse ≈ 0.01, 35, and 335; we take an effective photon flux
to be given by 
 = Npulse/T SH

p . Then for the three values of
β we have |β|/√KSH ≈ 0.02, 1, 2, which again corresponds
to weak to moderate squeezing. In Fig. 6 we also include a
few of the contributions from the Schmidt modes; we see that
typically those contributions range over the whole duration of
the pulse, analogous to what we saw for the double-Gaussian
example. In the top row of Fig. 7 we plot G

(2)
(t1, t2) for the

indicated values of |β|, and in the bottom row the coherent
and incoherent contributions to G

(2)
(t/2,−t/2). Again, the

range over which the individual Schmidt modes extend is
much larger than these contributions, and so they must be
understood as arising from a number of interfering Schmidt
modes.

So just as for squeezed states described by the double-
Gaussian joint amplitude, the behavior of correlation func-
tions of squeezed states described by the sinc-hat joint
amplitude cannot be linked in a simple way to the behavior
of the individual Schmidt modes. Quantitatively there are
differences between the correlation functions resulting from
those two joint amplitudes: The relative amplitudes of the
Schmidt modes of a given n in Fig. 6 (sinc-hat joint amplitude)
are roughly independent of |β|, while the relative amplitudes
in of those in Fig. 3 (double Gaussian) are not, and the two
parts of the structure of G

(2)
incoh(t/2,−t/2) we noticed for the

double-Gaussian joint amplitude are even more pronounced
and persist to larger β than they did for that amplitude. These
differences arise because the Schmidt weights of the sinc-hat
joint amplitude are nearly identical in the Tp/Tc � 1 limit
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FIG. 5. For the sinc hat, from left to right we plot the joint temporal intensity divided by its maximum value with the axes normalized
by T SH

p , the joint spectral intensity divided by its maximum value with the axes normalized by 2πBSH
c , and the Schmidt amplitudes pn up to

n = 39.

(see Fig. 5), and thus each Schmidt mode contributes roughly
equally to the resulting correlation functions even in the large-
β limit.

To see how this near-degeneracy in the Schmidt weights
arises, note that in general the Schmidt modes f n(t ) of a joint
temporal amplitude γ (t1, t2) are eigenfunctions of the operator

M(t1, t2) ≡
∫

γ (t1, t )γ ∗(t, t2)dt, (3.42)

with eigenvalue pn,∫
M(t1, t2) f n(t2)dt2 = pn f n(t1), (3.43)

which follows immediately from constructing M(t1, t2) using
(3.1). Now for Tp/Tc � 1 we can approximate the joint tem-
poral amplitude (3.34) as

γ (t1, t2) = α

(
t1 + t2

2

)
φ(t1 − t2) (3.44)

≈ α(t1)φ(t1 − t2), (3.45)

and so

M(t1, t2) ≈
∫

α(t1)α(t2)φ(t1 − t )φ(t − t2)dt

= √
Tcα(t1)α(t2)φ(t1 − t2)

= Tc

Tp

sin
[


c
2 (t1 − t2)

]
π (t1 − t2)

for − Tp

2
� t1, t2 � Tp

2

= 0 otherwise. (3.46)

For specified 
cTp/4, the functions ψn(t ′) satisfying the
eigenvalue equation∫ Tp/2

−Tp/2

sin
[


c
2 (t − t ′)

]
π (t − t ′)

ψn(t ′)dt ′ = λnψn(t ), (3.47)

with the label n = 0, 1, . . ., are related to the angular prolate
spheroidal functions [13–15,26,27], and are defined with the
normalization ∫ ∞

−∞
|ψn(t )|2dt = 1. (3.48)

FIG. 6. For the sinc hat, from left to right we plot G
(1)

(t )/
 and a few contributions from different Schmidt modes in Eq. (3.20) with the
horizontal axis normalized by T SH

p for β = 0.1, 5, and 10.
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FIG. 7. For the sinc hat, from left to right we plot G
(2)

(t1, t2)/
2 (top) and the coherent and incoherent contribution to G
(2)

(t/2, −t/2)/
2

(bottom) with the axes normalized by T SH
p for β = 0.1, 5, and 10.

The λn are close to unity for small n, and fall off quickly
to zero for n > Tp/Tc ≡ Kapp; we approximate them as equal
to unity for n < Kapp and zero for n � Kapp. So within the
approximation (3.46) we have∫

M(t1, t2)ψn(t2)dt2 → Tc

Tp
λnψn(t1), (3.49)

and comparing with (3.43) we can identify

f n(t ) → ψn(t ), pn →
√

Tc

Tp
= 1√

Kapp
, (3.50)

for n < Kapp. That is, the Schmidt modes are approximately
given by the angular prolate spheroidal functions, and so

γ (t1, t2) →
Kapp−1∑

n=0

√
Tc

Tp
ψn(t1)ψn(t2), (3.51)

exhibiting a huge degeneracy of Schmidt mode amplitudes,
with a approximate Schmidt number (3.3) Kapp = Tp/Tc ≈
KSH, as expected.

While (3.50) and (3.51) are only approximate (cf. Fig. 5),
they do indicate that in the limit Tp/Tc � 1, which for the
sinc-hat function we can characterize as the “long-pulse”
limit, a large near-degeneracy of Schmidt mode amplitudes
can be expected. Like the exact Schmidt modes, the angular
prolate spheroidal functions range over the whole duration Tp

associated with the joint temporal amplitude. However, were
the degeneracy exact it would imply that the Schmidt modes
are not unique and that various superpositions of them could
be constructed. While this freedom is only approximate for

near degeneracy, we see below that we can use it to decon-
struct the joint amplitude in a different way by constructing
approximate Schmidt modes that more explicitly reflect the
properties of the light.

IV. AN APPROXIMATE SCHMIDT DECOMPOSITION

Focusing on the sinc-hat model (3.33) and (3.35) in the
limit where Tp � Tc and T SH

p → Tp and T SH
p → Tc, note that

while in the second row of Fig. 7 we have plotted G
(2)

(t +
t/2, t − t/2) for t = 0, we would expect such plots to be
similar for values of t ≡ (t1 + t2)/2 ranging over the pulse
duration, especially in the limit of small |β|. In that limit
G

(2)
(t1, t2) reflects the behavior of the joint temporal ampli-

tude itself [see (3.14)], and generally G
(2)

(t + t/2, t − t/2)
will be nonzero for t ranging on a timescale of the order
of Tc; in our example of Fig. 7 that is Tp/24. This suggests
that if we want to capture the behavior of the joint temporal
amplitude as a function of (t1 − t2) in each of the terms of
an approximate Schmidt decomposition, rather than just when
they are all used together, we should look for approximate
Schmidt modes that vary over a range of Tc. Since, roughly
speaking, frequency components between −
c/2 and 
c/2
are then available, one such function can easily be constructed
by taking

η(t ) ≡ 1√

c

∫ 
c/2

−
c/2

dω√
2π

e−iωt = 1√
Tc

sinc

(
πt

Tc

)
, (4.1)

where the prefactor is chosen so the function is normalized
[see (4.3) below]. However, we need a set of such functions

023710-9



C. DRAGO AND J. E. SIPE PHYSICAL REVIEW A 110, 023710 (2024)

that are orthonormal to serve as approximate Schmidt func-
tions; the way to do that is to take the set of functions

ηn(t ) = η(t − nTc), (4.2)

where n is an integer, for then we have∫
η∗

n(t )ηm(t )dt = δnm. (4.3)

Note that were time variables replaced by position variables,
then the {ηn(t )} would correspond to a set of Wannier func-
tions of the lowest band in a one-dimensional crystal of lattice
spacing corresponding to Tc, when the potential of the lattice
is neglected (“empty-lattice approximation”) [28]. We can
then seek an approximate expression γ app(t1, t2) for the sinc-
hat joint temporal amplitude γ (t1, t2) of (3.33) by writing

γ app(t1, t2) = Tc

∑
n

u(nTc)ηn(t1)ηn(t2), (4.4)

which clearly takes the form of a Schmidt decomposition,
with u(nTc) playing the role of an “envelope function”;
γapp(t1, t2) is normalized as the exact function (3.33) as long
as

T 2
c

∑
n

|u(nTc)|2 = 1. (4.5)

The introduction of the functions ηn(t ) allows us to work
with “pseudo-Schmidt” modes that are mutually orthogonal
(like the real Schmidt modes), but are localized in time and
range over different center times. We refer to the approximate
Schmidt decomposition (4.4) we construct as the “pseudo-
Schmidt decomposition.”

Taking the Fourier transform of the approximate joint tem-
poral amplitude (4.4) gives the approximate joint spectral
amplitude

γapp(ω1, ω2) ≡
∫

dt1dt2
2π

γ app(t1, t2)eiω1t1 eiω2t2

= T 2
c

2π
û(ω1 + ω2)s(ω1)s(ω2), (4.6)

where

û(ω) ≡
∑

n

u(nTc)einωTc , (4.7)

and

s(ω) ≡ 1√
Tc

∫ ∞

−∞
η(t )eiωt dt = 1 for −
c

2
< ω <


c

2

= 0 otherwise. (4.8)

We need to set û(ω), which satisfies û(ω + mTc) = û(ω) for
any integer m. To ensure that γ app(t1, t2) is a good approxima-
tion to γ (t1, t2) for the sinc-hat model, we want u(nTc) to be
independent of n over an appropriate range. Choosing N to be
a large odd integer, we put

u(nTc) = 1

Tc

√
N

for −
(N − 1

2

)
� n �

(N − 1

2

)
= 0 otherwise. (4.9)

FIG. 8. Plot of the approximate joint spectral intensity divided by
its maximum value with the axes normalized by 2πBSH

c . The “false”
contributions highlighted by the black dashed circles are due to the
periodicity of the function û(ω) with a period Tc; see the discussion
in the paragraph above Eq. (4.14).

Then from (4.7) this leads to

û(ω) = 1

Tc

√
N

sin
(NωTc

2

)
sin

(
ωTc

2

) . (4.10)

Now for the sinc-hat model we want the joint temporal ampli-
tude γ (t1, t2) to be nonvanishing for t1, t2 varying from −Tp/2
to Tp/2. From the approximate form γ app(t1, t2) that we are
trying to construct (4.4), this implies that we should set

Tc

(N − 1

2

)
= Tp

2
, (4.11)

or

N = 1 + Tp

Tc
= KSH, (4.12)

where the last equality holds to very good approximation
when Tp � Tc. For Tp � Tc, which is the limit we consider
here, we can take N to be either this or an odd integer close
to it. The motivation for calling K the “effective Schmidt
number” is now clear, at least for this joint amplitude; KSH

is the effective number of pseudo-Schmidt modes required for
the decomposition. We can then write (4.10) as

û(ω) = 1√
TcTp

sin
[

ω
2 (Tc + Tc)

]
sin

(
ω
2 Tc

) . (4.13)

Note that with this choice we find γapp(0, 0) =√
Tc(Tp + Tc)/(2π ), while for the sinc-hat model we have

exactly γ (0, 0) = √
TcTp/(2π ); so for Tp/Tc � 1, γapp(0, 0)

is certainly equal to γ (0, 0) to a good approximation.
In Fig. 8 we plot |γapp(ω1, ω2)|2 for Tp/Tc = 24, taking

N = KSH = 25. Comparing with the exact plot (middle plot
in Fig. 5) we see that there is indeed generally good agree-
ment, with two main differences: First, γapp(ω1, ω2) is only
nonzero for (ω1, ω2) satisfying the bandwidth limiting condi-
tions −
c/2 � ω1 � 
c/2 and −
c/2 � ω2 � 
c/2, while
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FIG. 9. From left to right we plot the sinc-hat joint temporal intensity divided by its maximum value, the approximate joint temporal
intensity divided by its maximum value, and two contributions to the approximate joint temporal intensity divided by its maximum value when
n = 0 and n = 5 with the axes all normalized by T SH

p .

