
PHYSICAL REVIEW A 110, 023709 (2024)

Analytical and numerical study of subradiance-only collective decay from atomic ensembles
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We analytically and numerically study collective emission from an ensemble of atoms in the weak-excitation
regime with the initial condition of uniform excitation of the ensemble. We show that under certain conditions,
subradiance at the later stages of the collective decay does not necessarily need to be accompanied by early-time
superradiance. We analyze the conditions where such subradiance-only decay occurs for ordered and disordered
ensembles in one-, two-, and three-dimensional spatial configurations.
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I. INTRODUCTION

Since the seminal paper by Dicke [1], collective decay
(superradiant or subradiant) of an ensemble of radiators has
been studied by many authors, and this problem continues to
be relevant for a wide range of physical systems [2–13]. Col-
lective decay has traditionally been studied in ensembles in
which there are many atoms within a cubic wavelength of vol-
ume. In this limit, which is typically referred to as the Dicke
limit, it is relatively straightforward to observe superradiance
[1,2]. In this regime, when most of the atoms are excited to
a higher energy level, the ensemble primarily decays through
in-phase superpositions due to the symmetries in the system
(hence resulting in superradiance). Early studies of superra-
diance were performed many decades ago, primarily in hot
atomic vapors [14,15]. Recently, these studies were extended
to a variety of different physical systems, including neutral
atoms [16–19], ions [20], molecules [21], nitrogen vacancy
centers in diamond [22,23], and superconducting Josephson
junctions [24].

While most early studies focused on superradiance in the
Dicke limit, much recent work has investigated subradiance
near or outside the Dicke limit, in particular, using ultracold
atomic ensembles [25–32]. Much recent work has shown that
even in the dilute regime (i.e., very few atoms per cubic
wavelength of volume), the problem is also very rich. Most re-
cently, we demonstrated that collective decay is even relevant
in dilute clouds with a very low optical depth [33,34]. Specifi-
cally, we demonstrated that the decay rates can be reduced due
to subradiance by as much as 20%, with a dilute cloud at an
optical depth of 10−2 or less. In this regime, subradiant states
that are correlated across the whole ensemble are the dominant
decay mechanism, as evidenced by the spatial coherence of
the emitted light. Specifically, by coupling the emitted light to
a Michelson interferometer, we studied the spatial coherence
of the light and the dependence of the spatial correlations on
the number of atoms and the atomic temperature [34].

The fact that these effects can be observed in disordered
and dilute ensembles is not obvious. It is generally believed
that early-time superradiance and later-time subradiance go
hand in hand [25]. Qualitatively, the physical picture is that,
even in a disordered sample, after the initial excitation pulse

is switched off, some atoms are at or near the correct positions
for their emissions to interfere constructively. These in-phase
superpositions cause initial superradiance from the ensemble.
The superradiant modes decay out relatively quickly, leaving
antiphased superpositions behind, causing subradiance at later
times of the temporal evolution. This qualitative picture was
also confirmed by numerical simulations by many different
authors, showing initial early superradiance (faster than inde-
pendent decay), followed by subradiance at later times (slower
than independent decay).

In this paper, we show that while this qualitative viewpoint
is correct for some parameter regime, in general, it is not nec-
essarily an accurate picture. Specifically, we show analytically
and numerically that, under certain parameters, subradiance
does not necessarily need to be accompanied by early-time
superradiance. We take the initial condition for the ensem-
ble to be uniform excitation and focus our attention on the
single-atom excited subspace (i.e., weak-excitation regime).
We show that under these conditions the ensemble can im-
mediately start to decay with a rate which is slower than the
independent decay rate. We refer to this as “subradiance-only”
collective decay, and we identify the parameter regimes in
one, two, and three dimensions where such decay can happen.

We note that in atomic ensembles, in general, for any
parameter regime, one would find collective modes, some of
which are superradiant, while others are subradiant. In this
paper under uniform excitation of the ensemble (i.e., with the
initial condition that the system starts in a state in which each
atom has an equal probability of being in the excited state),
under certain conditions this initial state has only a projection
to the subradiant collective modes. As a result, the decay is
subradiant only, in the sense that the ensemble immediately
starts to decay with a rate slower than the independent rate.

Before proceeding further, we cite other pertinent prior
work. In recent years, interest in collective spontaneous emis-
sion, in particular within the context of quantum information
science, has increased. Some recent highlights of theory
work include highly directional mapping of quantum infor-
mation between atoms and light in two-dimensional arrays
[35,36], studies of broadening and photon-induced atom re-
coil in collective emission [37–39], light storage in optical
lattices [40–42], collective nonclassical light emission and
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hyperradiance [11,43,44], and improving photon storage
fidelities using subradiance [45]. As we will describe be-
low, our analysis largely relies on an atomic-only exchange
Hamiltonian, which is obtained by tracing out the radiation
coordinates. This Hamiltonian considers the interaction of N
two-level atoms and was used by other authors to study the
physics of collective decay. For example, Asenjo-Garcia and
colleagues used a similar model to discuss improvements in
the subradiant lifetimes in ordered atomic arrays [45]. Ro-
bicheaux and Suresh used this simplified two-level approach
to develop the mean-field theory of light interacting with
atomic arrays [5]. Jenkins and Ruostekoski discussed con-
trolled manipulation of atoms in an atomic lattice using, again,
the simplified two-level approach [7].

On the experimental front, as we mentioned above, much
early work on subradiance used disordered ultracold atomic
clouds [25–32], including our recent work, which used dilute
ensembles with low optical depth [33,34]. Recent experiments
using ultracold atoms demonstrated single-atomic-layer mir-
rors [16], phase transitions [46], and enhanced collective
coupling using optical cavities [47].

II. EXCHANGE HAMILTONIAN: THE SCHRÖDINGER
FORMALISM

When an atomic ensemble undergoes collective decay, one
way to model the dipole correlations that build up across the
sample is through the reduced atomic-only exchange Hamil-
tonian. The exchange Hamiltonian has been used to study
the physics of collective decay by many different authors. A
detailed derivation of this Hamiltonian was discussed in detail,
for example, in Ref. [48].

