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Anisotropic Rabi model with two-photon relaxation
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The interplay of three light-matter interaction processes, i.e., rotating and counterrotating interactions and
two-photon relaxation of the light field, is a topic of interest in quantum optics and quantum information pro-
cessing. In this work we investigate theoretically the three light-matter interaction processes using the anisotropic
Rabi model, which accounts for different strengths of rotating and counterrotating interactions and the unique
occurrence of photon escape exclusively in pairs. By numerically solving the Lindblad master equation, we
analyze the excitation-relaxation dynamics and derive a non-Hermitian effective Hamiltonian to gain further
physical insights. To explore the individual effects of these interactions, we examine three analytically tractable
limits of the effective Hamiltonian. Our analysis reveals that the three competitive light-matter interaction
processes exhibit sensitivity to parity, leading to intriguing phenomena in both transient and steady states.
Particularly interesting dynamical patterns resembling quantum phase transitions emerge when these three
interaction terms compete. This work deepens the understanding of ultrastrong light-matter interaction in open
quantum systems and offers valuable insights into cavity-based quantum computations.
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I. INTRODUCTION

The quantum Rabi model (QRM), which characterizes
the dynamic interplay between a two-level quantum sys-
tem (referred to as a qubit) and a single-mode quantized
light field confined within a cavity, stands as one of the
most elementary interaction physical models [1–7]. Despite
its fundamental nature, the QRM manifests a diverse array
of physical phenomena and has discovered practical utility
across an extensive spectrum of scientific disciplines. These
include, but are not limited to, the realms of quantum optics
[8], condensed-matter physics [9,10], and the forefront of
cutting-edge quantum technologies [11,12].

The QRM features a competitive interplay between two
distinct modes of light-matter interaction: the rotating terms
(RTs) and the counterrotating terms (CRTs). The RTs char-
acterize processes involving the exchange of excitations
between the qubit and the cavity, preserving the total excita-
tion count. In contrast, the CRTs give rise to events where both
a qubit excitation and a photon are simultaneously created
or annihilated, maintaining only the parity of the excitation
number. The conservation of parity within the QRM leads to
a multitude of significant physical consequences, including its
solvability [2,6,13–15], the emergence of level crossing points
[16,17], the presence of hidden symmetries [18–21], and the
occurrence of a superradiant phase transition [22–25].

While most research on the QRM has focused on ideal-
ized closed systems without relaxation, real-world situations
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involve environmental influences. Accounting for the envi-
ronment requires the use of the Lindblad master equation. In
certain cases, a non-Hermitian effective Hamiltonian can be
derived to describe the system in the Schrödinger formalism,
offering deeper physical insights. For example, an intriguing
two-photon relaxation process has been postulated and inves-
tigated [26–28]. In this context, the escape of photons from a
cavity occurs exclusively in pairs, preserving the conservation
of parity within the QRM. As a consequence, the excitation-
relaxation dynamics of the system, including both transient
and steady states, exhibits a sensitivity to parity, giving rise to
various remarkable phenomena that are absent in the closed
QRM. The two-photon relaxation mechanism has been pro-
posed to facilitate universal quantum computing. Specifically,
it has been theoretically and experimentally demonstrated that
any initial state of the cavity, subjected to two-photon relax-
ation, evolves into two Schrödinger cat states, resulting in a
qubit that relies on the characteristics of a cavity [28–34].
The intricate interplay between the light-matter interaction
and the two-photon relaxation has been explored in Ref. [27].
However, there is still a lack of comprehensive understanding
regarding the competitive dynamics involving RTs, CRTs, and
relaxation terms.

In this work we adopt the theoretical framework estab-
lished in Ref. [27] and investigate the competition among
different interaction processes. Specifically, we consider the
anisotropic Rabi model, which has been extensively studied in
previous works [35–45]. In this model, the coupling strengths
of the RTs and CRTs are different. By adjusting the cou-
pling strengths and the two-photon relaxation rate, we find
that the excitation-relaxation dynamics exhibits interesting
parity-sensitive behavior in both transient and steady states.
We explain these phenomena by analyzing the competition
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among different interaction processes. To achieve this, we
numerically solve the quantum master equation and utilize the
effective Hamiltonian to gain further physical insights.

The structure of this paper is as follows. In Sec. II we
present the system Hamiltonian and the Lindblad master equa-
tion that incorporates two-photon relaxation. We subsequently
explore three solvable limits in Sec. III, which are indicative
of the effects arising from distinct transition processes. Sec-
tion IV showcases exceptional phenomena observed in both
transient dynamics and steady states. These are elucidated by
examining the underlying principles of competitive interac-
tions. A summary is given in Sec. V.

II. MODEL HAMILTONIAN

We employ the anisotropic Rabi model (ARM)
[35,36,39,46] to examine the consequences of distinct
light-matter interaction components. Different from dealing
with the standard QRM, we encounter two types of
interactions characterized by different strengths in the
ARM. The ARM Hamiltonian reads

H = H0 + H1 + H2, (1)

where the free Hamiltonian H0, the Jaynes-Cummings inter-
action Hamiltonian H1, and the counterrotating interaction
Hamiltonian H2 are given by (h̄ = 1)

H0 = ωa†a + �

2
σz,

H1 = g1(aσ+ + a†σ−),

H2 = g2(a†σ+ + aσ−). (2)

Here a† and a are the creation and annihilation operators
for the quantized light field in the cavity, with a resonance
frequency ω. Meanwhile, σz = |e〉 〈e| − |g〉 〈g|, σ+ = |e〉 〈g|,
and σ− = |g〉 〈e| are the atomic raising and lowering opera-
tors linked to the qubit with a transition frequency �. The
two types of interactions between the cavity and qubit are
characterized by the coupling strengths g1 and g2. The ARM
simplifies to the standard QRM with g1 = g2. When g2 = 0,
it transforms into the Jaynes-Cummings model (JCM). When
g1 = 0, it corresponds to the anti-JCM (AJCM). Physical
implementations or simulations of the QRM and ARM are
achievable, e.g., in circuit quantum electrodynamics setups
[11,39] and in synthetic antiferromagnets with intrinsic asym-
metry of magnetic anisotropy [47].