γ (ω1, ω2) extends beyond that; this is not so apparent in
Fig. 5, because outside the bandwidth limiting conditions
the true γ (ω1, ω2) is very small. Second, γapp(ω1, ω2) con-
tains “false contributions” near (ω1, ω2) = (
c/2,
c/2) and
(−
c/2,−
c/2), see the contributions highlighted by the
black dashed circles in Fig. 8. This is related to the first
difference and arises because the postulated approximate form
(4.4) of γ app(t1, t2) involves the function û(ω) that is periodic
in ω with a period 1/Tc.

We now look at the correlation functions that follow for a
squeezed state with the approximate joint temporal amplitude
identified here,

γ app(t1, t2) =
N−1

2∑
n=−N−1

2

√
pnηn(t1)ηn(t2), (4.14)

where

pn = 1

N for −
(N − 1

2

)
� n �

(N − 1

2

)
= 0 otherwise. (4.15)

From this point forward we denote the sums over n leaving the
bounds implicit. We plot |γ app(t1, t2)|2 for the sinc-hat model
with Tp/Tc = 24 in the middle diagram of Fig. 9, repeating the
exact |γ (t1, t2)|2 for this model in the leftmost diagram; we
can see the general level of agreement that might be expected
from the results shown in Figs. 5 and 8. In the rightmost plot
we show ηn(t1)ηn(t2) for n = 0 and n = 5; all such functions
are of course well-localized and from (4.14) we see that the
contribution to γ app(t1, t2) from each of these is their product
with the (pseudo-) Schmidt weight pn.

Using the general expressions (3.20) and (3.21) for G
(1)

(t )
and G

(2)
(t1, t2), we find that for our approximate model (4.14)

we have

G
(1)

(t ) = s2
∑

n

|ηn(t )|2,

G
(2)

(t1, t2) = G
(2)
coh(t1, t2) + G

(2)
incoh(t1, t2), (4.16)

where

G
(2)
coh(t1, t2) = s2c2

∣∣∣∣∣∣
∑

p

ηp(t2)ηp(t1)

∣∣∣∣∣∣
2

,

G
(2)
incoh(t1, t2) = 1

2
s4

∑
n,m

|ηn(t1)ηm(t2) + ηn(t2)ηm(t1)|2.

(4.17)

with

s = sinh

( |β|√
N

)
, c = cosh

( |β|√
N

)
. (4.18)

These are of course the same formulas as for the exact
Schmidt modes, except that here s and c are the same for
each pseudo-Schmidt mode. But since the pseudo-Schmidt
modes are localized over a time of order Tc, we see that this
decomposition of G

(1)
(t ) identifies contributions from each

pseudo-Schmidt mode that are localized in time windows
much less than the width of G

(1)
(t ), which is on the order

of Tp. We show some of these contributions in Fig. 10. Here
the range over which n varies indicates the overall range of
G

(1)
(t ) to very good approximation, and at any given time t

the contributions to G
(1)

(t ) come from at most a very few of
the functions ηn(t ) with nTc close to t .

At least within the approximate pseudo-Schmidt decom-
position we can now justify the use of the condition (3.6) to
identify the weak squeezing regime. Since in our example here
N = KSH, the weak squeezing limit can be written as

|β|√
N

� 1, (4.19)

the expectation value of the number of photons in any pseudo-
Schmidt mode is given by

Nmode = s2 = sinh2

( |β|√
N

)
, (4.20)
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FIG. 10. For the sinc hat calculated from the pseudo-Schmidt decomposition, from left to right we plot G
(1)

(t )/
 and a few contributions
from different pseudo-Schmidt modes in Eq. (4.16) with the horizontal axis normalized by T SH

p for β = 0.1, 5, and 10. In each plot the n = −6
pseudo-Schmidt mode is the leftmost contribution and they move towards to right as n increases.

while the expectation value of the number of photons in the
full pulse is

Npulse = N sinh2

( |β|√
N

)
. (4.21)

So in the weak squeezing limit (4.19) we have Nmode � 1;
the expected number of photons in any pseudo-Schmidt mode
is much less than unity. However, the expected number of
photons in the pulse, Npulse can be arbitrarily large; indeed, in
the limit of weak squeezing we have Npulse → |β|2. Very gen-
erally, regardless of the level of squeezing, we can understand
the cw limit as |β|2 → ∞ and N → ∞ such that |β|2/N is a
constant.

In Fig. 11 we plot the approximate G
(2)

(t1, t2) given by
(4.16) and (4.17), and compare with the exact G

(2)
(t1, t2) in

Fig. 7 for the sinc-hat model; we see very good agreement. Im-
portantly, the decomposition (4.16) and (4.17) of G

(2)
(t1, t2)

into pseudo-Schmidt modes immediately illustrates the be-
havior of that function in a way that the decomposition into
the exact Schmidt modes does not.

Considering the first plot when β = 0.1 (|β|/√N = 0.02),
the dominance of G

(2)
coh(t/2,−t/2) over G

(2)
incoh(t/2,−t/2) fol-

lows immediately from the prefactors s2c2 and s4 in their
expressions (4.17). And in the sum over p in the expression for
G

(2)
coh(t/2,−t/2), of the terms ηp(t/2)ηp(−t/2) both ηp(t/2)

and ηp(−t/2) must be significant for a contribution to be
made, which requires p to be close to 0 and |t | � Tc. The
same behavior extends for the larger values of β as in the exact
sinc-hat Schmidt decomposition. Thus the largest contribution
to G

(2)
(t/2,−t/2) when |t | � Tc comes from only a few terms

in the pseudo-Schmidt decomposition, while it involves many
terms in the Schmidt decomposition, and their interference.

The expression for G
(2)
incoh(t/2,−t/2), which in the

pseudo-Schmidt decomposition (4.17) involves sums over
two indices n and m, contains two types of contribu-
tions. In the first, with m = n, we get terms that will
only be significant if m = n is close to 0 and |t | � Tc,

as in the expression for G
(2)
coh(t/2,−t/2); this gives the

contribution to G
(2)
incoh(t/2,−t/2) that mirrors the form of

G
(2)
coh(t/2,−t/2). This contribution to G

(2)
incoh(t/2,−t/2), and

the term G
(2)
coh(t/2,−t/2), can thus be seen to arise from pairs

of photons, each photon in a pair associated with the same
pseudo-Schmidt mode. But the terms with m �= n can give
contributions for t on the order of Tp; they give rise to the
broad background, which can be understood as arising from
pairs of photons, with the photons in a pair associated with
different pseudo-Schmidt modes.

In a similar way one can understand the behavior of
G

(2)
coh(t + t/2, t − t/2) and G

(2)
incoh(t + t/2, t − t/2) for t �= 0.

Unlike in the decomposition of the joint temporal amplitude
in terms of Schmidt modes, the decomposition in terms of
pseudo-Schmidt modes immediately reveals the structure of
those correlation functions.

And in fact, we can derive an analytic expression for the
approximate [(4.16) and (4.17)] G

(1)
(t ) and G

(2)
(t1, t2) in the

cw limit. Noting that

∞∑
n=−∞

ηn(t2)ηn(t1) = 1

Tc
sinc

(
π �t

Tc

)
, (4.22)

where �t ≡ t2 − t1, for t1 and t2 in the center of a pulse of
duration Tp, when Tp → ∞ we can write

G
(2)
coh(t1, t2) → s2c2

T 2
c

sinc2

(
π �t

Tc

)
, (4.23)

while

G
(1)

(t ) → s2

Tc
. (4.24)

Finally, noting that

G
(1)

(t1, t2) = s2
∑

n

ηn(t2)ηn(t1) → s2

Tc
sinc

(
π �t

Tc

)
, (4.25)

then with the alternate form of G
(2)
incoh [see Eq. (3.32)] we have

G
(2)
incoh(t1, t2) → s4

T 2
c

[
1 + sinc2

(
π �t

Tc

)]
, (4.26)
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FIG. 11. For the sinc hat calculated from the pseudo-Schmidt decomposition, from left to right we plot G
(2)

(t1, t2)/
2 (top) and the
coherent and incoherent contribution to G

(2)
(t/2, −t/2)/
2 (bottom) with the axes normalized by T SH

p for β = 0.1, 5, and 10.

and so

G
(2)

(t1, t2) → G
(2)

(�t )

= s2c2

T 2
c

sinc2

(
π �t

Tc

)
+ s4

T 2
c

[
1 + sinc2

(
π �t

Tc

)]
.

(4.27)

We plot this in Fig. 12 (cf. Figs. 7 and 11).
From the above discussion, we are motivated to think of

G
(2)

(t + t/2, t − t/2) for times |t | � Tc when n = m as aris-
ing from one pseudo-Schmidt mode at a time, as it were,

on a “mode-by-mode” basis. Since the pseudo-Schmidt de-
composition is valid only for joint amplitudes such as the
sinc-hat joint amplitude, where there is a high degeneracy in
the Schmidt weights, we give this calculation in Appendix F.

V. THE WHITTAKER-SHANNON DECOMPOSITION

The ability to construct approximate pseudo-Schmidt
modes for the sinc-hat joint amplitude that are “localized”
in time [η(t ), see (4.1)] relied on the near-degeneracy of the
Schmidt modes. But this cannot be generally expected; see,

FIG. 12. Using the analytical result (4.27), from left to right we plot G
(2)

(t1, t2)/
2 (top) and the coherent and incoherent contribution to
G

(2)
(t/2, −t/2)/
2 (bottom) with the axes normalized by T SH

p for β = 0.1, 5, and 10.
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e.g., Fig. 2 for the Schmidt amplitudes of the double-Gaussian
joint amplitude, where there is no such near-degeneracy.
Nonetheless, the recognition used above that only a finite
frequency range—there from −
c/2 to 
c/2—is important
can be employed to construct an extension of a Schmidt
decomposition more generally; it shares the feature of the
pseudo-Schmidt decomposition above that the functions in-
volved are localized in time.

We consider a joint spectral amplitude γ (ω1, ω2) to be
bandwidth limited, in that at least approximately it can
be taken to be nonzero only for −
/2 � ω1, ω2 � 
/2,
where 
 is a positive frequency. Then we can construct
a Whittaker-Shannon decomposition of the joint amplitude
based on the Whittaker-Shannon sampling theorem [29–31].
That theorem states that for a function g(t ) that is band-
width limited in the sense defined above—i.e., involving only
constituent frequencies in the range −
/2 � ω � 
/2—we
can write

g(t ) =
∑

n

g(nτ )sinc

(
(t − nτ )π

τ

)
, (5.1)

where n ranges over the integers and

τ = 2π



. (5.2)

Defining

χ (t ) = 1√
τ

sinc

(
πt

τ

)
(5.3)

and putting

χn(t ) = χ (t − nτ ), (5.4)

we have ∫
χ∗

n(t )χm(t )dt = δnm, (5.5)

and we can write (5.1) as

g(t ) = √
τ

∑
n

g(nτ )χn(t ). (5.6)

The Fourier transform of g(t ) is

g(ω) =
∫

dt√
2π

g(t )eiωt = √
τ

∑
n

g(nτ )χn(ω), (5.7)

where

χn(ω) = eiωnτ

√



for −


2
� ω � 


2
(5.8)

= 0 otherwise (5.9)

is the Fourier transform of χn(t ); we have∫
χ∗

n (ω)χm(ω)dω = δnm. (5.10)

For frequencies within the band-limited region the set of func-
tions {χn(ω)} and {χn(t )} form an approximately complete set
of functions and we refer to them as the “Whittaker-Shannon
modes.”