The full Hamiltonian of the whole system consisting of
N two-level atoms interacting with a continuum of radiation
modes is given by (h̄ = 1)

Ĥ =
N∑

j=1

ωaσ̂
z
j

2
+
∑
�k,�ε

ω�k,�ε

(
â†

�k,�ε â�k,�ε + 1

2

)

−
N∑

j=1

∑
�k,�ε

(g∗
�k,�ε e�k·�r j σ̂+

j â�k,�ε + g�k,�ε e−�k·�r j σ̂−
j â†

�k,�ε ), (1)

where

σ̂+
j = |1 j〉〈0 j |, σ̂−

j = |0 j〉〈1 j |, (2)

σ̂ z
j = |1 j〉〈1 j | − |0 j〉〈0 j | (3)

are the atomic spin operators for the jth atom with energy
eigenstates |0 j〉 and |1 j〉, respectively. The quantity ωa is the
atomic transition frequency. The operators â�k,�ε and â†

�k,�ε , are
the photon annihilation and creation operators for a radiation
mode with wave vector �k and polarization �ε.

The well-known Dicke limit can be obtained from the
above Hamiltonian when the size of the sample is small com-
pared to the radiation-field length set by the relevant k, i.e.,
�k · �r j → 0 ∀ 0 � j � N . Using the Born-Markov approxima-
tion and tracing out the radiation-field part, we can reduce the
above full Hamiltonian to the following reduced atomic-only

exchange Hamiltonian [48]:

Ĥa =
N∑

j=1

N∑
�=1

(Hj�σ̂
+
j σ̂−

� + H� j σ̂
−
j σ̂+

� ),

where

Hj� =
{

−i�/2, j = �,

−3i�[J (kar j�) + cos2 θ j�K(kar j�)]/4, j �= �,

(4)

J (kar j�) = j0(kar j�) − j1(kar j�)/(kar j�), (5)

K(kar j�) = 3 j1(kar j�)/(kar j�) − j0(kar j�), (6)

r j� = ‖�r j − �r�‖, cos θ j� = �εa · (�r j − �r�)

r j�
. (7)

Here, j0(z) and j1(z) are spherical Bessel functions, �εa is
the direction of the atomic dipoles, and r j� is the distance
between two specific atoms, atom j and atom �. With the radi-
ation coordinates traced out, each component of the exchange
Hamiltonian above describes the process where atom j gets
deexcited while emitting a photon, which then gets absorbed
by atom �. The quantity Hj� describes the strength of this
exchange interaction between the two atoms.

Using the exchange Hamiltonian above, we can analyze
the evolution of the atomic system in the Schrodinger picture.
For this purpose, it is convenient to use the basis states of
|q〉 , q ∈ BN , which is a binary string for a particular ar-
rangement. We can then describe the evolution of the atomic
ensemble using propagation under the exchange Hamiltonian:

|φ(t )〉 =
2N −1∑
q=0

φq(0)e−iĤat |q〉 =
2N −1∑
q′=0

φq′ (t ) |q′〉 . (8)

There are various possible arrangements of the atomic en-
semble; the four cases that we study in this paper are shown
in the Fig. 1. Specifically, we will consider one-dimensional
(1D) and two-dimensional (2D) ordered atomic arrays, as well
as 2D and three-dimensional (3D) disordered ensembles of
atoms.

III. ANALYTICAL STUDY OF INITIAL-TIME
SUPERRADIANCE

Condition for no superradiance

To analytically study early-time behavior of collective de-
cay we define the function 	(t ) = ln

√〈φ(t )〉, which is the
logarithm of the norm of the wave function as a function of
time (which is also proportional to the fluorescence of the
sample in log scale). We focus on the time derivative of this
function, which gives the instantaneous collective decay rate.
We can express this time derivative in the following manner:

	′(t ) = d

dt

1

2
ln 〈φ(t )〉 = Re

[〈φ(t )| d
dt |φ(t )〉]

‖φ(t )‖2 (9)

= Re[〈φ(t )| (−iĤa) |φ(t )〉]
‖φ(t )‖2 = Im〈Ĥa〉t

‖φ(t )‖2 . (10)
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FIG. 1. Four spatial configurations for the atomic sample that we
consider in this paper. The plots on the top left and right show ordered
one-dimensional and two-dimensional arrays with fixed spacing s
between the atoms. The plots on the bottom left and right show
disordered two-dimensional and three-dimensional ensembles; the
locations of the atoms are uniform random variables along each axis
(see text for details).

In the basis of the states |q〉 , q ∈ BN , Eq. (10) can be rewritten
as

	′(t ) = Im

∑
q,p 〈q| Ĥa |p〉 φ∗

q (t )φp(t )∑
q |φq(t )|2 . (11)

We now restrict the subsequent discussion to the subspace
where only a single atom is excited, i.e., |q〉 , q ∈ S =
{0 · · · 001; 0 · · · 010; 0 · · · 100; · · · }. This assumption is essen-
tial since it reduces the dimension of the Hilbert space where
the evolution is confined from 2N to N . This subspace can
experimentally be accessed by using weak excitation of the
ensemble where the Rabi frequency of the excitation pulse
is small compared to the decay rate of the excited level.
In this subspace we can relabel the basis states by the in-
dex of the atom that is excited, |u〉 , u = 1 + log2 q, q ∈ S.
In the subspace S with the aforementioned relabeling, the
reduced atomic-only exchange Hamiltonian Ĥa has the fol-
lowing matrix-element representation:

〈u| Ĥa |v〉 =
∑

j,�

(Hj�δu jδv� + H� jδu�δv j ) = Huv, (12)

〈v| Ĥa |u〉 =
∑

j,�

(Hj�δv jδu� + H� jδv�δu j ) = Hvu. (13)

Using the above representation, we can rewrite Eq. (11) as

	′(t ) = Im

∑N,N
u=1,v=1 Huvφ

∗
u (t )φv (t )∑N

u=1 |φu(t )|2 . (14)

The above expression can be used to evaluate the time deriva-
tive (the rate of change) of the total norm of the wave function.
We now assume the experimentally relevant case in which we
initially have uniform excitation of the ensemble; i.e., at t = 0
we have the initial condition φu(0) = 1/

√
N . For this specific

FIG. 2. A visual cartoon schematic for the condition of observing
subradiance-only decay. The solid blue line in both plots is the time
evolution of 	(t ). The dashed green line (again in both plots) is the
time derivative 	′(0), whose slope is the initial collective decay rate,
while the dotted red line is the uncorrelated rate. The plot on the left
shows the case where 	′(0) is lower than the uncorrelated decay rate
of −m�/2, hence showing early-time superradiance. The plot on the
right shows subradiance-only decay since the initial tangent 	′(0) is
greater than −m�/2.

initial condition, the initial decay rate of the ensemble is

	′(0) = Im
∑
u,v

Huv/N. (15)

We note that this quantity can be thought of as the initial
decay rate of the ensemble since it is the time derivative of the
norm of the wave function evaluated at t = 0. The condition
that we never observe any superradiance can be understood
visually, as shown in Fig. 2. When the rate of decay of the
atomic sample is slower than the usual uncorrelated ensemble
decay rate of m�/2, where m is the number of excited atoms
at t = 0, then we never observe superradiance. We refer to this
as subradiance-only decay. In the subspace of S where m = 1,
we can express this condition as

−	′(0) � �

2
. (16)

Using Eq. (15), we finally obtain

−�

2
+ Im

∑
u,v,u �=v

Huv/N � −�

2
≡ 2

�
Im

∑
u,v,u �=v

Huv � 0.