The Hamiltonian has Z2 symmetry in the sense that it is
invariant under the parity transformation generated by the
combined parity operator

P = −σze
iπa†a. (3)

As a physical consequence, the ARM conserves the parity
of the total excitation number in the system [18]. To be
specific, we consider the photon-qubit bare basis, defined by
|n, e(g)〉 ≡ |n〉 ⊗ |e(g)〉, with |n〉 the Fock states and |e〉 and
|g〉 the excited and ground states of σz. Owing to the conserved
parity, from an initial state with definite parity, the evolution
under the ARM Hamiltonian goes along the corresponding

parity chain [27,48], given by

p = +1, {|0, g〉 , |1, e〉 , |2, g〉 , |3, e〉 , . . . },
p = −1, {|0, e〉 , |1, g〉 , |2, e〉 , |3, g〉 , . . . }. (4)

Regarding the effects of the environment, a relaxation
scheme where photons can only leak in pairs has been inves-
tigated [27]. In this case, the dissipation does not break the
parity conservation, and the dynamical behaviors are expected
to be parity sensitive, i.e., different for initial states from two
parity subspaces.

When two-photon relaxation is considered, the time-
dependent density matrix ρ(t ) of the system can be described
by the Lindblad master equation [49–51]

ρ̇(t ) = −i[H, ρ(t )] + 2κa2ρ(t )(a†)2 − κ{(a†)2a2, ρ(t )},
(5)

with κ the relaxation rate. By rearranging Eq. (5) we obtain

ρ̇(t ) = −i[Heffρ(t ) − ρ(t )H†
eff] + Ljump(ρ), (6)

with the effective Hamiltonian

Heff = H − iκ (a†)2a2 (7)

and the quantum jump operator

Ljump(ρ) = 2κa2ρ(t )(a†)2. (8)

When the quantum jump effects can be neglected, the dy-
namics of the system can be approximately described in the
Schrödinger formalism with the effective Hamiltonian Heff.
The imaginary parts of the eigenvalues of Heff represent the
decays of the eigenstates and thus the leaks of probabilities
from the system into the environment. Therefore, when cal-
culating the expectation value of a physical observable in
non-Hermitian systems, one needs to renormalize the wave
function. Specifically, the imaginary term iκ (a†)2a2 in Eq. (7)
indicates that higher photon levels have larger decay rates and
thus decrease faster in probabilities. As a result, the states with
slower photon decay become dominant. This is effectively
a relaxation process with probabilities transiting from high
photon levels to low photon levels, coinciding with the effects
of the quantum jump operator Ljump(ρ). In this way, the time-
dependent Schrödinger equation of the effective Hamiltonian
captures the main features of the dynamics apart from the
quantum jump effects.

Figure 1 shows the transition diagram induced by the ro-
tating interaction H1, the counterrotating term H2, and the
quantum jump operator Ljump(ρ). The rotating interactions
(denoted by green arrows between |n, e〉 and |n + 1, g〉) ex-
change excitations between the qubit and the cavity and thus
conserve the total number of excitations. The CRTs (indi-
cated by blue arrows between |n, g〉 and |n + 1, e〉) create (or
annihilate) excitations in both the qubit and cavity simultane-
ously and thus only conserve the parity of excitation numbers.
The quantum jump operator Ljump(ρ) (shown by red arrows)
only happens from high levels to low levels. The decay rates
are larger in the states with more photons. The interplay of
these processes induces the exotic dynamical behaviors of
the system.
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FIG. 1. (a) Schematic of the anisotropic Rabi model with two-
photon relaxation. Also illustrated are the possible transitions
induced by the rotating interaction terms (green), counterrotating
terms (blue), and the two-photon relaxation term (red) in (b) even-
and (c) odd-parity subspaces of the photon-qubit bare basis.

III. COMPLEX ENERGY SPECTRUM

A. Spectrum of the effective Hamiltonian

As mentioned, the open-system dynamics can be described
by the Schrödinger equation of the effective non-Hermitian
Hamiltonian. In the following, we analyze the spectrum of this
Hamiltonian.

There is no simple closed-form solution to the ARM and
we thus rely on numerical diagonalization, as well as ap-
proximations. We first calculate the spectrum by numerical
diagonalization and give physical interpretations of the com-
plex eigenvalues. The spectrum is complex, as shown in
Fig. 2. The real parts of eigenvalues denote the frequencies
and the imaginary parts characterize the effective decay rates.
In Fig. 2 the eigenvalues are labeled with ψ

p
n , where n is the

level index and the value of p takes + for even-parity subspace
and − for odd-parity subspace.

The non-Hermitian term iκ (a†)2a2 in the effective Hamil-
tonian does not directly induce any transition between bare
states. However, it contributes imaginary eigenvalues associ-
ated with different photon numbers and thus effectively results
in decay processes. Therefore, the effective decay term in the
Schrödinger formalism approximates the effects of the relax-
ation processes in the Lindblad formalism. In this way, we see
intuitively how the non-Hermitian effective Hamiltonian can
describe the full dynamics that are determined by the quantum
master equation.

We turn to solvable limits of the effective Hamiltonian
for further physical intuition. The JCM and AJCM are both
exactly solvable and thus the effects of the RTs and CRTs
can be analyzed separately. From the analytic results, we can

FIG. 2. (a) Real and (b) imaginary parts of the eigenvalues of
the ARM with (dashed lines) or without (solid lines) two-photon
relaxation, versus the coupling strength g1/ω. (c) Eigenvalues of the
system Hamiltonian on the complex plane with various values of
the coupling strength g1/ω. The fixed parameters are �/ω = 0.8,
κ/ω = 0.02, and λ = g2/g1 = 0.5.

deduce the competition between different types of interac-
tions. Even the trivial decoupled limit, with g1 = g2 = 0,
provides additional intuition to the decay process.