The “Whittaker-Shannon decomposition” of the joint tem-
poral amplitude γ (t1, t2), and its Fourier transform γ (ω1, ω2),

follow immediately from this if γ (ω1, ω2) is bandwidth
limited, with frequency bandwidth 
. Using the sampling
theorem for both variables, we have

γ (t1, t2) = τ
∑
n,m

γ (nτ, mτ )χn(t1)χm(t2),

γ (ω1, ω2) = τ
∑
n,m

γ (nτ, mτ )χn(ω1)χm(ω2). (5.11)

Unlike a Schmidt (or pseudo-Schmidt) decomposition, this in-
volves a double sum. But the Whittaker-Shannon supermodes
involved, with raising operators given by

B†
n =

∫
dωχn(ω)a†(ω) =

∫
dtχn(t )a†(t ), (5.12)

are associated with functions that are localized in time [χn(t )]
and can be inverted so that

a(t ) =
∑

n

χn(t )Bn. (5.13)

It will be useful to define

βnm = βτγ (nτ, mτ ), (5.14)

which is generally complex but symmetric, βnm = βmn. Then
we can write the squeezed state |�〉 [(1.1) and (2.3)] as

|�〉 = e
1
2

∑
n,m βnmB†

nB†
m−H.c. |vac〉 . (5.15)

Although nondiagonal terms of βnm will be important, since
γ (t1, t2) is only significant for |t1 − t2| on the order of the
coherence time, we can expect βnm to be significant only for
m “reasonably close” to n; we examine this in more detail
below. Note that our examples of the double-Gaussian and
sinc-hat joint spectral amplitudes illustrate that imposing the
approximation that those amplitudes are bandwidth limited
requires a choice of 
 � 2πBc that corresponds to τ � Tc,
that is, τ is smaller than, but on the order of, the coherence
time.

As a first example, we apply the Whittaker-Shannon de-
composition to the sinc-hat joint amplitude (3.33) and (3.35)
and show how the approximate pseudo-Schmidt decomposi-
tion (4.14) and (4.15) arises as the limiting case when Tp �
Tc. To apply the Whittaker-Shannon decomposition we must
choose a bandlimit, and for the sinc-hat example the joint
spectral amplitude ranges mostly within the “box” set by
the width 
c; a natural choice for the bandlimit 
 is then
to set 
 → 
c and it follows that τ → Tc. However, the
sinc-hat joint spectral amplitude will never fit exactly inside
a box of width 
c because it is only exactly bandlimited in
the diagonal direction set by the range of φ((ω1 − ω2)/2),
see Eqs. (3.33) and (3.35), so the corners will always exist
outside the box, see the discussion surrounding Eq. (3.40) and
Appendix B. When we work in the limit that Tp � Tc, where
the contributions that exist outside the boundary of the box are
very small, then to good approximation we can treat the sinc-
hat joint spectral amplitude as bandlimited with bandwidth

 = 
c (τ = Tc).
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With this choice of 
 and the sinc-hat joint temporal am-
plitude [Eq. (3.33)], we evaluate

τ γ (nτ, mτ ) = δnm

√
Tc

Tp
for − Tp

2
� nTc � Tp

2

= 0 otherwise, (5.16)

where we have used sinc((n − m)π ) = δnm. We find that the
range of Whittaker-Shannon modes is then diagonal, and only
ranges over the pulse duration set by α(nTc); identifying that
Tp/Tc = N − 1 (4.12) and pn (4.15) as in Sec. IV, it immedi-
ately follows that

γ (t1, t2) →
( N−1

2 )∑
n=−( N−1

2 )

√
pnχn(t1)χn(t2), (5.17)

where χn(t ) = ηn(t ).
For the sinc-hat model (see Fig. 5), the reduction of the

double sum to its diagonal contributions is only possible be-
cause the joint spectrum is exactly bandlimited in the (ω1 −
ω2) direction [see (3.33) and (3.35)]; however, the resulting
Whittaker-Shannon decomposition will only be accurate as a
single sum in the Tp � Tc limit for which the contributions
that exist outside the box become very small and can safely
be neglected.

In general, this reduction will not be possible and we need
to include some—but typically only a few—off-diagonal con-
tributions to properly approximate the joint amplitude with the
Whittaker-Shannon decomposition. As we see below, the sin-
gle sum and product state that follows if only diagonal terms
are included [see Eq. (3.15)] is much easier and more intuitive
to work with, so we always want to be as close to that limit
as we can be. This means that for a not-exactly-bandlimited
joint spectral amplitude, the choice of a bandwidth 
 = 2π/τ

always involves a trade-off: We want τ as large as possible
so that each γ (nτ, nτ ) covers most of the |t1 − t2| behavior;
however, if we choose τ too large then 
 becomes too small to
even approximately cover the bandwidth of the joint spectral
amplitude.

To see how this plays out in practice, consider the double-
Gaussian joint amplitude (3.23). Although it is not strictly
bandlimited, if we set 
/2π = BDG

c = aσc/(2π
√

2) [see
Eq. (3.30)], to very good approximation we can neglect the
high-frequency contributions for a reasonable choice of a.
Then τ = 2π

√
2/(aσc), and

γ (nτ, mτ ) ∝ e− σ2
c τ2 (n−m)2

4 (5.18)

sets the off-diagonal range; for our choice of τ we have
σ 2

c τ 2 = 8π2/a2 and as a increases the bandlimit gets larger,
but so does the range over which |n − m| is significant. Setting
a = 2

√
2π as in Sec. III, we have σ 2

c τ 2/4 = π and the 1/e
drop-off in Eq. (5.18) occurs when |n − m| = 1/

√
π ≈ 0.5.

In this example, and more generally for only approximately
band-limited joint spectral amplitudes, one could investigate
optimizing τ constrained by a specified error tolerance on the
Whittaker-Shannon interpolation.

Clearly the Whittaker-Shannon decomposition depends on
the two index parameter βnm, but to make a comparison to
the pseudo-Schmidt decomposition we focus on β̊, which

we define to be the value of βnm at the n and m for which
|γ (nτ, mτ )| takes its maximum value. Denoting the value of
|γ (nτ, mτ )| at this n and m by γ max, we have

β̊ = τβγ max, (5.19)

and

βnm = β̊rnm, (5.20)

with rnm = γ (nτ, mτ )/γ max. The range of |n − m| over which
rnm is significant identifies the range over which βnm varies.

Again using the double-Gaussian joint amplitude as an
example, which achieves its maximum at t1 = t2 = 0, we find∣∣β̊∣∣ =

√
2|β| τ√

T DG
p T DG

c

, (5.21)

where we have used T DG
p T DG

c = 2π/σcσp. From the discus-
sion above, we set τ = T DG

c , and obtain

∣∣β̊∣∣ =
√

2|β|
√
T DG

c

T DG
p

=
√

2
|β|√
KDG

, (5.22)

so the effective Schmidt number naturally arises and—aside
from the benign factor of

√
2—identifies the weakly or

strongly squeezed limit as |β̊| � 1 or |β̊| � 1, respectively,
justifying the definition in Sec. III. Since each χn(t ) has a
width τ = T DG

c , the effective Schmidt number KDG roughly
identifies the number of Whittaker-Shannon modes that are
relevant along rnn. Furthermore, following the discussion
around Eq. (4.19), for a very long pulse such that KDG � 1
the squeezing parameter |β| can be quite large but |β̊| remains
finite.

In Fig. 13 we plot |γ (t1, t2)|2 and |γ (ω1, ω2)|2, recon-
structed from using the Whittaker-Shannon decomposition for
the double-Gaussian joint amplitude of Fig. 2, where we have
chosen 
 = 2πBc, and plot rnm. Comparing with Fig. 2, we
see very good agreement, and from the zoomed-in plot of rnm

in the lower right corner it is clear that only a few neighboring
Whittaker-Shannon modes in the |n − m| direction are rele-
vant.

The argument that even though |β| can be quite large |β̊|
remains finite holds true for any joint amplitude, because as
long as it is square normalized (1.3) it will carry prefactors on
its behavior in the two directions in the plane [of either (t1, t2)
or (ω1, ω2)] over which it is defined. In Appendix C, we show
that given a joint temporal amplitude characterized by Tp and
Tc, its maximum value γ max is on the order of

γ max ∼ 1√
TpTc

. (5.23)

To apply the Whittaker-Shannon decomposition we set 
 =
2πBc so that τ = Tc. Then one immediately finds

|β̊| = τ |β|γ max ∼ |β|√
K

. (5.24)

What remains to be shown is the relation between the
Schmidt number K and the effective Schmidt number K. In
Appendix D, we show that for a general joint temporal ampli-
tude characterized by widths Tp, Tc indicated schematically
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FIG. 13. For the double-Gaussian and using the Whittaker-Shannon decomposition, from left to right we plot the joint temporal intensity
divided by its maximum value with the axes normalized by T DG

p , the joint spectral intensity divided by its maximum value with the axes
normalized by 2πBDG

c , and the amplitudes rnm.

in Fig. 1, and a given τ which we set to be equal to Tc, the
inequality

K � Tp

τ
= Tp

Tc
= K, (5.25)

generally holds; of course this is conditioned on τ being suf-
ficiently small that the Whittaker-Shannon decomposition can
be accurately used. Thus by applying the Whittaker-Shannon
interpolation formula—which previously has not been linked
to squeezed light or the Schmidt decomposition—we are
able to show that the Schmidt number and effective Schmidt
number are intimately related. Furthermore, the Whittaker-
Shannon decomposition may be an important stepping stone
in formally linking the Schmidt number to other measures
of the correlation, like the time-bandwidth product and its
generalizations, in the same way that the Whittaker-Shannon
interpolation formula is intimately linked to the Shannon
number for classical signals and the information content of
images [9–18,26,27,29–32].

Finally, we are now in a position to explain why the effec-
tive Schmidt number for the sinc-hat example is nearly equal
to the exact Schmidt number. First we emphasize that the sinc
hat is an idealization with a sharp cutoff in time (frequency)
and is constant along t1 = t2 (ω1 = −ω2). This means that in
the limit when Tp � Tc, to very good approximation it is ex-
actly bandlimited with 
 = 
c (τ = Tc). Mathematically, the
sharp cutoff in frequency results in an exact diagonalization of
γ (nτ, mτ ), and since γ (nτ, nτ ) is identical for all n where it
is not zero [see Eq. (4.14)] the sum in Eq. (3.3) can be carried
out exactly resulting in K ≈ Tp/Tc, as we found in Sec. III B.
We then expect

KSH

KSH
= 1 + Tc

Tp
→ 1 (5.26)

for Tp/Tc → ∞. Physically, the Schmidt amplitudes are near-
degenerate, so there is no unique set of Schmidt modes.