(17)
Equation (17) is the central analytical result of this work.
Based on Eq. (17), we can now analytically study the condi-
tions under which subradiance-only decay occurs for the four
spatial arrangements of atoms shown in Fig. 1.

One-dimensional ordered array of atoms. For the case of a
1D array of atoms in a line at equal spacing of length s with the
atomic dipole vector �εa perpendicular to the line, the condition
for no superradiance follows from Eqs. (4) and (17),

− 3

2

∑
u,v,u �=v

J [2π (s/λa)|u − v|] � 0

≡
{

I ′
1(s/λa) =

N−1∑
u=1

2(N − u)J [2π (s/λa)u]

}
� 0, (18)

where the expression I ′
1 was obtained by summing over all the

upper diagonals in the matrix (u, v) except the main diagonal
in the sum of Eq. (18). When the number of atoms is very
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FIG. 3. Plot of I1 vs s/λa. In the regions where I1(s/λa) is
negative, the condition of Eq. (17) is satisfied, and the decay is
subradiance only. This happens between the roots of the function,
I1(s/λa) = 0 and when s/λa is an integer.

large, i.e., N → ∞, then I ′
1/N reduces to

I1 = λa

8s

(
2

⌊
s

λa

⌋
+ 1

)[
1 + λ2

a

3s2

⌊
s

λa

⌋(⌊
s

λa

⌋
+ 1

)]
− 1

3
,

such that s/λa /∈ Z. The explicit steps that are used in this
derivation are presented in Appendix A. This expression can
be solved for s/λa in the integral ranges �s/λa� and �s/λa�; if
�s/λa� = ζ , then

(2ζ + 1)

s/λa
+ ζ (ζ + 1)(2ζ + 1)

3s3/λ3
a

� 8

3
, s/λa ∈ (ζ , ζ + 1),

8(s/λa)3 − 3(2ζ + 1)(s/λa)2 − ζ (ζ + 1)(2ζ + 1) � 0.

(19)

The equality for Eq. (19) holds for only one root in the
integral range (ζ , ζ + 1). If that root is s∗, then the range
for s that satisfies the required inequality is s ∈ [s∗, ζλa) =
[s∗, �s/λa�λa).

In Fig. 3, we plot the quantity I1 as a function of the
distance (normalized to the wavelength of the emitted light)
between the individual atoms in the array s/λa. In the regions
where I1(s/λa) is negative, the condition of Eq. (17) is satis-
fied, and the decay is subradiance only. This happens between
the roots of the function, I1(s/λa) = 0, and when s/λa is an
integer.

Uniform 2D array of atoms. In the case of a 2D ordered
array of atoms at equal spacing of length s in both directions
with the atomic dipole vector �εa aligned perpendicular to the
plane of the array, like in the 1D case, the condition of Eq. (17)
gives {

I ′
2(s/λa) =

∑
u,v,u �=v

J [2π (s/λa)duv]

}
� 0, (20)

where duv = [(ux − vx )2 + (uy − vy)2]1/2 and ux, uy, vx, vy ∈
{1, . . . ,

√
N}. We can rewrite the sum I ′

2 as

I ′
2 =

∑
ux,uy

⎡
⎣ ∑

p,q∈A(ux,uy )

J [2π (s/λa)
√

p2 + q2]

+
∑

p,q∈B(ux ,uy )

J [2π (s/λa)
√

p2 + q2]

FIG. 4. Four different regions that are seen by the atom at a
position of (ux, uy ). The calculation of the quantity I ′

2(s/λa) requires
a summation over all the atoms in each of these regions, A, B,C, and
D. In the limit of a large number of atoms, N → ∞, regions A, B,C,
and D become identical (see text for details).

+
∑

p,q∈C(ux,uy )

J [2π (s/λa)
√

p2 + q2]

+
∑

p,q∈D(ux ,uy )

J [2π (s/λa)
√

p2 + q2]

⎤
⎦. (21)

We now note that in the limit of a large number of atoms,
N → ∞, the four regions A, B,C, and D in Fig. 4 become
identical for all atoms, resulting in the simple infinite sum

lim
N→∞

I ′
2

4N
= I2 =

∞∑
m=1

∞∑
n=0

J (2πsλ

√
m2 + n2) � 0. (22)

As before, this can be reduced to

I2 = λ3
a

8πs3

∑
u,v∈Z

(u2 + v2)β+[
√

u2 + v2/(s/λa)]√
(s/λa)2 − (u2 + v2)

− 1

6
,

such that s/λa /∈ {√u2 + v2 : (u, v) ∈ Z2}. The proof of this
result can be found in Appendix B. The sum in I2 is only over
all the integers u and v strictly inside the circle u2 + v2 =
(s/λa)2, as denoted by the β+ step function above,

β+(x) =
{

1, 0 � x < 1,

0, otherwise.
(23)

A plot of I2 vs s/λa is shown in Fig. 5. As we can see,
the points of discontinuity are exactly the points from the set
{√u2 + v2 : (u, v) ∈ Z2}, and the trend of the range of values
of I2 goes with the length of the interval in s/λa where it is
defined. Moreover, for s/λa < 1, the value of I2 = −1/6 over
the whole range, implying that an arranged uniformly excited
2D array of atoms experiences subradiance-only decay if the
spacing s < λa.

Two-dimensional disordered ensemble of atoms. For this
case, we confine the atoms in a 2D plane of dimensions L × L
such that the minimum separation between the atoms at any
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FIG. 5. Plot of I2 as a function of s/λa. In the regions where
I2(s/λa) is negative, the decay is subradiance only. The plot also
illustrates the positions of its singularities. The function is defined
everywhere except the points in the set {√u2 + v2 : (u, v) ∈ Z2}
marked by dashed radial lines.

instant of time is at least d . The position of an atom is uni-
formly distributed over the whole plane; i.e., the components
of the position vector �Ru = (Xu,Yu) are uniformly chosen in
the open set (0, L), Xu,Yu ∼ Uniform(0, L). A schematic of
this spatial arrangement is shown in Fig. 1(b).