B. Decoupled limit

With g1 = g2 = 0, the qubit is decoupled from the field and
the effective Hamiltonian becomes

Hg=0
eff = H0 − iκ (a†)2a2. (9)

This case is trivially solvable with the eigenvalues given as

E±
n,g=0 = nω ± �

2
− iκn(n − 1) (10)

and the eigenstates are simply bare states

ψ±
n,g=0 = |n,±〉 ≡ |n〉 ⊗ |±〉 . (11)

We see from the eigenvalues that the decay rates of eigenstates
increase with the photon number.

C. Jaynes-Cummings model

When g2 is set to 0 and only rotating interactions are
taken into account, we reach the JCM [52–55]. The effective
Hamiltonian now reads

HJC
eff = H0 + g1(aσ+ + a†σ−) − iκ (a†)2a2, (12)

which is exactly solvable. The eigenvalues are

E JC
n,± = (

n + 1
2

)
ω − iκn2 ± 1

2

√
(A−

n )2 + B2
n, (13)
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where

A±
n = (ω ± �) − 2iκn, Bn = 2g

√
n + 1. (14)

The definition of A+
n will be used for the anti-Jaynes-

Cummings model later.
A special case that can be analytically dealt with is when

the qubit and cavity are in resonance, with δ = ω − � = 0.
The corresponding eigenvalues are

E JC
n,± = (

n + 1
2

)
ω − iκn2 ±

√
(n + 1)g2

1 − n2κ2. (15)

The two eigenstates with the same index n are degenerate
when the square root in Eq. (15) is 0, leading to an exceptional
point due to the passive parity-time (PT ) symmetry (see
further discussion in Appendix D).

D. Anti-Jaynes-Cummings model

We now consider the anti-JCM to explore the effects
brought by CRTs. The effective Hamiltonian now reads

HAJC
eff = H0 + g2(a†σ+ + aσ−) − iκ (a†)2a2, (16)

which is also exactly solvable. The corresponding eigenvalues
are

EAJC
n,± = (

n + 1
2

)
ω − iκn2 ± 1

2

√
(A+

n )2 + B2
n, (17)

with A+
n and Bn given in Eq. (14).

IV. EXCITATION AND RELAXATION DYNAMICS

In this section we analyze the dynamics of the ARM with
two-photon relaxation. To this end, we tune the coupling
strengths g1 and g2, as well as the two-photon relaxation rate
κ , to explore the interplay and competition of the different
interaction terms.

We focus on both transient states and steady states by
calculating the corresponding physical observables, namely,
the cavity photon number and the qubit population. In par-
ticular, we discuss the excitation-relaxation dynamics with
three approaches. First, we calculate the dynamics by numer-
ically solving the Lindblad master equation with a specific
initial state ρ(0). We illustrate the overall dynamics in two
parity subspaces and discuss the transient and steady states
in detail. Second, we map the bare states onto the eigenbasis
of the effective Hamiltonian and understand the relaxation
dynamics by interpreting the corresponding complex eigen-
values as decay rates. Third, we understand some interesting
steady-state behaviors from the perspective of the transition
processes of the bare states.

A. Dynamical effects of the interaction terms

To begin with, we intuitively analyze the impact of the
three types of interactions on the system dynamics. The re-
laxation processes involved in Eq. (5) is the simplest case as
it does not include the interaction with the qubit. In addition,
there is no process to regenerate photons into the system after
the dissipation. In the decoupled limit, if we start from a bare
state |n, e(g)〉, photons will decay at an exponential rate given
by κn(n − 1) and the cavity reaches the vacuum state |0, e(g)〉
if n is even. For initial states with odd photons, however,

there will be a single photon left in the system since there
is no mechanism to dissipate it. Since the qubit and cavity are
decoupled in this limit, the qubit state is immune to relaxation
and remains unchanged.

As shown in Fig. 1, the Jaynes-Cummings (JC) interac-
tion terms generate transitions within subspaces that conserve
excitation numbers. This leads to Rabi oscillations between
two basis states that share the same number of excitations. In
particular, if we start with the initial state |n, e〉, the probability
of state |n + 1, g〉 is oscillatory, given by

PJC
|n+1,g〉 = 4g2

1(n + 1)(
�JC

n

)2 sin2

(
�JC

n t

2

)
, (18)

with the Rabi frequencies

�JC
n =

√
(ω − �)2 + 4g2

1(n + 1). (19)

Equation (18) shows that the complete population transfer
only occurs in the resonant case. The oscillation frequen-
cies increase with the coupling strength g1 and the photon
number n.

Different from the JC interaction terms, the CRTs induce
transitions where two excitations emerge or disappear simul-
taneously, leading to anti-Rabi oscillations. With the initial
state being |n, g〉, the population of the state |n + 1, e〉 is
given by

PAJC
|n+1,e〉 = 4g2

2(n + 1)(
�AJC

n

)2 sin2

(
�AJC

n t

2

)
, (20)

with the anti-Rabi frequencies

�AJC
n =

√
(ω + �)2 + 4g2

2(n + 1). (21)

We can observe from the above equations that for small values
of g2, the frequencies are large while the amplitudes are small.
Therefore, the effects of CRTs are negligible for small g2 but
prominent for large g2.

The intricate interplay of the above dynamical processes
leads to the interesting time evolution of the full system.

B. Transient states

We now start our discussion on the dynamics with the
transient states in the even-parity subspace. The full dynamics
with even parity is presented in Fig. 3. The system is initially
prepared in the bare state |2, g〉, indicating that there are two
photons in the cavity and the qubit is in its ground state at
t = 0. We calculate the mean photon number and qubit popu-
lation by solving the Lindblad master equation numerically. In
the calculations, we set g2/g1 = λ and vary the value of g1 to
obtain the dynamics concerning coupling strengths. To better
see how RTs and CRTs interact with the relaxation separately,
we choose the coupling ratio λ = 0.5 to further suppress the
effects of CRTs for lower coupling strength regimes. The
overall results are displayed in Figs. 3(a) and 3(b). It is clear
that the interplay of the three types of interactions depends
on the coupling strengths. The dynamical behaviors can be
physically interpreted from the perspective of transition pro-
cesses induced by the three types of interactions, as illustrated
in Fig. 1(a).
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FIG. 3. Excitation-relaxation dynamics of the ARM in even-parity subspace, with the initial state |2, g〉 and parameters λ = g2/g1 = 0.5,
�/ω = 0.8, and κ/ω = 0.02. Shown is the time evolution of (a), (c), and (e) the mean photon number and (b), (d), and (f) the qubit population
with various values of coupling strength g1/ω in the time range of t/Tc, with Tc ≡ π/ω. (g) Probability of eigenstates when mapping the initial
state onto the eigenbasis. (h) Transient states of the mean photon number and qubit population with various values of coupling strength g1/ω

at time t/Tc = 60.