VI. EMPLOYING THE WHITTAKER-SHANNON
DECOMPOSITION

In using the pseudo-Schmidt decomposition to deconstruct
the sinc-hat joint temporal amplitude, we showed that the ex-
pressions for the correlation functions G

(1)
(t ) and G

(2)
(t1, t2)

could be easily understood in terms of the properties of the
supermodes involved in the decomposition. In this section we
look at the corresponding expressions for the correlation func-
tions when we deconstruct the joint amplitudes using the
Whittaker-Shannon decomposition instead. The results are
more complicated, but again the behavior of the correlation
functions can be understood in terms of the properties of
the Whittaker-Shannon supermodes in an intuitive way. And
since the Whittaker-Shannon decomposition can be much
more widely applied than a pseudo-Schmidt decomposition,
the results here are much more general.

To simplify the notation we write the squeezed state in
Eq. (5.15) as |�〉 = S̃ |vac〉, where

S̃ = e
1
2

∑
n,m βnmB†

nB†
m−H.c. (6.1)

is the squeezing operator. To calculate the correlation func-
tions analogously to what was done with the Schmidt and
pseudo-Schmidt decompositions, we use the inverse relation
[Eq. (5.13)] and the transformation [33]

S̃†BrS̃ = μrsBs + νrsB
†
s , (6.2a)

S̃†B†
r S̃ = μ∗

rsB
†
s + ν∗

rsBs, (6.2b)

where we adopt the convention that repeated indices are to be
summed over, and

μrs = δrs + 1

2!
βraβ

∗
as + 1

4!
βraβ

∗
abβbcβ

∗
cs + · · · , (6.3a)

νrs = βrs + 1

3!
βraβ

∗
abβbs + · · · . (6.3b)

Note that from the symmetric property of βnm it follows that
μrs is Hermitian and νrs is symmetric.

For the Schmidt or pseudo-Schmidt decomposition the
transformation used always involves a single supermode [see
Eq. (3.17)]; for the general Whittaker-Shannon decomposi-
tion the squeezing transformation is more complicated. The
structure of the squeezing transformation (6.2), and the form
of μrs and νrs, motivates the use of matrix multiplication;
βnm is now treated as a complex square symmetric matrix
which we denote by β (β∗ = β†). To implement the squeez-
ing transformation it is convenient to use the “left” polar
decomposition of β (valid for any complex square matrix),
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given by

β = UP, (6.4)

where P = (β†β)1/2 is Hermitian and U is unitary. Equiva-
lently, if we set Q = UPU† then we have the “right” polar
decomposition β = QU; since β is symmetric, PT = Q and
UT = U. Using the polar decomposition and its properties, the
matrices μ and ν are given by [34]

μ = cosh(UPU†) = coshQ, (6.5a)

ν = UsinhP = (sinhQ)U. (6.5b)

The form of μ and ν guarantees that the transforma-
tion in Eq. (6.2) preserves the commutation relations of
the Bn operators, as expected since the transformation
is unitary.

In Appendix E we calculate the correlation functions
[Eq. (2.4)]; we find

G
(1)

(t1, t2) = χ†(t1)(sinh2P)χ(t2), (6.6)

and

G
(2)

(t1, t2) = |χT (t1)U(sinhP)(coshP)χ(t2)|2

+ G
(1)

(t1)G
(1)

(t2) + |G(1)
(t1, t2)|2, (6.7)

where χ(t ) = (. . . , χ−1(t ), χ0(t ), χ1(t ), . . .)T is the column
vector formed from the set {χn(t )} for a given t .

Since the functions χn(t ) are similar to the pseudo-Schmidt
modes ηn(t ), Eqs. (6.6) and (6.7) for the correlation func-
tions calculated using the Whittaker-Shannon decomposition
are the generalization of the pseudo-Schmidt results (4.16)
and (4.17), valid for an approximately bandlimited but oth-
erwise general joint amplitude. Both the pseudo-Schmidt and
Whittaker-Shannon mode functions are localized, so for short
time differences the structure of Eq. (6.7) reduces to that of
the pseudo-Schmidt decomposition, and we can again think of
the correlation function on a “mode-by-mode” basis; however,
since this correspondence is only approximate, we discuss it
in Appendix F.

A. Packet expansion

From Eq. (6.6), we can immediately write the photon den-
sity as

G
(1)

(t ) =
∑

n

�2
n |ρn(t )|2, (6.8)

where ρn(t ) is a normalized function set by

ρn(t ) = 1

�n

∑
m

(sinhP)nmχm(t ), (6.9)

and

�n =
√

(sinh2P)nn, (6.10)

which is real. The expression (6.8) for G
(1)

(t ) is the gener-
alization of Eq. (4.16) in the pseudo-Schmidt decomposition
and clearly has the same form; indeed, if we were to set βnm

to be diagonal and independent of n for the n for which it does
not vanish, we would have ρn(t ) → χn(t ). Even more gen-
erally, the expression (6.8) mirrors the form of the expansion
(3.20) of G

(1)
(t ) in terms of Schmidt modes, with �n here tak-

ing the role of sn there. But the ρn(t ) cannot be identified as a

supermode; while the functions in the set {χn(t )} are mutually
orthogonal, the functions in the set {ρn(t )} are not, because in
general sinhP is not unitary. Nonetheless, the functions in the
latter set are generally localized compared with the duration of
the pulse, especially for weak squeezing. We refer to the ρn(t )

simply as “packets,” and to the expansion (6.8) for G
(1)

(t ) as
its “packet expansion.” We will see packet expansions of other
correlation functions below.

The expected number of photons in the pulse is given by
integrating G

(1)
(t ) over all time; we find

Npulse = Tr(sinh2P) =
∑

n

�2
n, (6.11)

where Tr(·) denotes the trace. This is reminiscent of the cor-
responding expressions (3.22) and (4.21) for the Schmidt and
pseudo-Schmidt expansions, respectively. From Eq. (6.11) it
is clear that �2

n is the number of photons in each packet, and
summing over all packets gives the total number of photons.

For the double-Gaussian and three values of β chosen in
Sec. III A, we have |β̊| ≈ 0.014, 0.7, and 1.4 which is on
the order of the three values |β|/√K, in agreement with the
discussion surrounding Eq. (5.24). In Fig. 14 we plot G(1)(t )
calculated using Eq. (6.6), as well as the contributions given
by Eq. (6.8) for a few values of n, together with the exact
G

(1)
(t ) for the three chosen values of β, which correspond

to Npulse ≈ 0.01, 35, 383. We find excellent agreement be-
tween the exact and Whittaker-Shannon decomposition. From
Fig. 14 we see that each ρn(t ) is clearly localized compared
with the duration of the pulse, and so using the packets
we can deconstruct the squeezed light and provide a simple
description of the photon density [Eq. (6.8)]. This extends
our understanding from the pseudo-Schmidt decomposition
valid for the sinc-hat joint amplitude to more general joint
amplitudes, such as the double-Gaussian, where a Whittaker-
Shannon decomposition is necessary.

Notice that as |β| (|β̊|) increases so does the width of
each ρn(t ). Referring back to Eq. (6.9), this occurs because
elements of sinhP that are further off-diagonal become more
important as |β| increases. And this is a consequence of the
fact that more powers of P become important in the expansion
of sinhP as |β| increases, since P depends on β [see Eq. (6.4)].
Thus the off-diagonality of sinhP is extended beyond that of β,
and elements of sinhP further from the diagonal become larger
as |β| increases; see Fig. 15 for plots of sinhP with increasing
|β|, which demonstrates this effect.

We can now construct the expansions for G
(2)
coh(t1, t2) and

G
(2)
incoh(t1, t2). For the first of these, comparing the expression

(6.7) for the full G
(2)

(t1, t2) with our earlier general expression
(3.32) for G

(2)
incoh(t1, t2), we can identify

G
(2)
coh(t1, t2) = |χT (t1)U(sinhP)(coshP)χ(t2)|2

=
∣∣∣∣∣∣
∑
n,m

(U(sinhP)(coshP))nmχn(t1)χm(t2)

∣∣∣∣∣∣
2

.

(6.12)

This can be compared with the corresponding expressions
(3.21) and (4.17) for the Schmidt and pseudo-Schmidt
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FIG. 14. For the double-Gaussian, from left to right we plot G
(1)

(t )/
 calculated using the Whittaker-Shannon decomposition and a few
contributions from different packets in Eq. (6.8) compared with the exact calculation (3.20), with the horizontal axis normalized by T DG

p for
β = 0.1, 5, and 10. In each plot the n = −32 packet is the leftmost contribution and they move towards to right as n increases.

decompositions, respectively. The appearance of terms with
m �= n here, as opposed to the single summation that appears
in the Schmidt and pseudo-Schmidt expansion, is expected
given that the squeezed state written using the Whittaker-
Shannon decomposition involves a double sum (6.1).

We show in Appendix G that the expression (6.12) for
G

(2)
coh(t1, t2) can also be written using the set of packet func-

tions {ρn(t )},

G
(2)
coh(t1, t2) =

∣∣∣∣∣∣
∑
n,m

�n�m(UcothP)mnρm(t1)ρn(t2)

∣∣∣∣∣∣
2

, (6.13)

but this is not a convenient expression to use in practice, for if
β is close to diagonal some functions of β, such as tanhP, will
be as well, but not cothP. Furthermore, the weakly squeezed
limit is not directly apparent from the form of Eq. (6.13),
so it seems preferable to write G

(2)
coh(t1, t2) using {χn(t )} in-

stead of {ρn(t )}. Perhaps this is not surprising, for earlier

we found that when |β| � 1, G
(2)

(t1, t2) → |β|2|γ (t1, t2)|2
(3.14), which directly depends on the correlations contained
in the joint temporal amplitude; in same limit, using the

Whittaker-Shannon decomposition, we expect it to depend on
the analogous quantity βnm. So unlike G(1)(t ), where the pho-
ton density at a particular time involves contributions from all
possible pairs and is written in terms of {ρn(t )}, G

(2)
coh(t1, t2)—

at least in the weakly squeezed limit—should directly depend
on the temporal correlations, and so it is more suitable to write
G

(2)
coh(t1, t2) in terms of {χn(t )}, as is done in Eq. (6.12).
Turning finally to the general expression (3.32) for

G
(2)
incoh(t1, t2), using the definition of ρn(t ) and �n [(6.9) and

(6.10)] we can write a packet expansion for the incoherent
contribution as

G
(2)
incoh(t1, t2) = 1

2

∑
n,m

|�n�m(ρn(t1)ρm(t2) + ρn(t2)ρm(t1))|2,

(6.14)

which has the same form as the Schmidt (3.21) and pseudo-
Schmidt (4.17) decompositions but is in terms of the set of
packets {ρn(t )}.