For concreteness, instead of working in normalized units,
in this section and the next, we consider the D2 line transition
in rubidium atoms at a transition wavelength of λa = 780 nm.
Assuming that the atomic dipole vector is normal to the plane
of the atoms, the condition of Eq. (17) then becomes

I2R = E{Xuv,Yuv}

[ ∑
u,v,u �=v

J
(
ka

√
X 2

uv + Y 2
uv

)]
� 0. (24)

Since we have Ruv = (X 2
uv + Y 2

uv )1/2, we can transform the
distribution of the atomic positions from (Xuv,Yuv ) to Ruv =
(X 2

uv + Y 2
uv )1/2. Equation (24) I2R can be rewritten as

I2R(L, d, N )

=
∫ ∞

−∞︸︷︷︸
(N2−N )

∑
u,v,u �=v

J (kaRuv )
∏

u,v,u �=v

pr (Ruv )dRuv (25)

=
∑

u,v,u �=v

∫ √
2L

d
J (kar)pr (r)dr

×
∏

u,v,Ruv �=r

∫ √
2L

d
pR(Ruv )dRuv (26)

= (N2 − N )
∫ √

2L

d
J (kar)pr (r|d )dr. (27)

The details of the transformations from (Xu,Yu) to Ruv and the
expression for pr (r|d ) are outlined in Appendix C. In Fig. 6,
we compute the integral of Eq. (27) numerically and graph

FIG. 6. Graph of I2R/(N2 − N ) versus L for d = 50 nm and λa =
780 nm for a 2D disordered ensemble of atoms. The dependence of
I2R on L changes sign after roughly 5λa and remains negative for
the rest of the domain. This suggests that the system will experience
early-time superradiance decay until a domain size of ∼5λa. For
larger domain sizes, decay will be subradiance only. We pick four
specific points, which are indicated by vertical lines, and verify the
collective decay behavior through direct numerical simulation in
Fig. 7.

I2R/(N2 − N ) vs L. In this calculation, we fix the minimum
separation between the atoms to d = 50 nm. As seen in Fig. 6,
the function remains positive up to a domain size of roughly
5λa and then becomes negative. This suggests that the sys-
tem will experience early-time superradiance decay until a
domain size of ∼5λa. For larger domain sizes, there will be
subradiance-only decay.

To verify the analytical predictions of Fig. 6, we also
simulate the system numerically. Here, we randomly pick
the positions of the individual atoms from the uniform dis-
tribution and calculate the evolution of wave function by
numerically solving Schrodinger’s equation. In Fig. 7, we
plot the numerically calculated expectation value of 	 over
1000 iterations for 25 atoms for the four specific cases of
L = 2λa, 3λa, 6.1λa, and 7.1λa. In Fig. 8 we follow the same
procedure for 100 iterations and 250 atoms. These four se-
lected cases are shown by the vertical lines in Fig. 6. In
agreement with the predictions of Fig. 6, L = 2λa and L =
3λa display early-time superradiance, while L = 6.1λa and
L = 7.1λa show subradiance-only decay. In Figs. 7 and 8,
the curves that go below the zero line (dashed line) display
early-time superradiance, while the curves that always remain
above the zero-line are subradiance-only decay.

Three-dimensional disordered ensemble of atoms. For the
case of a 3D ensemble of atoms, we confine the atoms in a
cube of length L with minimum separation d . In the analytical
and numerical results that we discuss below, this minimum
separation is chosen to be d/λa = 0.06. We checked that all
the results that we discuss below are not sensitive to the exact
value of this minimum separation between the atoms. The
atomic dipole vector �εa is assumed to be pointing towards
the z axis. A schematic of this arrangement is provided in
Fig. 1(c). In this case, again under the assumption of uniform
excitation of the atomic ensemble, the condition of Eq. (17)
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FIG. 7. The numerically calculated expectation value of 	

over 1000 iterations for 25 atoms for four specific cases: L =
2λa, 3λa, 6.1λa, and 7.1λa. These four selected cases are shown by
the vertical lines in Fig. 6. Since the uncorrelated decay rate of
ln ‖φ(t )‖ is −�/2, it becomes the dashed zero line in this plot. All
the other decay processes can be understood as deviations from this
line, as illustrated in Fig. 2. In agreement with the predictions of
Fig. 6, L = 2λa and L = 3λa display early-time superradiance, while
L = 6.1λa and L = 7.1λa show subradiance-only decay.

using Eqs. (4)–(7) becomes

I3R = E{Xuv,Yuv ,Zuv}

[ ∑
u,v,u �=v

J
(
ka

√
X 2

uv + Y 2
uv + Z2

uv

)

+ Z2
uv

X 2
uv + Y 2

uv + Z2
uv

K
(
ka

√
X 2

uv + Y 2
uv + Z2

uv

)]
� 0.

(28)

We will discuss the initial condition that is different from
the uniform excitation below. Like before, instead of working
with the Cartesian coordinates of the individual atoms, we
define Ruv = (X 2

uv + Y 2
uv + Z2

uv )1/2 and Cuv = Zuv/Ruv . There-

FIG. 8. Similar to Fig. 7, the numerically calculated expectation
value of 	 over 100 iterations for 250 atoms for the same four cases
of L = 2λa, 3λa, 6.1λa, and 7.1λa. The results are again in agreement
with the predictions of Fig. 6.

FIG. 9. Graph of I3R/(N2 − N ) versus L for d = 50 nm and λa =
780 nm for a 3D disordered ensemble of atoms. The function shows
oscillatory behavior, and in the regions where I3R/(N2 − N ) < 0, the
decay is subradiance only. We pick four specific points, which are
indicated by vertical lines, and verify the collective decay behavior
through direct numerical simulation in Figs. 10 and 11.

fore, we transform the random variables Xuv,Yuvm and Zuv

into Ruv and Cuv . The derivation of the transformation and
resulting probability distribution prc(r, c|d ) is carried out
in Appendix D. The expression for I3R in the transformed
basis is

I3R(L, d, N ) = (N2 − N )

×
∫ √

3L

d

∫ 1

−1
[J (kar) + c2K(kar)]

× prc(r, c|d )dcdr. (29)

Numerically performing the integral for d = 50 nm like be-
fore, we obtain the plot in Fig. 9. The integral oscillates as a
function of the domain size, showing specific regions where
the decay will exhibit superradiance or will be subradiance
only.