We take the case g1/ω = 0.1 as the first example, with
the corresponding cavity photon number and qubit population
displayed in Figs. 3(c) and 3(d), respectively. The ripples for
short-range time mainly result from the interplay between
the JC interactions and the two-photon relaxation, since the
effects of CRTs are weak with the marginal value of g2/ω =
0.05. Through the relaxation channel |2, g〉 ⇒ |0, g〉, the two
photons in the initial state quickly escape from the cavity with
a certain probability. Meanwhile, the Rabi oscillations transfer
some of the population through the process |2, g〉 ↔ |1, e〉 and
thus prevent the relaxation. The effect of Rabi oscillations
can be more obviously observed from the qubit dynamics
in Fig. 3(d), where the qubit is not directly affected by the
relaxation process and undergoes several periods of oscilla-
tions at the constant Rabi frequency. Later on, since the Rabi
oscillations are reversible, the reexcited population undergoes
relaxation again, which gives rise to an overall decaying
behavior for both the cavity and qubit. Consequently, after
several periods of Rabi oscillations, the population concen-
trates in the state |0, g〉, with both the cavity and qubit sitting
around their ground states.

When g1 increases, the effects of CRTs become non-
negligible, and the interference between these effects leads to
nontrivial dynamical patterns. To demonstrate this, we take
the case g1/ω = 0.9, and thus g2/ω = 0.45, as an example.
The results are displayed in Figs. 3(e) and 3(f). The current
case has two main differences from the previous one: The

photons decay slower at the initial stage and more photons
are left in the cavity in the final state. Since CRTs induce
fast small-amplitude oscillations, the dynamics at beginning
times are largely different from the previous case. For this
time range, the main transition channel due to the competition
between CRTs and relaxation is

|2, g〉 ⇔ |3, e〉 ⇒ |1, e〉 , (22)

where the relaxation is weakened to a much greater extent.
As a consequence, the mean photon number and qubit pop-
ulation in this case are both more than in the previous case
at the beginning. After this initial competition, the reversible
nature of Rabi and anti-Rabi oscillations still offers chances to
the relaxation channel and thus leads to the overall decaying
behavior. The relaxation processes smooth these oscillatory
dynamics for a long time range, where all the transitions reach
a dynamical equilibrium, with a higher number of excitations
in the final state.

We note that any other initial states with even parity give
rise to almost the same physics since they decay quickly to
the bare state |2, g〉 that we consider in the above example.
However, higher initial states will lead to more complicated
dynamics at the beginning times, since the Rabi and anti-Rabi
frequencies increase with photon number n. The final dynam-
ical equilibrium only depends on the system parameters and
the parity of the initial state, ignoring the specific form of the
wave functions.
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FIG. 4. Excitation-relaxation dynamics of the ARM in odd-parity subspace, with the initial state |3, g〉 and parameters λ = g2/g1 = 0.5,
�/ω = 0.8, and κ/ω = 0.02. Shown is the time evolution of (a), (c), and (e) the mean photon number and (b), (d), and (f) the qubit population
with various values of coupling strength g1/ω in the time range of t/Tc, with Tc ≡ π/ω. (g) Probability of eigenstates when mapping the initial
state onto the eigenbasis. (h) Transient states of the mean photon number and qubit population with various values of coupling strength g1/ω

at time t/Tc = 60.

If we focus on the medium-range time that is long (e.g.,
t = 60π in our case), but not long enough for the system to
reach the final steady state, we can see how the equilibrium
is affected by the coupling strengths. For the even-parity sub-
space, we observe some dynamical behaviors that are rather
steady, as illustrated in Fig. 3(d). These medium-range states
are already quite similar to the final steady states except for the
local maximum at around g1 = 0.05. This peak was noticed in
Ref. [27] and was believed to exist in the steady state for the
coupling strength g1 = g2 = κ .

Here we show that this local maximum is absent in the final
steady states and its position is irrelevant to the relaxation
rate κ . It turns out to be a consequence of the competition
between JC interactions and two-photon relaxation, which is
most clearly seen in the dissipative JCM, where CRTs are
absent. In a more direct interpretation, the local maximum
originates from the slow Rabi oscillations for small g1, whose
position can be analytically determined from the JCM. We
see from Eq. (19) that the Rabi frequency increases with the
coupling strength g1. Therefore, for a given time t , oscilla-
tions associated with different coupling strengths are going
through various stages. There might be one that happens to
be at its maximum, whereas the neighboring ones are not. At
this specific time, we then observe the local maximum with
respect to the coupling strength, as displayed in Fig. 3(h).
With this reasoning, it is clear that the corresponding g1 value
decreases with time t and thus the peak disappears for a long
enough time.

Since the total system conserves the parity of the total
excitation number, the dynamics are expected to be parity sen-
sitive. Indeed, the results with the initial odd-parity state |3, g〉,
shown in Fig. 4, demonstrate that the dynamics of both the
cavity photon number and qubit population are significantly
different from the even-parity case. The major difference is
that the oscillations are much more persistent in odd subspace.
The dynamics can also be understood in the same intuitive
way and can be largely deduced from the solvable limits.
In the decoupled case where g1 = g2 = 0, the initial state
|3, g〉 quickly loses two photons and reaches the final state
|1, g〉. In this case, no mechanism exists to excite the qubit or
dissipate the photon. Things become more interesting when
light-matter interactions are introduced. For small coupling
strength, the system oscillates between states |1, g〉 and |0, e〉
owing to the JC interactions. If g2 = 0, this oscillation persists
forever and the steady state is never reached. This is verified
by the constant oscillations depicted in Figs. 4(c) and 4(d).
For nonzero g2, however, the weak effects of CRTs induce a
tiny number of transitions to higher photon states, which are
then dissipated by the relaxation processes. This is the reason
why the system can still reach steady state after long-time
oscillations. When g2 grows to the regimes where the effects
of CRTs are prominent, the Rabi oscillations are destroyed by
the CRTs and then quickly smoothed by the relaxation terms,
as shown in Figs. 4(e) and 4(f). It is clear from the quasisteady
states in Fig. 4(h) that the photon and qubit excitations left in
the system are more than those of the even-parity case. This
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is because there is always some population of |1, g〉 and |0, e〉
that cannot be dissipated.