In Fig. 16 we plot G(2)(t1, t2) calculated using Eq. (6.7) for
the double-Gaussian joint amplitude, as well as the coherent
and incoherent contributions; comparing with Fig. 4 for the

FIG. 15. For the double-Gaussian, from left to right we plot (sinhP)nm normalized by the respective maximum values for β = 0.1, 5, and
10 with the horizontal axis normalized by T DG

p .
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FIG. 16. For the double-Gaussian and using Whittaker-Shannon decompositions, from left to right we plot G
(2)

(t1, t2)/
2 (top) and the
coherent and incoherent contribution to G

(2)
(t/2, −t/2)/
2 (bottom) with the axes normalized by T DG

p for β = 0.1, 5, and 10.

exact calculation we find excellent agreement between the
two. Although the Whittaker-Shannon decomposition does
not allow the simple factorization of the ket into product
kets associated with each Schmidt or pseudo-Schmidt mode,
correlation functions can still be evaluated. And, since the
off-diagonal elements of the squeezing matrix β typically drop
off quickly away from the diagonal, the correlation functions
can be written in a form involving either the set of functions
{χn(t )} or the set of functions {ρn(t )}; all these functions are
localized compared with the Schmidt modes.

B. Correlation functions in the weakly squeezed limit

In this section we identify approximate expressions for the
correlation functions valid in the weakly squeezed limit when
|β̊| � 1. The correlation functions for the Whittaker-Shannon
decomposition involve the matrix P, which using the form
of Eq. (5.20) is given by P = |β̊|

√
r†r. Taking the weakly

squeezed limit we approximate

sinhP → P, coshP → 1, (6.15)

where 1 is the identity matrix. Then �n → [(P2)nn]1/2,

ρn(t ) → 1

�n

∑
m

Pnmχm(t ), (6.16)

and for rnm nonzero only for |n − m| less than a small integer,
the set {ρn(t )} will be localized. The expression (6.8) then
gives

G
(1)

(t ) →
∑
n,m

|Pnmχm(t )|2. (6.17)

Turning to G
(2)

(t1, t2), for the coherent contribution
G

(2)
coh(t1, t2), the general expression (6.12), using the result

U(sinhP)(coshP) → UP = β, (6.18)

to find

G
(2)
coh(t1, t2) → |χT (t1)βχ(t2)|2 =

∣∣∣∣∣∣
∑
n,m

χn(t1)βnmχm(t2)

∣∣∣∣∣∣
2

,

(6.19)

which clearly shows that the resulting photon statistics de-
pends on βnm. Finally, in this limit the expression (6.14) for
G

(2)
incoh(t1, t2) gives

G
(2)
incoh(t1, t2) → 1

2

∑
n,m

∣∣∣∣∣∣
∑
u,v

PnuPmv (χu(t1)χv (t2)

+ χu(t2)χv (t1))

∣∣∣∣∣∣
2

. (6.20)

VII. LOCAL STATES AND CORRELATION FUNCTIONS

The general equations we derived for G
(1)

(t ) (6.8) and
G

(2)
(t1, t2) (6.7), and their weakly squeezed approximations,

are valid for any times t, t1, t2. In the discussion surrounding
Fig. 14 for the photon density, it was noted that since each
packet is localized we only need a few to properly represent
the photon density at any particular time. This suggests that
for some calculations, including some more general than the
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FIG. 17. Schematic of the matrix RI which has nonzero entries
centered at βnInI with a width d and zeros everywhere else. The
matrix K = β − RI and consists of every nonzero element that we
set to zero in RI.

correlation functions considered above, we can rely on an
approximate form of the ket itself.

Suppose we are interested in features of the state around
a small neighborhood centered at the time tI. Now for a
correlated joint temporal amplitude βnm will typically only
be nonzero for |n − m| ranging up to a small integer, so for
times around a small neighborhood of tI only a few Whittaker-
Shannon modes centered around nI = [tI/τ ] will be relevant;
here we use [·] to denote the closest integer. We identify the
range of m around nI for which βnIm will be non-negligible
by the odd integer d , assuming that βnIm is sufficiently small
for |nI − m| > (d − 1)/2 that for those values of m it can be
neglected.

We then split the matrix β into two contributions

β = RI + K, (7.1)

where RI is a symmetric matrix with nonzero entries centered
at RI

nInI
. It contains the elements of β as the row and column

indices range over (d − 1)/2 in all directions from the center
at (nI, nI), and all its other elements are set to zero. The matrix
RI is shown schematically in Fig. 17 with the nonzero contri-
butions existing inside the red “box” containing d2 elements;
all the other elements of β are contained in K. For times
of interest we assume that d is chosen large enough so that
significant contributions to the quantities of interest, such as
correlation functions involving times near tI, only involve the
elements of β contained in RI.

The squeezing operator (6.1) is then approximated by

S̃ = e
1
2

∑
n,m (RI

nm+Knm )B†
nB†

m−H.c. ≈ e
1
2

∑
n,m RI

nmB†
nB†

m−H.c., (7.2)

where in the second line we dropped all the terms from K.
The dimension of RI can be quite large if the pulse is long, but
since most of its entries are zero and the only nonzero entries
have a width given by d , we use a “prime” symbol below to in-
dicate that we can restrict the sum to be only over the nonzero
elements of RI. In practice, this can drastically increase the

efficiency of numerical computations involving only a limited
region of time. The state is then taken to be |�I〉 = S̃I |vac〉I,
where |vac〉I is the vacuum state corresponding to the modes
associated with the nonzero elements in RI, and we set

S̃I = e
1
2

∑′
n,m RI

nmB†
nB†

m−H.c.. (7.3)

From the approximate state |�I〉 we can apply the same steps
as above to calculate the correlation function, but instead
of using the full matrix β for the transformation and polar
decomposition we use the reduced matrix RI. Then for times
of interest we have [see Eq. (5.13)]

a(t ) =
∑

n

χn(t )Bn ≈
′∑
n

χn(t )Bn, (7.4)

where again we restrict the sum to be over the modes associ-
ated with the nonzero elements of RI, as in the approximate
state |�I〉. The equations for the correlation functions, (6.6)
and (6.7), can be applied with β replaced by RI for times near
tI, with the appropriate restriction of the sums.

In Fig. 18 we plot a zoomed-in version of G
(1)

(t ) calculated
from the full state |�〉 and the approximate state |�I〉 around
the time tI = 0 for the double-Gaussian, the three values of β

(β̊), and d = 7, 9 and 11. We see that the choice of d gener-
ally determines over how wide a neighborhood around tI the
contributions from the full state are well approximated by the
contributions from |�I〉. For β = 0.1 (β̊ = 0.014), which is
well within the weakly squeezed limit, only three Whittaker-
Shannon modes on each side of the center mode are relevant to
accurately determine the photon density at t = 0; this is much
less then the total number of modes along rnn which is set by
K, and for this example is KDG = 100. Thus, the state |�I〉
provides a “local” description of the photon density around
t = tI. With the state |�I〉 one can also calculate G(2)(t1, t2)
as long as both times are near the time tI. We find similar
agreement and trends with β and d as for the photon density.

As |β| (|β̊|) increases more neighboring Whittaker-
Shannon modes are required to accurately reproduce the
photon statistics at a given time and we need to increase the
size of the nonzero box of elements in RI. For as |β| increases
there is a larger amplitude for photons to be described by
different modes spread further apart from each other; see the
discussion in the paragraph after Eq. (6.11). In the same way
that (sinhP)nm spreads in the |n − m| direction as |β| increases
(see Fig. 15) we need to choose a larger box to capture all the
possible contributions near a given tI. We return to this point
below.

Suppose now we are interested in the properties of the state
associated with two or more times tI, tII, tIII, . . ., “sufficiently
far apart” from one another. Then we can split β into a set of
contributions given by

β = RI + RII + RIII + · · · + K, (7.5)

with RI associated with tI, RII associated with tII, etc., and
where by “sufficiently far apart” we mean that the correspond-
ing boxes of sizes dI, dII, etc. associated with the regions of
RI, RII, etc. that contain nonzero elements do not overlap;
this is shown schematically in Fig. 19, where we indicate the
regions of RI, RII, etc. that contain nonzero elements by I, II,

023710-20



DECONSTRUCTING SQUEEZED LIGHT: SCHMIDT … PHYSICAL REVIEW A 110, 023710 (2024)

FIG. 18. For the double-Gaussian, from left to right we plot G
(1)

(t )/
 calculated using the Whittaker-Shannon decomposition with the
full βnm compared with the approximate calculation using RI near tI = 0 for d = 7, 9 and 11, with the horizontal axis normalized by T DG

p for
β = 0.1, 5, and 10.

etc. Again, the matrix K contains the remaining contributions
to β not in any of the nonzero regions of the RJ matrices,
J = I, II, etc. Then since each RJ has nonzero elements only
in the region where the others do not, each matrix in {RJ}
commutes with the rest and each contribution to the squeezing
operator can be split apart. So for the times of interest the state
is given by

|�〉 ≈
⊗

J

|�J〉 =
⊗

J

S̃J |vac〉J , (7.6)

where |�J〉, S̃J , and |vac〉J are the obvious generalization of
|�I〉, S̃I , and |vac〉I . Using equation (6.11) for the average
photon number we similarly calculate that each time region
tJ has

NJ = Tr(sinh2PJ ) (7.7)

FIG. 19. Schematic of the matrix β partitioned into a set of
nonoverlapping matrices RJ , each with nonzero values centered
at βnJ nJ of size dJ denoted by the red squares. The matrix K =
β − RI − RII − · · · and consists of every other nonzero element
contained in β.

photons, where PJ is the matrix calculated from doing a polar
decomposition of the corresponding RJ .

To calculate the correlation functions in the neighborhood
of a time tJ we again use Eqs. (6.6) and (6.7) with the re-
placement of βnm with the appropriate RJ as discussed above.
If instead we want to calculate G

(2)
(tJ , tJ ′ ) for J �= J ′ then the

corresponding operators a(tJ ) and a†(tJ ′ ) in Eq. (2.4) commute
and the resulting second-order correlation function is

G
(2)

(tJ , tJ ′ ) = G
(1)

(tJ )G
(1)

(tJ ′ ), (7.8)

where the photon densities evaluated at the times tJ , tJ ′ are
evaluated using the respective contributions from |�J〉 and
|�J ′ 〉.

A. Disentangling the squeezing operator

While the approximation of the state |�〉 into the set of
states {|�J〉}, deconstructs the squeezed state and provides a
local calculation of the correlation functions, it does not really
give us intuition of the state itself. To gain insight into that, we
make use of the general “disentangling formula” [34] applied
to each squeezing operator S̃J ,

S̃J = |WJ | 1
2 e

1
2

∑′
n,m T J

nmB†
nB†

m e
∑′

n,m LJ
nmB†

nBm e− 1
2

∑′
n,m T J,∗

nm BnBm , (7.9)

where

|WJ | 1
2 =

√
det[sech(QJ )], (7.10a)

TJ = (TJ )T = tanh(QJ )UJ = UJ tanh(PJ ), (7.10b)

LJ = ln(sech(QJ )), (7.10c)

and with QJ , UJ , and PJ the same as before (6.4) but
calculated from the reduced matrix RJ . Then acting the dis-
entangled squeezing operator on the vacuum state we have for
each |�J〉 ,

|�J〉 = |WJ | 1
2 e

1
2

∑′
n,m T J

nmB†
nB†

m |vac〉J ≡ SJ |vac〉J , (7.11)

where SJ is the disentangled squeezing operator after acting
on the vacuum state. We point out that one could also apply the
disentangling formula to the whole state valid at all times, but
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this is not very illuminating because one can already calculate
the full correlation functions; further, had we first applied the
disentangling formula and then reduced the state by getting
rid of the terms that are negligible, the resulting state would
not be normalized, whereas |�J〉 as given in Eq. (7.11) always
is.