Like above, we confirm the predictions of Fig. 9 by numer-
ically integrating the Schrodinger’s equation and calculating
the evolution of the wave function. Figures 10 and 11 show the
results for four specific domain sizes, which are indicated by
the vertical lines in Fig. 9. The expectation value of 	 is again
calculated over 1000 iterations with 25 atoms. In agreement
with the analytical result of Fig. 9, two curves display super-
radiance, while the other two show subradiance-only decay.

We note that for a 3D ensemble, the assumption of uniform
excitation is, in general, not a good assumption. For example,
if the initial excitation is performed using a laser beam, the
phase of the propagating laser will be imprinted on the ini-
tial excitation amplitude. We next discuss subradiance-only
decay in a 3D ensemble when the initial excitation is per-
formed using a laser beam. Instead of the uniformly excited
initial state φu(0) = 1/

√
N , we now consider an initial state

with a phase imprinted due to the laser propagating along
the x direction. As a result, the new initial state for the 3D
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FIG. 10. The numerically calculated expectation value of 	 over
1000 iterations for 25 atoms for four specific cases that are shown
by the vertical lines in Fig. 9. In agreement with the predictions of
Fig. 8, L = 2.5λa and L = 3.5λa display early-time superradiance,
while L = 6λa and L = 7λa show subradiance-only decay.

ensemble is

φu(0) = eiklaser xu
1√
N

. (30)

We consider the simplest case where the frequency of the laser
equals the frequency of the atomic excitation and therefore
take klaser ≈ ka. This initial relative phase causes phase mis-
match in Eq. (14), which then results in

	′(0) = Im
∑
u,v

e−ikaxuv Huv/N. (31)

As a result of this modified equation, the condition for the
absence of early-time superradiance in Eq. (17) transforms to

2

�
Im

∑
u,v,u �=v

e−ikaxuv Huv � 0. (32)

FIG. 11. Similar to Fig. 10, the numerically calculated expecta-
tion value of 	 over 100 iterations for 250 atoms for the same four
cases that are shown by the vertical lines in Fig. 9. The results are
again in agreement with the predictions of Fig. 9.

Equation (32) is more difficult to evaluate analytically due
to the presence of the phase terms e−ikaxuv . To simplify what
follows, instead of a 3D ensemble with a cube-shaped volume,
we consider a spherical atomic ensemble with a Gaussian
probability distribution of radius R0. With this setup the ex-
pression for I3R, which is the negative of the left-hand side of
the new condition in Eq. (32), becomes

I3R =3

2
E{Ruv,θuv ,φuv}

∑
u,v,u �=v

cos(kaRuv cos φuv sin θuv )

× [J (kaRuv ) + cos2 θuvK(kaRuv )]. (33)

For each coordinate the Gaussian distribution is given by

pg(X ) = 1√
πR2

0

e−X 2/R2
0 . (34)

Under the coordinate transformation Dx = X1 − X2 and I =
X2, the new distribution is

p12(Dx ) =
∫ ∞

−∞

pg(Dx + I )pg(I )

J (Dx, I )
dI, (35)

where J (Dx, I ) is the Jacobian of transformation at the in-
tersection point X1 = Dx + I, X2 = I . Using the result from
Eq. (C2) in Appendix C, we have J = 1, which then results in

p12(Dx ) = 1

πR2
0

e−D2
x/R2

0

∫ ∞

−∞
e−2(I2+DxI )/R2

0 dI

= 1√
2πR2

0

e−D2
x/(2R2

0 ). (36)

We then multiply the distribution for all coordinates together
to obtain

p12(D) = 1(
2πR2

0

)3/2 e−D2/(2R2
0 ). (37)

As a result, the expression for I3R now transforms to

I3R = 3

2
(
2πR2

0

)3/2 (N2 − N )

×
∫ ∞

0

∫ π

0

∫ 2π

0
cos(kar cos φ sin θ )[J (kar)

+ cos2 θ K(kar)]e−r2/(2R2
0 )r2 sin θ dr dθ dφ. (38)

The above integral can be performed analytically, which then
gives the following final expression:

I3R =3(N2 − N )

2
e−k2

a R2
0

×
[(

R4
0k4

a + 1
)

sinh
(
R2

0k2
a

)− R2
0k2

a cosh
(
R2

0k2
a

)]
R6

0k6
a

.

(39)

There is a correction term due to the minimum allowable
distance between the atoms d . This correction term is at the
level of 10−5 for d/λa � 0.06. Since I3R is positive for all
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values of R0, there will, on average, always be superradiance
[following Eq. (32)]. This result suggests that subradiance-
only decay does not happen in a disordered ensemble with a
spherical volume when the initial state is excited with a laser
beam.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we discussed analytically and numeri-
cally that, under certain parameters, subradiance does not
necessarily need to be accompanied by early-time superradi-
ance. We focused on the single-atom excited subspace (i.e.,
weak-excitation regime) and showed that the ensemble can
immediately start to decay with a rate which is slower than the
independent decay rate. We identified the parameter regimes
in one, two, and three dimensions where such subradiance-
only decay can happen.

We note that the robustness of the subradiance-only decay
can be deduced from the variation of the functions I1, I2, I2R,
and I3R to their argument. These functions are plotted in
Figs. 3, 5, 6, and 9, and subradiance-only decay occurs in
the regions where the functions are negative. These functions
vary reasonably smoothly as a function of the parameters of
the system, for example, s/λa in ordered arrays (where the
quantity s is the spacing between the atoms) and L in disor-
dered ensembles (which is the overall size of the ensemble).
As a result, the regions where these functions are negative
happen over a sizable domain, which indicates the robustness
of the effect to the variations in the parameters of the system.
The exceptions to this happen near the singularities of the
functions.

To give a specific example, in Fig. 3, we plot I1 as a
function of s/λa for a 1D ordered array. The function I1

has singularities at integer values of s/λa, s/λa = 1, 2, 3, . . . .
Near these integer values, the subradiance-only decay is not
robust and depends sensitively on the array spacing. However,
in other regions, the function is smooth, and the effect is
robust. For example, for s/λa = 0.7 the decay is subradiance
only, and ±20% of the fluctuations in the array spacing will
still display subradiance-only decay.