Since the connections between the Lindblad master equa-
tion and the non-Hermitian effective Hamiltonians have been
established in the previous sections, the overall dynamics can
also be approximately understood with physical intuitions by
mapping the initial state on the eigenbasis of the Hamiltonian
(1). This mapping shows which modes are more active at a
given value of g in each parity subspace. By doing so, we
can check the corresponding frequencies and decay rates from
Fig. 2 and thus understand the dynamical behavior. Here we
map the initial bare state |2, g〉 onto the eigenstates of the
effective Hamiltonian, and the probabilities of the eigenstates
are displayed in Fig. 3(g). We observe that the dynamics ex-
hibit decaying oscillations with rather steady frequencies for
small g/ω, as shown in Figs. 3(c), 3(d), 4(c), and 4(d). Various
eigenstates with different decay rates become non-negligible
with increasing g/ω and thus lead to more complex dynamical
patterns, as exemplified in Figs. 3(e), 3(f), 4(e), and 4(f).
This phenomenon can be understood as an extension of the
difference between the strong- and the ultrastrong-coupling
regimes in the open system.

C. Steady states

After a long enough time, the system arrives at a dynam-
ical equilibrium of the three types of transitions, i.e., the
steady state. With steady states, it is easy to identify the
interplay of the interaction processes. The steady states for
the cavity and the qubit in even- and odd-parity subspaces
are calculated with respect to the coupling strengths g1 and
g2 and displayed in Figs. 5 and 6, respectively. We can ob-
serve different behaviors by following different paths on the
g1 − g2 plane. For example, following the path g2 = 0, we
observe the steady states of the JCM with respect to g1. On
the other hand, we have the steady states of the AJCM with
the constraint g1 = 0. Setting g1 = g2, we have the standard
QRM, which exhibits parabolic behaviors with respect to the
coupling strengths. We note that the steady states are deter-
mined solely by the parity, rather than any specific forms,
of the initial states. Nevertheless, for the sake of clarity
and simplicity, we base our discussion on the particular ini-
tial states |2, g〉 for even parity and |3, g〉 for odd parity in
the following.

To gain more physical intuition, we again turn to the three
solvable limits and study the interplay of coupling and relax-
ation terms. For the even-parity case, the decoupled limit leads
to the trivial consequence that both photons escape from the
system through the relaxation |2, g〉 ⇒ |0, g〉. Therefore, there
is no photon in the cavity after a long enough time and the
qubit stays in the ground state. In the JCM limit where g2 = 0,
the different situation gives rise to the same result. As can be
seen from the transient states of the JCM, the Rabi oscillation
for |2, g〉 ↔ |1, e〉 diminishes with time because the total pop-
ulation decays exponentially to the vacuum bare state through
the irreversible relaxation process |2, g〉 ⇒ |0, g〉. With this, it
is again verified that the small peak in Fig. 3(h) is not a steady
state, but rather a quasisteady one.

Following another path g1 = 0, the dynamics can be de-
scribed by the AJCM, in which case the transition processes

FIG. 5. (a) Cavity photon number and (b) qubit population in the
steady state of even-parity subspace with respect to the coupling
strengths g1 and g2. (c) Cavity photon number and qubit popula-
tion with fixed coupling g2/ω = 0.15 and varying coupling strength
g1/ω. (d) Eigenvalue spectrum with the same parameter values as in
(c). The peaks in (c) coincide with the avoided crossings in (d).

are more complicated. The anti-Rabi oscillation |2, g〉 ⇔
|3, e〉 competes with the relaxation, leading to the lower-
level anti-Rabi oscillation |0, g〉 ⇔ |1, e〉 that is immune to
the further relaxation process. The amount of population that
is transferred by the anti-Rabi oscillation is determined by
PAJC

1 in Eq. (20). Consequently, the excitation numbers in
the AJCM case increase with the value of g2. This anti-Rabi
oscillation persists forever unless JC interactions associated
with g1 are introduced.

For the general case, with all three types of interactions
present, the steady state of the ARM is a nontrivial mix of
the JCM and AJCM with two-photon relaxation. Generally,
the steady states of the cavity and qubit increase with respect
to both g1 and g2, as can be observed from Figs. 5(a) and
5(b) for the cavity and qubit, respectively. The results along
the path g1 = g2 are consistent with the results presented in
Ref. [27]. A particularly interesting phenomenon, absent in
the standard QRM, of the steady states in even-parity subspace
is the peaks along g1 with a small value of g2, as shown in
Fig. 5(c). These peaks are found sitting at the avoided level
crossings of the eigenspectrum, as displayed in Fig. 5(d).
These avoided crossings can be analytically determined by
calculating genuine level crossings of the JCM. The position
for the mth peak, with respect to g1, is then given by

g1

ω
=

√
(2m − 1) + �

ω
, m ∈ N+. (23)
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FIG. 6. (a) Cavity photon number and (b) qubit population in
the steady state of odd-parity subspace with respect to the coupling
strengths g1 and g2. (c) Cavity photon number and qubit popula-
tion with fixed coupling g1/ω = 0.01 and varying coupling strength
g2/ω. (d) Eigenvalue spectrum with the same parameter values as in
(c). The peak and valley in (c) coincide with the avoided crossing
in (d).