Unlike the squeezing operator in its “entangled form” (6.1),
all the operators in the exponent of Eq. (7.11) are creation
operators which always commute so we can equivalently write
the state for each J as

|�J〉 = |WJ | 1
2

⊗
n,m

e
1
2 T J

nmB†
nB†

m |vac〉J . (7.12)

Unfortunately this form of the state is not as intuitive as the
single product state in the pseudo-Schmidt decomposition be-
cause for a given n we must include contributions from every
other m in the range of T J

nm.

B. The ket in the weakly squeezed limit

Instead, in situations where |β| can be quite large but |β̊|
is sufficiently small, as in a long pulse, we can take advantage
of the fact that it is |β̊| that sets the magnitude of the matrix
T J

nm. Given that the sum in Eq. (7.11) is only over the modes
of interest, and not the whole joint amplitude, in the weakly
squeezed limit when |β̊| � 1 we can Taylor expand the expo-
nential so that

|�J〉 ≈ |WJ | 1
2

(
|vac〉J +

√
NJ

2
|II〉J + · · ·

)
, (7.13)

where we have used (TJ )†TJ → (RJ )†R, Eq. (7.7) reduces to

NJ → Tr((RJ )†RJ ), (7.14)

and we have introduced the normalized two-photon state for
each J by

|II〉J = 1√
2

∑
nm

T J
nm√
NJ

B†
nB†

m |vac〉J . (7.15)

The state |�J〉 has NJ � 1 photons and the prefactor |WJ | in
the weakly squeezed limit is

|WJ | ≈ 1 − NJ

2
, (7.16)

so to good approximation, the state remains normalized, as
expected. The two-photon state |II〉J is a superposition of all
the ways in which pairs of photons can be associated with
the same Whittaker-Shannon supermode, or different super-
modes, within a neighborhood of the time tJ ; one can easily
extend the state in Eq. (7.13) to higher order in which two
pairs, three pairs, etc. are considered. For a set of times, {tJ},
in the weakly squeezed limit the full state in equation (5.15)
can be expanded as

|�〉 ≈
⊗

J

|WJ | 1
2

(
|vac〉J +

√
NJ

2
|II〉J + · · ·

)
, (7.17)

providing a localized description of squeezing light for
correlated but otherwise arbitrary joint amplitudes. In the
long-pulse limit, despite the fact that |β| → ∞, |β̊| remains

finite and we can describe the light in the weakly squeezed
limit as being composed of approximately two-photons within
a neighborhood around each time tJ .

VIII. THE STRONGLY SQUEEZED LIMIT

In this section we consider the strongly squeezed limit,
where |β|/√K � 1, or equivalently |β̊| � 1. The results we
derived in Secs. V and VI are valid for any approximately
bandlimited joint amplitude and for any squeezing parame-
ter β. However, following the discussion around Fig. 3, for
the double-Gaussian with KDG = 100 we found that as |β|
increased fewer Schmidt modes were required to calculate
the correlation functions, although many were required to
calculate the joint amplitude.

To explore this further, consider the double-Gaussian joint
amplitude (Fig. 2, with KDG = 100) but for β = 150, corre-
sponding to |β|/√KDG ≈ 15 or |β̊| ≈ 21, well in the strongly
squeezed regime. In Fig. 20 we plot G

(1)
(t ) calculated using

the Schmidt and Whittaker-Shannon decompositions. Clearly
the first Schmidt mode is sufficient to produce an accurate
G

(1)
(t ), despite the fact that all Schmidt modes are required

to correctly calculate the joint amplitude. This is because the
correlation functions depend on sn and cn [recall Eqs. (3.20)
and (3.21)], but when |β| is large these scale exponentially;
since the Schmidt modes drop off as n increases, s0 � s1 and
the sums in Eq. (3.20) for the correlation functions are well
approximated by the n = 0 term. For the Whittaker-Shannon
decomposition we still find very good agreement with the
Schmidt calculation. However, as in Fig. 14, we find each
packet is significantly broadened. In the strongly squeezed
limit, the amplitude that many photon pairs will contribute is
large, and so the contribution of photons corresponding to two
Whittaker-Shannon modes for which |n − m| � 1 is signifi-
cant; since the ρn(t ) include contributions from all other m for
a given n, they are necessarily broader. More mathematically,
in the strongly squeezed limit many matrix multiplications are
involved in calculating sinhP, and so (following the discussion
in Sec. VI A and surrounding Figs. 15 and 18) the width of
each packet is significantly broadened.

Since packets can then significantly overlap with a number
of their neighbors, the local description of the photon statistics
and resulting state breaks down. This is not surprising, given
that the second-order correlation function, calculated using
the Schmidt decomposition and plotted in Fig. 21, is com-
pletely uncorrelated, a local description to identify the photon
correlations is not necessary. Note that here we do not include
the plot of G

(2)
(t1, t2) calculated using the Whittaker-Shannon

decomposition, because it is essentially identical to Fig. 21.
Finally, we point out that in Fig. 21 the incoherent contri-

bution is approximately twice the coherent contribution. If we
restrict the sum in Eqs. (3.20) and (3.21) to the first term we
have

G
(1)

(t ) → s2
0| f 0(t )|2, (8.1a)

Npulse → s2
0, (8.1b)

G
(2)
coh(t1, t2) → N2

pulse| f 0(t1)|2| f 0(t2)|2, (8.1c)

G
(2)
incoh(t1, t2) → 2N2

pulse| f 0(t1)|2| f 0(t2)|2, (8.1d)
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FIG. 20. For the double-Gaussian joint amplitude, we plot
G

(1)
(t )/
 calculated using the Schmidt decomposition (top) and

Whittaker-Shannon decomposition (bottom) as well as a few contri-
butions from each calculation, for β = 150 with the horizontal axis
normalized by T DG

p . In the bottom plot, the smallest and leftmost
contribution is from the n = −4 packet and the largest is the n = 0
packet.

where we have used the fact that, for large |β|, cn ≈ sn; it is
clear from these expressions that G

(2)
incoh(t1, t2) ≈ 2G

(2)
coh(t1, t2).

Then putting them together we have

G
(2)

(t1, t2) = 3N2
pulse| f 0(t1)|2| f 0(t2)|2. (8.2)

Since the calculation in Appendix F was done for a pseudo-
Schmidt mode, it can be applied to this instance of a single
Schmidt mode, so we identify 3N2

pulse as the expectation value

FIG. 21. For the double-Gaussian joint amplitude, we plot
G

(2)
(t1, t2)/
2 (top), and the coherent and incoherent contribution

to G
(2)

(t/2, −t/2)/
2 (bottom) calculated using the Schmidt de-
composition, for β = 150 with the horizontal and vertical axis
normalized by T DG

p .

of the number of ways of “picking” two photons in the large
|β| limit from the first Schmidt mode.

IX. A FINAL EXAMPLE

In this section we consider a realistic joint amplitude
generated from a dual-pump spontaneous four-wave mixing
process, in a ring resonator system, when time-ordering ef-
fects and self- and cross-phase modulation are included [4].
In Fig. 22 we plot the joint intensity and the Schmidt am-
plitudes. The joint intensity has widths T R

p = 200 ns and
BR

c ≈ 1.03 GHz (T R
c ≈ 0.97 ns) corresponding to an effective

Schmidt number KR ≈ 206, and the joint amplitude has a
Schmidt number KR ≈ 108, where we use “R” to identify
this “ring” calculation. The squeezing parameter for the gen-
eration is β = 3.72, corresponding to Npulse ≈ 11 photons.
Other system parameters, such as the center wavelengths and
pump duration, are given in the caption of Fig. 22. Comparing
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FIG. 22. From left to right we plot the joint temporal intensity, the joint spectral intensity, and the Schmidt amplitudes generated from
a dual-pump spontaneous four-wave mixing process. The two pump functions are centered at the wavelengths λP1 = 1.556 µm and λP2 =
1.547 µm and each have temporal FWHM of 100 ns and an energy of 103 pJ. The generated photons are centered at λS = 1.552 µm (ωS/2π =
193.164 THz) and have a bandwidth on the order of a GHz. The ring resonator has quality factors QP1 = 1 529 378, QP2 = 3 844 257, and
QS = 2 704 405 for the three modes and a nonlinear coupling � = 5 THz [4].

Fig. 22 with Fig. 23 for the joint temporal intensity calculated
using the Whittaker-Shannon decomposition, with 
/2π =
BR

c (τ = T R
c ), we see excellent agreement.

In Fig. 24 we plot G
(1)

(t ) for the Schmidt (top) and
Whittaker-Shannon (bottom) decompositions, as well as a few
contributions to each. We see a dramatic difference: at any
particular time a huge number of Schmidt modes are required
to capture the overall photon density, while in our packet
decomposition only a small range of packets are required to
describe the behavior at any time.

In Fig. 25 we plot G
(2)

(t1, t2) (top) and the coherent and
incoherent contributions to G

(2)
(t/2,−t/2) (bottom) calcu-

lated using the Whittaker-Shannon decomposition. Here we
only plot the Whittaker-Shannon results because the Schmidt
results look the same. The contributions to G

(2)
(t1, t2)—strong

peak near t1 = t2 and smaller broad background—match that
of the double-Gaussian example for the three values of β. This

FIG. 23. Joint temporal intensity calculated using the Whittaker-
Shannon decomposition.

is unsurprising because, although β = 3.72 in this example,
β̊ = 0.28, and so the state is weakly squeezed.

Since the state is weakly squeezed, the formalism provided
in Sec. VII can be directly applied, providing a localized
description of the pulse of light into a set of states with
different time labels, each containing approximately two
photons.

X. CONCLUSION

In this article we have developed a formalism to describe
squeezed light with a large spectral-temporal correlation. As
opposed to the usual strategy of employing the Schmidt de-
composition, we feel it makes the physics more apparent.
We began by characterizing general joint amplitudes by their
timewidth Tp and bandwidth Bc (or equivalently the coherence
time Tc = 1/Bc). Using the double-Gaussian joint amplitude
as an example, we calculated the correlation functions using
the Schmidt decomposition and found that for weak squeezing
the form of G

(2)
(t1, t2) matches that of the joint temporal am-

plitude and reaches its maximum value when |t1 − t2| < Tc.
However, the Schmidt modes themselves extend on a much
broader timescale given by Tp. When calculating the corre-
lation functions using the Schmidt decomposition, we found
that a large amount of interference is present. We cannot asso-
ciate a single Schmidt mode, or even a few, with a particular
time.

Next we considered another example, the sinc-hat joint
amplitude, which demonstrated that this behavior of the
double-Gaussian is not unique. And although it is somewhat
artificial, the sinc-hat joint amplitude is interesting in that its
Schmidt amplitudes are nearly degenerate, allowing us to con-
struct an approximate pseudo-Schmidt decomposition where
the pseudo-Schmidt modes are displaced, localized “sinc”
functions. Using this decomposition we could immediately
identify contributions contained in G

(1)
(t ) or G

(2)
(t1, t2) at a

particular time as arising from a single pseudo-Schmidt mode,
allowing us to deconstruct the photon statistics, elucidating
the physics. We also demonstrated that the weakly squeezed
limit corresponds to |β|/√N � 1, where N is the effective
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FIG. 24. Plot of G
(1)

(t ) calculated using the Schmidt decompo-
sition (top) and Whittaker-Shannon decomposition (bottom). In the
top plot the n = 10 Schmidt corresponds to the larger contribution.
In the bottom plot the n = −20 is the leftmost packet.