We note that in our approach we used a simplified two-level
approach (i.e., a scalar model), and we ignored the vectorial
nature and the polarization properties of light. While it is
known that the simplified scalar model captures many as-
pects of collective decay [49], there can also be significant
differences between the predictions of the scalar and vectorial
models in certain scenarios. For example, recent work on
the Anderson localization of light showed that the vectorial
nature of light destroys Anderson localization [50]. One future
direction is to extend our results to multilevel atomic systems
interacting with light while taking into account the vectorial
nature and the polarization properties of the light.

One exciting future direction is to pursue experimental
observations of these predictions. By extending recent ob-
servations of subradiance in dilute ultracold clouds with low
optical depth, it should be possible to verify many of the
results presented in Figs. 7, 8, 10, and 11. Another future
direction is to extend these results to the strong-excitation
regime, where the evolution is not confined to the single-
excited subspace of the Hilbert space.
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APPENDIX A: ANALYTIC EXPRESSION FOR A LINEAR
ARRAY OF ATOMS

To find the sum of J (x) we need to find the sum of
appropriate expressions involving spherical Bessel functions.
For brevity we will use the shorthand sλ for s/λa. Note that as
N → ∞, we need to evaluate only two infinite sums because

I1 = lim
N→∞

N∑
m=1

(N − m)J (2πsλm) � 0 (A1)

= lim
N→∞

N∑
m=1

J (2πsλm) − lim
N→∞

N∑
m=1

m

N
J (2πsλm) � 0

(A2)

=
∞∑

m=1

J (2πsλm) � 0 ⇒
∞∑

m=1

(
j0(2πsλm) − j1(2πsλm)

2πsλm

)

� 0, (A3)

provided that the sum
∑

m mJ (2πsλm) is finite. Since

∞∑
m=1

mJ (2πsλm) =
∞∑

m=1

sin(2πsλm)

2πsλ

+ 1

4π2s2
λ

∞∑
m=1

cos(2πsλm)

m

− 1

8π3s3
λ

∞∑
m=1

sin(2πsλm)

m2
, (A4)

the first sum is finite for all values of sλ; the second sum con-
verges to − ln[2 sin(πsλ)], which is finite only when sλ /∈ Z,
and the third sum is also finite for all sλ except at zero, where
it has a double pole. Therefore, the sum of I1 can be evaluated
by summing over only j0(2πsλm) and j1(2πsλm)/(2πsλm)
provided that sλ /∈ Z.

To find the infinite sum we use the Poisson summation
formula, which states that for a Schwarz function, say, f :
R → C and L ∈ R+,

∞∑
n=−∞

f (nL) = 1

L

∞∑
k=−∞

f̃

(
2πk

L

)
, (A5)

where f̃ is the Fourier transform of f ,

f̃ (k) =
∫ ∞

−∞
e−ikz f (z)dz, f (z) = 1

2π

∫ ∞

−∞
eikz f̃ (k)dk.

(A6)
Taking L = 2πsλ, (A5) becomes

∞∑
n=−∞

f (2πsλn) = 1

2πsλ

∞∑
k=−∞

f̃ (k/sλ); (A7)

for the purpose here, we investigate the case when f ≡
j�. Using the integral representation of the spherical Bessel
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functions,

j�(z) = 1

2i�

∫ 1

−1
eizt P�(t )dt, (A8)

we obtain

j̃�(k) =
∫ ∞

−∞
e−ikz j�(z)dz = 1

2i�

∫ 1

−1

∫ ∞

−∞
ei(t−k)zP�(t )dzdt = π

i�

∫ 1

−1
δ(t − k)P�(t )dt = π

i�
β(k)P�(k), (A9)

and subsequently,

∞∑
n=−∞

j�(2πsλn) = 1

2πsλ

∞∑
k=−∞

j̃�(k/sλ) = 1

2πsλ

π

i�

∞∑
k=−∞

β

(
k

sλ

)
P�

(
k

sλ

)
= 1

2i�sλ

∑
−sλ<k<sλ

P�(k/sλ). (A10)

We can now use (A10), the identity,

j′�(z) = j�−1(z) − � + 1

z
j�(z), (A11)

and the fact that the Fourier transform of f ′ is ik f̃ to find the sum of j�(z)/z. First, we find the sum for j′�(2πsλm),

∞∑
n=−∞

j′�(2πsλn) = 1

2πsλ

∞∑
k=−∞

i
k

sλ

j̃�(k/sλ) = 1

2i�−1s2
λ

∑
−sλ<k<sλ

kP�(k/sλ); (A12)

hence,

1

(� + 1)

( ∞∑
n=−∞

j�−1(2πsλn) −
∞∑

n=−∞
j′�(2πsλn)

)
=

∞∑
n=−∞

j�(2πsλn)

2πsλn
(A13)

or

1

2

( ∞∑
n=−∞

j0(2πsλn) −
∞∑

n=−∞
j′1(2πsλn)

)
=

∞∑
n=−∞

j1(2πsλn)

2πsλn
,

1

4

⎛
⎝ 1

sλ

∑
−sλ<k<sλ

P0(k/sλ) − 1

s2
λ

∑
−sλ<k<sλ

kP1(k/sλ)

⎞
⎠ =

∞∑
n=−∞

j1(2πsλn)

2πsλn
. (A14)

Finally, substituting � = 0 in (A10) and (A14), we find

∞∑
n=−∞

J (2πsλn) = 1

2sλ

∑
−sλ<k<sλ

P0(k/sλ) − 1

4sλ

∑
−sλ<k<sλ

P0(k/sλ) + 1

4s2
λ

∑
−sλ<k<sλ

kP1(k/sλ). (A15)

Using the fact that J (x) is an even function and that J (0) = 2/3, we get

∞∑
n=1

J (2πsλn) = 1

8s2
λ

∑
−sλ<k<sλ

[sλP0(k/sλ) + kP1(k/sλ)] − 1

3
= 1

8

⎛
⎝ 1

sλ

�sλ�∑
k=−�sλ�

1 + 1

s3
λ

�sλ�∑
k=−�sλ�

k2

⎞
⎠− 1

3
(A16)

= 1

8sλ

(2�sλ� + 1) + 1

24sλ3
�sλ�(�sλ� + 1)(2�sλ� + 1) − 1

3
= (2�sλ� + 1)

8sλ

(
1 + �sλ�(�sλ� + 1)

3sλ2

)
− 1

3
,

(A17)

such that sλ /∈ Z.