To understand the physical origins of these peaks, we go
back to the Hermitian case. We start with the JCM with
U(1) symmetry. The energy levels in even-parity subspace
cross with each other, since they now all belong to different
symmetric sectors. If we add perturbative g2 into the sys-
tem, the U(1) symmetry is broken and reduced to the Z2

symmetry. Spectra with a specific parity subspace will re-
pulse with each other, and thus the previous level crossings
become avoided. At avoided crossings induced by small g2,
eigenstates strongly mix and thus the corresponding physical
observables drastically change. In the JCM, the initial state
|0, g〉 is the ground state in a one-dimensional subspace and it
does not interact with any other eigenstates. When we switch
on the CRTs with small g2, the initial state |0, g〉 strongly
interacts with other states at the avoided crossings. Since the
initial state |0, g〉 is no longer the eigenstate of the system,
the dynamics exhibits Rabi oscillation between the two orig-
inal eigenstates at the avoided crossings. In the vicinity of
the first peak at g1/ω = √

1 + �/ω, the following oscillation
occurs:

|0, g〉 ↔ |1,−〉JC . (24)

The JC eigenstate (or dressed state) |1,−〉JC, explicitly given
in Eq. (C3), is a superposition of the bare states |0, e〉 and
|1, g〉 and contains one excitation. Correspondingly, the pho-
ton number and qubit population oscillate between 0 and 1.
With the relaxation process considered, the oscillations will be

smoothed and arrive at steady states with larger mean photon
numbers. In the meantime, for other values of g1 that are far
from the avoided crossings, the oscillation in Eq. (24) is weak
and the final excitation is marginal. If the initial state is not
|0, g〉, the JC interaction and relaxation will make the system
jump to the lowest levels and thus lead to the same results as
the initial |0, g〉.

As expected, the steady states in the odd-parity subspace
are different in shape, as shown in Fig. 6. In the trivial de-
coupled limit, the initial state |3, g〉 irreversibly decays to
the final state |1, g〉. In the JCM limit, the Rabi oscillation
|1, g〉 ↔ |0, e〉 persists forever, giving rise to the total exci-
tation being 1. In the AJCM case, the reversible oscillation
|1, g〉 ⇔ |2, e〉 competes with the irreversible relaxation pro-
cess |2, e〉 ⇒ |0, e〉 and eventually transfers all population
to the state |0, e〉. Similar to the even-parity case, we also
observe a peak (valley) in the mean photon number dis-
played in Fig. 6(a) [the qubit population in Fig. 6(b)] at
around g2/ω = 0.42, with very small g1/ω. These local ex-
trema result from the Rabi-type oscillation induced by avoided
crossings, i.e.,

|0, g〉 ↔ |0,−〉AJC , (25)

where |0,−〉AJC is a superposition of the bare states |0, g〉 and
|1, e〉, as given in Eq. (C13). With simple calculations, we
know that the avoided crossings are present at

g2

ω
=

√
(2m − 1) − �

ω
, m ∈ N+, (26)

with a small value of g1.

V. CONCLUSION

We have presented a detailed theoretical exploration of
the interplay among three types of interactions, i.e., the
Jaynes-Cummings interaction, the counterrotating terms, and
the two-photon relaxation, within the framework of the
anisotropic Rabi model. To comprehensively understand these
competitive dynamics, we employed three approaches: nu-
merical solution of the master equation, interpretation of the
transition diagram induced by the interaction terms, and un-
derstanding of the dynamics through the eigenbasis of the
effective Hamiltonian.

Our work provides insights into the dynamics of the cav-
ity photon number and qubit population, elucidating their
sensitivity to parity through analyzing three solvable limits
of the non-Hermitian effective Hamiltonian. Specifically, we
identified that the intriguing local maximum observed in the
transient state for small g1 is absent in the steady state, and
our work provides an intuitive explanation for its origin. Fur-
thermore, our work discovered peaks in the steady states of
the cavity photon number and qubit population, which we
attribute to avoided level crossings in the eigenvalue spectrum.

Our work contributes to a deeper understanding of
the competition between Jaynes-Cummings interactions and
counterrotating terms, as well as the effects of ultrastrong
coupling in open quantum systems. We have clarified the
effects of the quantum jump operator and offered a general-
ized framework for exploring the interplay among different
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FIG. 7. Cavity photon number of the steady state in even-parity
subspace, calculated through (a) the Lindblad master equation and
(b) the TDSE of the non-Hermitian effective Hamiltonian, with
�/ω = 0.8 and κ/ω = 0.02.

types of interactions. These findings may have implications
for cavity-based quantum computations.
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APPENDIX A: DYNAMICS CALCULATED
FROM THE NON-HERMITIAN EFFECTIVE

HAMILTONIAN

We calculate the system dynamics by numerically solv-
ing the master equation in the main text. Here we study the
changes in the cavity photon number and qubit population
of the system with the coupling strength after an extended
period of evolution, utilizing the time-dependent Schrödinger
equation (TDSE) derived from the effective Hamiltonian. In
addition, by comparing the results obtained by the two ap-
proaches, we find the crucial role of the quantum jump term
in reaching the ultimate steady state.

The general states of the system can be extended in the
order of the basis vectors of the Hilbert space. In the even-
parity subspace, when the total photon number N is even, the
system’s state can be represented as

|ψ (t )〉 =
N/2∑
n=0

Cg
2n(t ) |2n, g〉 +

N/2−1∑
n=0

Ce
2n+1(t ) |2n + 1, e〉 ,

(A1)

with the probability amplitudes Cg
2n(t ) and Ce

2n+1(t ), which
can be obtained by solving the TDSE

i ˙|ψ (t )〉 = Heff |ψ (t )〉 , (A2)

with the initial state |ψ (0)〉 = |2, g〉. As shown in Fig. 7, after
a sufficiently long evolution time 103π , we observe variations
in 〈a†a〉 for different coupling strengths g1 and g2 under the
evolution dominated by the effective Hamiltonian. The po-
sitions of characteristic peaks align with those obtained by
solving the master equation. However, some oscillations are

present in these steady state results, indicating they are not
fully stabilized but rather more stable states.

The master-equation approach represents the behavior of
the true final steady state due to its consideration of all effects
including the quantum jump term 2κa2ρ(a†)2, whereas the
effective Hamiltonian omits it. Therefore, we can conclude
that the inclusion of the quantum jump terms allows the sys-
tem to reach the ultimate steady state.