Schmidt number that identifies the number of pseudo-Schmidt
modes required for the decomposition. This is useful because
in the long-pulse limit, where |β| � 1 and Npulse � 1, the
quantity |β|/√N remains finite. Despite there being a large
number of photons in the pulse, the number of photons in each
pseudo-Schmidt mode can be relatively small.

To consider more general joint amplitudes, where there is
a range of Schmidt amplitudes, we generalized the pseudo-
Schmidt decomposition to any approximately bandlimited
joint amplitude by using the Whittaker-Shannon interpolation
formula. While the exponent in the squeezing operator then
involves a double sum instead of the usual single sum, we
can nevertheless define a packet expansion where each packet

FIG. 25. Plot of G(2)(t1, t2) (top) and the coherent and incoherent
contribution to G(2)(t/2, −t/2) calculated using the Whittaker-
Shannon decomposition.

typically has a duration short compared with that of the pulse,
with the packets thus analogous to the pseudo-Schmidt modes.
In general, if the squeezing is weak to moderate, the corre-
lation functions at a particular time are associated with only
a few packets, allowing us to deconstruct the squeezed light
and the resulting photon statistics. Finally we showed that if
one is only interested in some finite-time regions that form
part of the pulse duration, an effective ket can be written as
a product of kets associated with those time regions. Then in
the weakly squeezed limit, which we can take to be set by the
limit |β̊| � 1, there will be on average only a few photons
within each time region, although in the long-pulse limit the
total number of photons will be very large.

In extensions of this work, we will consider two-mode
squeezing, which is fairly straightforward, and we will ap-
ply this formalism to quantum optics-based experiments
such as coincidence-accidental-detection ratios and SU(1,1)
interferometry. And instead of describing squeezed light in
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the spectral-temporal domain, one could expand this for-
malism to describe squeezed light with a large correlation
between the photon wave vector and the conjugate position
variables in two, or three dimensions. Another interesting
focus is the formulation of relationships between the Schmidt
number, the effective Schmidt number discussed here, and
the Shannon number (or time-bandwidth product) and its
generalizations. Here there is the opportunity to apply the
vast mathematical formalism that has already been developed
to describe the information content of classical signals and
images [9–18,26,27,29–32].

With the continuous advancement of custom engineered
nonlinear optical systems, the generation of nonclassical
“tri-photon” states is slowly becoming a reality [35]. Such
states and their “troint amplitudes” are the generalization
of squeezed states and the joint amplitudes discussed here.
To characterize these states, generalizations of the Schmidt
decomposition (singular-value decomposition) need to be
employed. One such example is the canonical polyadic
decomposition (or CP decomposition) [36]; however, an or-
thogonal decomposition is not guaranteed to exist. Other
generalizations of the Schmidt decomposition exist, such as
the Tucker decomposition [36], which gains orthogonality
but loses the single-sum behavior of the Schmidt decompo-
sition. An alternative description can be provided using the
Whittaker-Shannon interpolation formula. In the same way
that we used the Whittaker-Shannon interpolation formula
for two-dimensional functions in this work, it can be directly
applied to any number of dimensions in a very straightfor-
ward way. Thus the formalism applied here can easily be
generalized to situations where other decompositions are not
possible.
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APPENDIX A: FIELD OPERATOR

For a quasi-1D structure, if z is the direction in which light
is propagating, the electric field operator in the Heisenberg
picture takes the form [4]

E(x, y, z; t ) =
∑

n

∫ ∞

−∞

dk√
2π

en(k; x, y)bn(k)eikze−iωt + H.c.,

(A1)

where the dependence of ω on k is identified by the dispersion
relation, the en(k; x, y) is a properly normalized field profile
for a transverse mode n propagating with k at frequency ω, and
bn(k) is the associated lowering operator, [bn(k), b†

m(k′)] =
δnmδ(k − k′). We assume that only one transverse mode is
of interest and drop the index n, and that only k > 0 are
of interest. Taking ω = vk > 0, where v is the group veloc-
ity, we identify modes by their frequency ω, putting c(ω) =

v−1/2b(k) so that [c(ω), c†(ω′)] = δ(ω − ω′) holds, and we
can then write

E(x, y, z; t ) →
∫ ∞

0

dω√
2π

e
(

ω
v

; x, y
)

v1/2
c(ω)eiωz/ve−iωt + H.c.

(A2)

Assuming that over the frequency range of interest
e(ω/v; x, y) varies little from its value e(ωo/v; x, y) at a center
frequency ωo, we can write

E(x, y, z; t ) → e
(

ωo
v

; x, y
)

v1/2

∫ ∞

0

dω√
2π

c(ω)eiωz/ve−iωt + H.c.

= e
(

ωo
v

; x, y
)

v1/2
eiωoz/ve−iωot

×
∫ ∞

0

dω√
2π

c(ω)ei(ω−ωo)z/ve−i(ω−ωo)t + H.c.

(A3)

Then putting a(ω − ωo) ≡ c(ω), the commutation relations
[Eq. (1.2)] hold and for the range of frequencies much less
than ωo and we have

E(x, y, z; t ) = e
(

ωo
v

; x, y
)

v1/2
eiωoz/ve−iωot

×
∫ ∞

−∞

dω√
2π

a(ω)eiωz/ve−iωt + H.c. (A4)

This gives

E(x, y, 0; t ) = e
(

ωo
v

; x, y
)

v1/2
e−iωot a(t ) + H.c., (A5)

where

a(t ) =
∫ ∞

−∞

dω√
2π

a(ω)e−iωt . (A6)

Now since the Schrödinger operator for E(x, y, z) is just the
Heisenberg operator E(x, y, z; 0), for that Schrödinger opera-
tor we have

E(x, y, z) = e
(

ωo
v

; x, y
)

v1/2
eiωoz/va

(
− z

v

)
+ H.c. (A7)

That is, the operator a(t ) is associated with the electric field
at time t and z = 0, and as well with the electric field at zero
time and position z = −vt , as would be expected because of
the propagation with group velocity v.

APPENDIX B: SCHEMATIC OF SINC-HAT
JOINT INTENSITY

Consider the schematic sinc-hat joint intensity shown in
Fig. 26, where we drop the sinc “tails” along the antidiagonal
(diagonal) direction for the joint temporal (spectral) intensity.
Of course, because of the sinc tails the joint intensities extend
to infinity in either direction, but for Tp/Tc sufficiently large
these contributions are small enough that the behavior in the
antidiagonal (diagonal) direction is effectively captured by the
width Tc (
p) set at t2 = 0 (
2 = 0).

In the schematic one can see that along the lines t1 = t2
(ω1 = −ω2) the joint temporal (spectral) intensity ranges over
−Tp/2 → Tp/2 (−
c/2 → 
c/2), however this is not the full
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FIG. 26. Schematic of the sinc-hat joint intensities showing the
extra contributions to the horizontal widths in the respective corners.

horizontal extent of the joint intensities. For the joint temporal
intensity there are two extra contributions in the lower left-
hand and upper right-hand corners. Using simple geometry
one finds that each corner adds a duration of size Tp/4 to the
horizontal width for a combined width of T SH

p = Tp + Tc/2.
A similar argument follows for the joint spectral intensity
leading to a combined width of 2πBSH

c = 
c + 
p/2.

APPENDIX C: JOINT TEMPORAL AMPLITUDE SCALING

Consider the joint temporal amplitude schematically
shown in Fig. 1, characterized by Tp and Tc. To show how the
maximum value of the joint temporal amplitude scales with
Tp and Tc we consider a change of variables

t̃1 = 1√
2

t1 + t2
Tp

, t̃2 = 1√
2

t1 − t2
Tc

,

t1 = 1√
2

(t̃1Tp + t̃2Tc), t2 = 1√
2

(t̃1Tp − t̃2Tc), (C1)

which are aligned with the long and short axis of the joint
temporal amplitude, see Fig. 27. The new variables t̃1, t̃2 are
normalized and dimensionless; as they vary over the range
t̃1, t̃2 ∈ [−1/

√
2, 1/

√
2], t1, t2 vary over the range of the joint

amplitude specified by Tp and Tc. The Jacobian of this coor-
dinate transformation is det(J ) = TpTc. Then setting

γ̃ (t̃1, t̃2) = √
TpTcγ

(
1√
2

(t̃1Tp + t̃2Tc),
1√
2

(t̃1Tp − t̃2Tc)

)
= √

TpTcγ (t1, t2), (C2)

γ̃ (t̃1, t̃2) is a normalized and dimensionless joint amplitude
that satisfies∫

dt1dt2|γ (t1, t2)|2 =
∫

dt̃1dt̃2|γ̃ (t̃1, t̃2)|2 = 1. (C3)

Since the rotated coordinates vary roughly over t̃1, t̃2 ∈
[−1/

√
2, 1/

√
2] and |γ̃ (t̃1, t̃2)| is always positive, we can infer

that the approximate maximum of |γ̃ (t̃1, t̃2)| is on the order of
one. Then rewriting Eq. (C2), we have

γ (t1, t2) = γ̃ (t̃1, t̃2)√
TpTc

, (C4)

and since the location of the maximum of |γ (t1, t2)| must be
the same as that of |γ̃ (t̃1, t̃2)|, and the latter maximum is of

FIG. 27. Schematic of a general joint temporal amplitude with
a pulse duration and coherence time denoted by Tp and Tc, respec-
tively, in the original and rotated coordinate system.

order unity, in general the maximum value of γ (t1, t2) scales
with 1/

√
TpTc.

APPENDIX D: RELATION BETWEEN K AND K

We begin with an alternate expression [9,10] for the
Schmidt number,

1

K
=

∫
dt1dt2dt ′

1dt ′
2γ (t1, t2)γ ∗(t ′

1, t2)γ (t ′
1, t ′

2)γ (t1, t ′
2),

(D1)
which can be confirmed by using the Schmidt decomposition
[Eq. (3.1)] in Eq. (D1) and recalling the orthogonality of
the Schmidt modes. If a Whittaker-Shannon decomposition
[Eq. (5.11)] constructed with an appropriate bandwidth limit
is put in Eq. (D1), with the use of the orthogonality relations
of χn(t ) we find

1

K
= τ 4

∑
a,b,c,d

γ abγ
∗
cbγ cdγ

∗
ad = τ 4Tr(γ̄ γ̄†γ̄ γ̄†), (D2)

where we have written γ ab as shorthand for γ (aτ, bτ ), and
in the second equality we use γ̄ to indicate the matrix with
components γ ab.