APPENDIX B: ANALYTIC EXPRESSION FOR THE TWO-DIMENSIONAL ARRAY OF ATOMS

Before the derivation we introduce two notational functions, β and β+, as follows:

β(x) =
{

1, |x| < 1,

0, |x| > 1,
β+(x) =

{
1, 0 � x < 1,

0, otherwise.
(B1)

To find the sum I ′
2/4N in the limit N → ∞ we apply the higher-dimensional version of the Poisson summation formula with

Hankel transforms to reduce the infinite sum to a tractable finite sum. The Poisson summation formula as stated in Appendix A
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also has the following 2D form:

∑
�n∈Z2

f (�nL) = 1

L2

∑
�k∈Z2

f̃

(
2π �k

L

)
, (B2)

with L = 2πsλ, �n = (m, n), ‖�n‖ = √
n2 + m2 = r, �k = (u, v), and ‖�k‖ = √

u2 + v2 = ρ. To apply this formula to the sum in
(41) we must first find its two-dimensional Fourier transform. We must note that the function J (2πsλ

√
x2 + y2) = J (2πsλr) is

circularly symmetric, implying that its Fourier transform can be found via its Hankel transform. The Hankel transform f̄ (ρ) of
a circularly symmetric function f (r) is defined as follows:

f̄ (ρ) =
∫ ∞

0
f (r)J0(rρ)rdr, J0(w) = 1

2π

∫ π

−π

eiw cos(θ−ϕ)dθ, (B3)

where J0 denotes the Bessel function of order zero. It can easily be shown that the Fourier transform and the Hankel transform
are related by the substitution of x = r cos θ, y = r sin θ, u = ρ cos ϕ, and v = ρ sin ϕ in the following equation:

f̃ (�k) = f̃ (u, v) =
∫ ∞

−∞

∫ ∞

−∞
e−i(ux+vy) f (x, y)dxdy =

∫ ∞

0
f (r)2πJ0(rρ)rdr = 2π f̄ (ρ) = 2π f̄ (

√
u2 + v2). (B4)

From the definition of the spherical Bessel functions in terms of the Bessel functions of half-integer order, we have

jn
rn

=
√

π

2

Jn+ 1
2

rn+ 1
2

. (B5)

The Hankel transform of J�(r)/r� is known to be (1 − ρ2)�−1β+(ρ)/[2�−1�(�)]; therefore, the Hankel transform of j�(r)/r� is

j�(r)

r�
↔H

√
π

2

(1 − ρ2)�−
1
2

2�− 1
2 �
(
� + 1

2

)β+(ρ) =
√

π

2

22��!(1 − ρ2)�−
1
2

2�− 1
2 (2�)!

√
π

β+(ρ) = 2��!

(2�)!
(1 − ρ2)�−

1
2 β+(ρ). (B6)

Hence, the 2D Fourier transform of j�(r)/r� is

j�(r)

r�
↔F 2π

2��!

(2�)!
(1 − ρ2)�−

1
2 β+(ρ). (B7)

Finally, substituting � = 0 and 1, respectively,

j0(r) ↔F 2π
β+(ρ)√
1 − ρ2

,
j1(r)

r
↔F 2πβ+(ρ)

√
1 − ρ2. (B8)

Applying the Poisson summation formula to each of them and then subtracting, we obtain

∑
m,n

j0(2πsλ

√
m2 + n2) = 1

(2πsλ)2

∑
u,v

2π
β+(ρ/sλ)√
1 − (ρ/sλ)2

, (B9)

∑
m,n

j1(2πsλ

√
m2 + n2)

2πsλ

√
m2 + n2

= 1

(2πsλ)2

∑
u,v

2πβ+(ρ/sλ)
√

1 − (ρ/sλ)2, (B10)

∑
m,n

J (2πsλ

√
m2 + n2) = 1

2πs2
λ

∑
u,v

β+(ρ/sλ)

(
1√

1 − (ρ/sλ)2
−
√

1 − (ρ/sλ)2

)
(B11)

⇒ 4
∞∑

m=1

∞∑
n=1

J (2πsλ

√
m2 + n2) + 4

∞∑
m=1

J (2πsλm) + J (0) = 1

2πs4
λ

∑
u,v

ρ2β+(ρ/sλ)√
1 − (ρ/sλ)2

, (B12)

and so

lim
N→∞

I ′
2

4N
=

∞∑
m=1

∞∑
n=0

J (2πsλ

√
m2 + n2) = 1

8πs4
λ

∑
u,v

ρ2β+(ρ/sλ)√
1 − (ρ/sλ)2

− 1

6
= 1

8πs3
λ

∑
u,v∈Z

(u2 + v2)β+(
√

u2 + v2/sλ)√
s2
λ − (u2 + v2)

− 1

6
,

(B13)
such that sλ /∈ {√u2 + v2 : (u, v) ∈ Z × Z}.

APPENDIX C: DERIVATION OF THE PROBABILITY DISTRIBUTION FOR Ruv

To find the distribution of Ruv we first derive the probability distribution of Xuv and Yuv from that of Xu,Yu ∼ Uniform(0, L)
and then apply the transformation of random variables from Xuv and Yuv to Ruv =

√
X 2

uv + Y 2
uv .
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Let X1, X2 ∼ Uniform(0, L), such that

pU (Xi ) = β+(Xi/L)

L
; (C1)

then let the following transformation of variables be applied: D = X1 − X2 and B = X2. The intersection points of the lines
D(X1, X2) and B(X1, X2) are X1 = D + B and X2 = B, and the Jacobian of transformation at the point of intersection is

J (X1, X2) =
∣∣∣∣∣

∂D
∂X1

∂D
∂X2

∂B
∂X1

∂B
∂X2

∣∣∣∣∣ =
∣∣∣∣1 −1
0 1

∣∣∣∣ = 1. (C2)

The corresponding transformation to the probability distribution will be

p�(D) =
∫ ∞

0
pU (D + B, B)/|J (D + B, B)|dB =

∫ L

0

β+((D + B)/L)

L2
dB. (C3)

Since 0 < X1, X2 < L implies that −L < X1 − X2 < L or −L < D < L, and from β+[(D + B)/L], B ∈ (−A, L − A) ∩ (0, L).
Therefore, when −L < D < 0, −A < B < L, and when 0 < A < L, 0 < B < L − A. Thus,

p�(A) =

⎧⎪⎨
⎪⎩
∫ L
−A

1
L2 dB = L+A

L2 , −L < A < 0,

∫ L−A
0

1
L2 dB = L−A

L2 , 0 < A < L,

= L − |A|
L2

β(A/L). (C4)

We call this distribution �(−L, L); hence, we have proved that Xuv,Yuv ∼ �(−L, L).
Next, we similarly transform, say, X,Y ∼ �(−L, L) to R = √

X 2 + Y 2, T = Y . The intersection of curves R and T is at
X = ±√

R2 − T 2,Y = T . The Jacobian of transformation is as follows:

J (X,Y ) =
∣∣∣∣∣

∂R
∂X

∂R
∂Y

∂T
∂X

∂T
∂Y

∣∣∣∣∣ =
∣∣∣∣X

R
Y
R

0 1

∣∣∣∣ = X

R
. (C5)

The values at the intersection points are J1 = J (
√

R2 − T 2, T ) = √
R2 − T 2/R and J2 = J (−√

R2 − T 2, T ) = −√
R2 − T 2/R.