APPENDIX B: PHYSICAL INTERPRETATION
OF THE LINDBLAD TERMS

In this Appendix we discuss the three dissipation terms
in the Lindblad master equation. Here we consider two
bare states in the basis of the main body system, defined
as |1〉 = |n − 2, g〉 and |2〉 = |n, g〉, which are connected
by the two-photon relaxation. Consequently, the density
operator can be expressed as ρ = ∑

i, j=1,2 ρi j |i〉 〈 j| or in
matrix form

ρ =
(

ρ22 ρ21

ρ12 ρ11

)
, (B1)

where the diagonal elements represent population (
∑

i ρii = 1
with ρii ∈ R+

0 ), while the off-diagonal elements denote coher-
ence (ρi j = ρ∗

ji with ρi j ∈ C).
The dynamics of the system can be fully described by

employing the Lindblad master equation, where the relaxation
of photon pairs is represented by the dissipator

D[a2]ρ = 2κa2ρ(a†)2 − κ (a†)2a2ρ − κρ(a†)2a2, (B2)

with relaxation rate κ . The effect of the dissipator on the
density operator can be divided into two parts: the continu-
ous nonunitary dissipation terms given by κ{(a†)2a2, ρ} and
the quantum jump terms represented by 2κa2ρ(a†)2. We can
obtain a matrix form for the dissipator as

D[a2]ρ = n(n − 1)

(−2κρ22 −κρ21

−κρ12 2κρ22

)
. (B3)

By examining each term individually within this matrix, we
intuitively reveal the effects of each element, specifically, (i)
the nonunitary dissipation terms impact elements such as ρ21

and ρ12 along with coherence loss between bare states, which
are represented by −κρ21 and −κρ12, respectively; (ii) the
nonunitary dissipation terms also lead to energy and informa-
tion losses from the upper state into the environment, related
to −2κρ22; and (iii) contrary to the effects mentioned above,
the quantum jump terms contribute towards an increase in
lower states’ population, that is, 2κρ22. Overall, the excited
number of the two bare states is conserved over time i.e.,
Tr([D[a2]ρ) = 0.

APPENDIX C: DERIVATIONS OF THE JC
AND AJC RESULTS

In this Appendix we study the eigensystems of the JCM
and AJCM with two-photon relaxation, whose Hilbert space
splits into two unconnected parity chains due to the Z2 sym-
metry.

When g2 = 0, the adjacent states in each parity sub-
space are solely coupled by rotating terms, resulting in
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Hilbert space partitioned into a collection of JC doublets
{|n, e〉 , |n + 1, g〉}. The effective Hamiltonian of the JCM

with two-photon relaxation can be expressed in matrix
form as

H JC
eff =

⎛
⎝

(
n + 1

2

)
ω − δ

2 − iκn(n − 1) g1
√

n + 1

g1
√

n + 1
(
n + 1

2

)
ω + δ

2 − iκn(n + 1)

⎞
⎠, (C1)

with δ = ω − � the detuning. The complex eigenvalues of the
block Hamiltonian are given by

E JC
n,± = (

n + 1
2

)
ω − iκn2 ± 1

2�JC
n , (C2)

with Rabi frequency �JC
n =

√
(δ − 2iκn)2 + 4g2

1(n + 1).
Meanwhile, the corresponding eigenstates are found as

|n,+〉JC = cos θn |n, e〉 + sin θn |n + 1, g〉 , (C3)

|n,−〉JC = − sin θn |n, e〉 + cos θn |n + 1, g〉 , (C4)

where the probability coefficients in the states are defined as

cos θn =
√

�JC
n − δ + 2iκn

2�JC
n

, (C5)

sin θn =
√

�JC
n + δ − 2iκn

2�JC
n

. (C6)

Because of the excitation number conserving with this
system, this leads to the Rabi oscillations between two bare
states |n, e〉 and |n + 1, g〉. In this way, we can assume the
form of the time evolution of the system states as

|ψ (t )〉 = [
Ce

n (t ) |n, e〉 + Cg
n+1(t ) |n + 1, g〉 ]

e−i(n+1/2)ωt ,

(C7)
where Ce

n (t ) and Cg
n+1(t ) are time-dependent probability

amplitudes for each state. Applying the TDSE i ˙|ψ (t )〉 =
H JC

eff |ψ (t )〉, we then obtain the equations that the amplitudes

satisfied,

Ċe
n (t ) =

(
i
δ

2
− κn(n − 1)

)
Ce

n (t ) − ig1

√
n + 1Cg

n+1(t ),

Ċg
n+1(t ) =

(
−i

δ

2
− κn(n + 1)

)
Cg

n+1(t ) − ig1

√
n + 1Ce

n (t ).

(C8)

When the initial states meet Ce
n (0) = 1, Cg

n+1(0) = 0, and δ =
0, we can calculate the time evolution equation of the system
state as

|ψ (t )〉=
[(

cos
�JC

n t

2
+ 2κn

�JC
n

sin
�JC

n t

2

)
|n, e〉 − i

2g1
√

n + 1

�JC
n

× sin
�JC

n t

2
|n + 1, g〉

]
e−i(n+1/2)ωt−κn2t . (C9)

We then obtain the time-dependent population on state
|n + 1, g〉,

PJC
|n+1,g〉 = 4g2

1(n + 1)(
�JC

n

)2 sin2

(
�JC

n t

2

)
. (C10)

Similarly, when g1 = 0, the ARM is reduced to the
AJCM where adjacent states within each parity subspace are
solely coupled through counterrotating terms, and thus the
Hilbert space is divided into blocks spanned by the basis
{|n + 1, e〉 , |n, g〉}. Consequently, the effective Hamiltonian
of the AJCM with two-photon relaxation can be written in
matrix form as

HAJCM
eff =

((
n + 1

2

)
ω + ξ

2 − iκn(n + 1) g2
√

n + 1

g2
√

n + 1
(
n + 1

2

)
ω − ξ

2 − iκn(n − 1)

)
, (C11)

with ξ = ω + �. Then the complex eigenvalues of the parti-
tioned matrix are given by