We now make use of the identity

|Tr(AB†)|2 � Tr(AA†)Tr(BB†), (D3)

which is the generalization of the Cauchy–Schwarz inequality
to matrices under the trace inner product [37]. For A an l × l
matrix, we put B = 1l×l , the identity matrix of size l × l , and
find

|Tr(A)|2 � Tr(AA†)l, (D4)

or rather

Tr(AA†) � |Tr(A)|2
l

. (D5)
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Next we set A = γ̄ γ̄† and since Tr(γ̄ γ̄†) � 0 the inequality in
Eq. (D5) leads to

Tr(γ̄ γ̄†γ̄ γ̄†) � Tr(γ̄ γ̄†)2

l
. (D6)

After inputting this result into the equation (D2) for the
Schmidt number, we arrive at

1

K
� [τ 2Tr(γ̄ γ̄†)]2

l
. (D7)

This can be significantly simplified by noting that the joint
amplitude is normalized to unity, and inputting the Whittaker-
Shannon decomposition [Eq. (5.11)] into∫

dt1dt2|γ (t1, t2)|2 = 1, (D8)

we find τ 2Tr(γ̄ γ̄†) = 1, and then from Eq. (D7) we have

K � l. (D9)

Now l is the dimension of the matrix γ , but because χn(t ) has
a width set by τ one needs on the order of l = Tp/τ functions
to interpolate the joint amplitude; see the discussion around
Eq. (5.20). If we choose τ = Tc, then l = Tp/Tc = K and we

find

K � K, (D10)

which completes the argument.

APPENDIX E: CORRELATION FUNCTIONS

We begin by using the inverse relation given by Eq. (5.13)
to write the correlation functions (2.4) as

G
(1)

(t1, t2) = χ∗
x (t1)〈�|B†

xBy|�〉χ y(t2), (E1a)

G
(2)

(t1, t2) = χ∗
w(t1)χ∗

x (t2)〈�|B†
wB†

xByBz|�〉χ y(t2)χ z(t1),

(E1b)

we use the same summation convention as in the text. Then
using the transformation given by Eq. (6.2) we evaluate

〈�|B†
xBy|�〉 = 〈vac| ν∗

xaBaνybB†
b |vac〉 = ν∗

xaνya = (ν∗νT )xy

= [U∗(sinhP∗)(sinhPT )UT ]xy = (sinh2P)xy,

(E2)

and

〈�|B†
wB†

xByBz|�〉 = 〈vac| ν∗
waBa(μ∗

xbB†
b + ν∗

xbBb)(μycBc + νycB†
c )νzd B†

d |vac〉
= S∗

waμ
∗
xbμycνzd 〈vac| BaB†

bBcB†
d |vac〉 + ν∗

waν
∗
xbνycνzd 〈vac| BaBbB†

cB†
d |vac〉

= ν∗
waμ

∗
xaμycνzc + ν∗

waν
∗
xbνybνza + ν∗

waν
∗
xbνyaνzb

= (νμT )∗wx(νμT )zy + (ν∗νT )wz(ν∗νT )xy + (ν∗νT )wy(ν∗νT )xz

= [U(sinhP)(coshP)]∗wx[U(sinhP)(coshP)]zy + (sinh2P)wz(sinh2P)xy + (sinh2P)wy(sinh2P)xz. (E3)

So G
(1)

(t1, t2) is given by

G
(1)

(t1, t2) = χ∗
x (t1)(sinh2P)xyχ y(t2) = χ†(t1)(sinh2P)χ(t2), (E4)

where χ(t ) = (. . . , χ−1(t ), χ0(t ), χ1(t ), . . .)T is the column vector formed from the set {χn(t )} for a given t , and

G
(2)

(t1, t2) = χ∗
w(t1)χ∗

x (t2)[U(sinhP)(coshP)]∗wx[U(sinhP)(coshP)]zyχ y(t2)χ z(t1)

+χ∗
w(t1)χ∗

x (t2)(sinh2P)wz(sinh2P)xyχ y(t2)χ z(t1)

+χ∗
w(t1)χ∗

x (t2)(sinh2P)wy(sinh2P)xzχ y(t2)χ z(t1)

= |χT (t1)U(sinhP)(coshP)χ(t2)|2 + [χ†(t1)(sinh2P)χ(t1)][χ†(t2)(sinh2P)χ(t2)] + |χ†(t1)(sinh2P)χ(t2)|2

= |χT (t1)U(sinhP)(coshP)χ(t2)|2 + G
(1)

(t1)G
(1)

(t2) + |G(1)
(t1, t2)|2. (E5)

APPENDIX F: MODE-BY-MODE CALCULATION

In this Appendix we show that the photon statistics of
the sinc-hat joint amplitude can be described on a “mode-
by-mode” basis using the pseudo-Schmidt decomposition. We
then generalize this to the Whittaker-Shannon decomposition,
and show that at least approximately a “mode-by-mode” de-
scription can be introduced.

1. Pseudo-Schmidt decomposition

We start by considering the analytical form of G
(2)

(�t )
(4.27) in the cw limit,

G
(2)

(�t )||�t |�Tc
≈ G

(2)
(�t = 0) = 1

T 2
c

(
3N2

mode + Nmode
)
,

(F1)
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where we have approximated the sinc function as unity and
used Eq. (4.20). As expected, we recover the usual standard
result for G(2)(�t = 0) [19,38], and for �t > Tc we have
G

(2)
(�t ) � G

(2)
(�t = 0), the condition for “bunched light”

[39]. Since G
(2)

(�t ) varies little over a length of time |�t | �
Tc, the quantity TcG

(2)
(�t ) is a “coincidence rate,” and

Tp(TeG
(2)

(�t )|�t�Tc
) ≈ N

(
3N2

mode + Nmode
)

(F2)

is the total coincidence count over the duration of the pulse.
To gain insight into the scaling of G

(2)
(�t ) with Nmode, we

note that, for a single pseudo-Schmidt mode labeled by n, the
probability of detecting 2x photons is [19]

Pn(2x) = 1

c

(√
(2x)!

2xx!

)2(
s

c

)2x

, (F3)

where we put s ≡ sinh(r) and c ≡ cosh(r), and r = |β|/√N
is the squeezing parameter which is independent of n for the
values of n for which it is nonzero [see Eq. (4.15)]. Since each
pseudo-Schmidt mode is normalized we have

1 =
∞∑

x=0

Pn(2x) ⇒ c =
∞∑

x=0

(√
(2x)!

2xx!

)2(
s

c

)2x

. (F4)

Taking the derivative of both sides with respect to r, and
simplifying using hyperbolic trigonometry identities followed
by a re-indexing of the sum, we find

∞∑
x=0

(2x)Pn(2x) = s2 = Nmode, (F5)

as expected, the average number of photons in each pseudo-
Schmidt mode is given by Nmode. Notice that we can rewrite
the expectation value as

Nmode =
∞∑

x=0

(2x)Pn(2x) =
∞∑

x=0

(2x)!

(2x − 1)!
Pn(2x)

=
∞∑

x=0

P (2x, 1)Pn(2x), (F6)

where P (2x, 1) is the number of permutations of 2x objects
when we select one object. Again taking the derivative of both
sides with respect to r, after further hyperbolic trigonometry
manipulations and a re-indexing of the sum, we find

∞∑
x=0

(2x)(2x − 1)Pn(2x) = 3N2
mode + Nmode, (F7)

where the right-hand side is the familiar scaling of G
(2)

(�t )
with Nmode. However, playing the same game, we can rewrite
this as

∞∑
x=0

(2x)(2x − 1)Pn(2x) =
∞∑

x=0

(2x)!

(2x − 2)!
Pn(2x)

=
∞∑

x=0

P (2x, 2)Pn(2x)

= 3N2
mode + Nmode, (F8)

where P (2x, 2) is the number of permutations of 2x objects
when we select two of them.

Thus, for short time differences on the order of Tc, the
coincidence rate is the expectation value of the total number
of ways of picking two photons from any pseudo-Schmidt
mode, and to calculate the total coincidence count we multiply
by N (F2), the total number of pseudo-Schmidt modes [cf.
(4.20) and (4.21)]. Indeed, for time differences less than Tc

we can set n = m for both terms in Eq. (4.17), so that to good
approximation we have

G(2)(t1, t2) ≈ (
3N2

mode + Nmode
) ∑

n

|ηn(t1)|2|ηn(t2)|2. (F9)

For such time differences the coincidence count at a particular
t1, t2 is associated with only a few pseudo-Schmidt modes,
unlike in the Schmidt decomposition, where the inclusion
of the contributions of a large number of Schmidt modes is
needed.

2. Whittaker-Shannon decomposition

We now consider the Whittaker-Shannon decomposition,
starting with the exact results for the correlation functions
(6.6) and (6.7). The photon density is given by

G
(1)

(t ) = χ†(t )(sinh2P)χ(t ) =
∑
n,m

χ∗
n(t )(sinh2P)nmχm(t )

≈
∑

n

(sinh2P)nn|χn(t )|2, (F10)

where in the second line we expanded the matrix multiplica-
tion and in the third line approximated the double sum as just
the diagonal contributions. In reducing the double sum to a
single sum we are losing significant contributions to the pho-
ton density because typically (sinh2P)nm will be nonzero over
a small range of |n − m|; further, the product of two neigh-
boring Whittaker-Shannon modes is not negligible. While the
final result of Eq. (F10) provides a crude approximate at best,
it is similar to the pseudo-Schmidt result given by Eq. (4.16).
This suggests that we should identify

�2
n = (sinh2P)nn (F11)

as the number of photons in each mode, and indeed we find
this to be the case in Sec. VI A.

We now turn our attention to G
(2)

(t1, t2), starting with the
coherent contribution

G
(2)
coh(t1, t2) = |χT (t1)U(sinhP)(coshP)χ(t2)|2

=
∑

n,m,p,q

χ∗
n(t1)(UsinhPcoshP)∗nmχ∗

m(t2)χ p(t1)

× (UsinhPcoshP)pqχq(t2)

≈
∑
n,m

|(UsinhPcoshP)nm|2|χn(t1)|2|χm(t2)|2,

(F12)

where in the last line we used the same approximation that
we did for the photon density. Then if we consider times t1, t2
such that |t1 − t2| � τ , the significant contribution to the sum
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is when n = m, and we have

G
(2)
coh(t1, t2) ≈

∑
n

|(UsinhPcoshP)nn|2|χn(t1)|2|χn(t2)|2.
(F13)

Following the same steps for the incoherent contribution, for
times t1, t2 such that |t1 − t2| � τ , G

(2)
(t1, t2) is given by

G
(2)

(t1, t2) =
∑

n

[|(UsinhPcoshP)nn|2 + 2�4
n

]
× |χn(t1)|2|χn(t2)|2. (F14)

While again a crude approximation at best, we do note the
similarity between the final result and the pseudo-Schmidt
result in Eq. (F9).

APPENDIX G

We start with equation (6.9) for ρn(t ), and invert it by
multiplying by (sinhP)−1 = cschP

χn(t ) =
∑

m

(cschP)nm�mρm(t ). (G1)

Taking the term inside the squared norm for the coherent con-
tribution [Eq. (6.13)] and writing it in its index representation,
we insert the form of χn(t ) in terms of ρm(t ) using (G1), so
that

χT (t1)U(sinhP)(coshP)χ(t2)

= χ x(t1)Uxa(sinhP)ab(coshP)byχ y(t2)

= (cschP)xm�mρm(t1)Uxa(sinhP)ab(coshP)by

× (cschP)yn�nρn(t2)

= �n�mρm(t1)ρn(t2)[(cschQ)U(sinhP)(coshP)(cschP)]mn

= �n�mρm(t1)ρn(t2)(UcothP)mn, (G2)

where in deriving this result we used the properties of P, Q
and U discussed in Sec. VI, and we set cothP = (tanhP)−1 =
(coshP)(cschP). The resulting coherent contribution to the
correlation function is then given by

G
(2)
coh(t1, t2) =

∑
n,m

|�n�m(UcothP)mnρm(t1)ρn(t2)|2. (G3)
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