Hence, the probability distribution for R is

pr (R) =
∫ ∞

−∞

(
p�(

√
R2 − T 2, T )

|J1| + p�(−√
R2 − T 2, T )

|J2|

)
dT = 2R

∫ ∞

−∞

p�(
√

R2 − T 2, T )√
R2 − T 2

dT (C6)

= 4R

L4

∫ L

0

(L − √
R2 − T 2)(L − T )√

R2 − T 2
β

(√
R2 − T 2

L

)
dT . (C7)

Solving the last integral, we obtain the following function:

pr (R) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 R < 0,

2R(L2π−4LR+R2 )
L4 0 � R � L,

4R
L4

[
1

L2 sin−1
(
2 L2

R2 − 1
)− L2 − R2

2 + 2L
√

R2 − L2
]

L < R �
√

2L,

0 R >
√

2L.

(C8)

Last, because the minimum separation distance is restricted to d , we renormalize the probability distribution pr (R) by the factor

N (d ) =
∫ √

2L

d
pr (r)dr = 1 −

∫ d

0
pr (r)dr = 1 −

∫ 2π

0

∫ d

0
p�(r cos θ )p�(r sin θ )rdrdθ, (C9)

giving us

pr (r|d ) = pr (r)/N (d ) = 6L4

6L4 + 16d3L − 6L2d2π − 3d4

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 r < d,

2r(L2π−4Lr+r2 )
L4 d � r � L,

4r
L4

[
1

L2 sin−1
(
2 L2

r2 − 1
)− L2 − r2

2 + 2L
√

r2 − L2
]

L < r �
√

2L,

0 r >
√

2L.

(C10)
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APPENDIX D: DERIVATION OF THE PROBABILITY DISTRIBUTION FOR Ruv and Cuv

Based on the same principles as in Appendix C, we define transformation of variables from Xuv,Yuv , and
Zuv to Ruv = √

X 2
uv + Y 2

uv + Z2
uv and Cuv = Zuv/Ruv . Therefore, let X,Y, Z ∼ �(−L, L), and we define three trans-

formed variables: R = √
X 2 + Y 2 + Z2,C = Z/R, and W = X . The intersection points of the surfaces R,C, and W are

X = W,Y = ±
√

R2(1 − C2) − W 2, and Z = RC. The Jacobian of the transformation

J (X,Y, Z ) =

∣∣∣∣∣∣∣∣
∂R
∂X

∂R
∂Y

∂R
∂Z

∂C
∂X

∂C
∂Y

∂C
∂Z

∂W
∂X

∂W
∂Y

∂W
∂Z

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
X
R

Y
R

Z
R

− ZX
R3 − ZY

R3
X 2+Y 2

R3

1 0 0

∣∣∣∣∣∣∣∣ = Y

R4
(X 2 + Y 2 + Z2) = Y

R2
. (D1)

At the intersection points the Jacobian values are J1 = J (W,
√

R2(1 − C2) − W 2, RC) =
√

R2(1 − C2) − W 2/R2 and J2 =
J (W,−

√
R2(1 − C2) − W 2, RC) = −

√
R2(1 − C2) − W 2/R2. The final distribution is then

prc(R,C) =
∫ ∞

−∞

(
pd (W,

√
R2(1 − C2) − W 2, RC)

|J1| + pd (W,−
√

R2(1 − C2) − W 2, RC)
|J2|

)
dW (D2)

= 4R2(L − |RC|)
L6

β

(
RC

L

)∫ L

0

(L − W )[L −
√

R2(1 − C2) − W 2]√
R2(1 − C2) − W 2

β

(√
R2(1 − C2) − W 2

L

)
dW. (D3)

After the correct intersection regions are isolated, the above integral reduces to the following probability distribution function:

prc(R,C) = 4R2(L − |RC|)
L6

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2
√

1 − C2LR + 1
2 (1 − C2)R2 + πL2

2 , 0 � R � L, |C| < 1,

2L
√

(1 − C2)R2 − L2 + L2 sin−1
(

2L2

(1−C2 )R2 − 1
)

− (1−C2 )R2

2 − L2, L < R �
√

2L, |C| <

√
1 − L2

R2 ,

−2
√

1 − C2LR + 1
2 (1 − C2)R2 + πL2

2 , L < R �
√

2L,

√
1 − L2

R2 � |C| < 1√
2
,

2L
√

(1 − C2)R2 − L2 + L2 sin−1
(

2L2

(1−C2 )R2 − 1
)

− (1−C2 )R2

2 − L2,
√

2L < R �
√

3L,

√
1 − 2L2

R2 � |C| < 1√
3
,

0, otherwise.

(D4)

Renormalizing as before, we obtain

prc(r, c|d ) = 120r2(L − |rc|)
30L6 + 5d6 − 48d5L + 45πd4L2 − 40πd3L3

(D5)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2
√

1 − c2Lr + 1
2 (1 − c2)r2 + πL2

2 , d � r � L, |c| < 1,

2L
√

(1 − c2)r2 − L2 + L2 sin−1
(

2L2

(1−c2 )r2 − 1
)− (1−c2 )r2

2 − L2, L < r �
√

2L, |c| <

√
1 − L2

r2 ,

−2
√

1 − c2Lr + 1
2 (1 − c2)r2 + πL2

2 , L < r �
√

2L,

√
1 − L2

r2 � |c| < 1√
2
,

2L
√

(1 − c2)r2 − L2 + L2 sin−1
(

2L2

(1−c2 )r2 − 1
)− (1−c2 )r2

2 − L2,
√

2L < r �
√

3L,

√
1 − 2L2

r2 � |c| < 1√
3
,

0, otherwise.

(D6)
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