EAJC
n,± = (

n + 1
2

)
ω − iκn2 ± 1

2�AJC
n , (C12)

with �AJC
n =

√
(ξ − 2iκn)2 + 4g2

2(n + 1) the Rabi frequency.
The eigenstates can also be obtained as

|n,+〉AJC = cos ϕn |n + 1, e〉 + sin ϕn |n, g〉 , (C13)

|n,−〉AJC = − sin ϕn |n + 1, e〉 + cos ϕn |n, g〉 , (C14)

with

cos ϕn =
√

�AJC
n + ξ − 2iκn

2�AJC
n

, (C15)

sin ϕn =
√

�AJC
n − ξ + 2iκn

2�AJC
n

. (C16)

Because of the counterrotating terms, when the initial state
of the system is |n + 1, e〉, only |g, n〉 state can be coupled
with it. Then we can assume the form of the time evolution of
the system states as

|φ(t )〉 = [
Ce

n+1(t ) |n + 1, e〉 + Cg
n (t ) |g, n〉 ]

e−i(n+1/2)ωt ,

(C17)
with Ce

n+1(t ) and Cg
n (t ) denoting the time-dependent proba-

bility amplitudes for each state. Using the TDSE i ˙|φ(t )〉 =
HAJC

eff |φ(t )〉, we then get the equations that the amplitudes
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satisfied,

Ċe
n+1(t ) =

(
−i

ξ

2
− κn(n + 1)

)
Ce

n+1(t ) − ig2

√
n + 1Cg

n (t ),

Ċg
n (t ) =

(
i
ξ

2
− κn(n − 1)

)
Cg

n (t ) − ig2

√
n + 1Ce

n+1(t ).

(C18)

When the initial states meet Ce
n+1(0) = 1 and Cg

n (0) = 0, we
then get the time-evolution equation of the system state as

|φ(t )〉 =
[(

cos
�AJC

n t

2
− iξ + 2κn

�AJC
n

sin
�AJC

n t

2

)
|n + 1, e〉

− i
2g2

√
n + 1

�AJC
n

sin
�AJC

n t

2
|g, n〉

]
e−i(n+1/2)ωt−κn2t .

(C19)

We then obtain the time-dependent population on state |n, g〉,

PAJC
|n,g〉 = 4g2

2(n + 1)(
�AJC

n

)2 sin2

(
�AJC

n t

2

)
. (C20)

APPENDIX D: FURTHER DISCUSSION
OF THE PARITY-TIME SYMMETRY

The energy spectrum of the JCM with two-photon dissi-
pation is characterized by PT symmetry and the presence
of exceptional points. Based on the above calculation, the
eigenvalues of this system at resonance are

E JC
n,± = (

n + 1
2

)
ω − iκn2 ±

√
g2

1(n + 1) − κ2n2, (D1)

where −iκn2 is interpreted as a frequency shift. For g2(n +
1) > κ2n2, the radical term has a real value, whereas for
g2(n + 1) < κ2n2, the value becomes the imaginary form

E JC
n,± = (

n + 1
2

)
ω − iκn2 ± i

√
κ2n2 − g2

1(n + 1). (D2)

According to the energy spectrum of the JCM with two-
photon dissipation when n = 1, the energy level splitting is
closed at g1/ω = κ/

√
2 and the imaginary part of the energy

after this position is a constant −iκ , which means the entire
system has one dissipation channel at the same rate. In this
case, it can be regarded as a passive PT system. The imagi-
nary part of the energy level is zero after the crossing point by
shifting the imaginary part of the energy level. The region of
all-real eigenvalues corresponds to the PT -symmetric phase
of the system, as shown in the darker part of Fig. 8. Generally,
the system reaches an exceptional point when δ = 0, and the
position is

gEP
1 =

√
κ2n2

n + 1
. (D3)

which varies with the photon number n.

APPENDIX E: IMPACT OF ONE-PHOTON DISSIPATION

The two-photon loss mechanism has been theoretically
explored and experimentally realized [28–34]. Therefore, this
dissipation mechanism has its practical importance. If small

FIG. 8. Energy spectrum of the JCM with two-photon dissipation
when � = ω and n = 1: (a) real and (b) imaginary parts of the
splitting energy levels E JC

1,+ (red line) and E JC
1,− (blue line). It can be

observed that there is an energy overlap at g1/ω = √
2 × 10−2.

single-photon dissipation is present, a direct consequence is
that the Z2 symmetry of the dissipative system will be broken
and the dynamics in different parity chains will be mixed.

To confirm this prediction, we have conducted additional
simulations that include a small single-photon dissipation rate.
In Table I we briefly summarize our numerical results with
different one-photon decay rates γ and two-photon decay
rates κ , followed by more detailed discussion.

When the single-photon decay rate γ /ω = 0.001 is much
smaller than the two-photon dissipation κ/ω = 0.02, the dy-
namics of the system is influenced to a minimal degree by the
single-photon process. In this case, the two-photon dissipation
process dominates the system’s relaxation; thus the transient
states in short periods are still parity sensitive. Since the effect
of single-photon dissipation continues to mix the evolution
processes in the two parity chains, the final steady states are
independent of the parity of initial states.

With simultaneous considerable single-photon and two-
photon dissipation processes, e.g., γ /ω = 0.01 and κ/ω =
0.02, the parity sensitivities and the avoided crossings due
to the strong mixing of the energy states vanish gradually.
When only the single-photon dissipation rate exists, with
γ /ω = 0.01 and κ/ω = 0, the system becomes stable after
some period of oscillation. The dynamics of the mean photon
number and the qubit population in both transient and steady
states do not have any distinct properties owing to the parity
of initial states.

TABLE I. Parity dependence of the system dynamics with differ-
ent dissipation parameters.

Parameter
regime

Parity dependence in
transient states

Parity dependence in
steady states

γ � κ yes no
γ ≈ κ no no
γ � κ no no
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APPENDIX F: SUPERPOSITION STATES
AS INITIAL STATES

Our theoretical model has Z2 symmetry corresponding
to the conservation of parity. This ensures that any initial
state with definite parity only evolves within its parity sub-
space. If an initial state is a superposition of two states from
different parity subspaces, the components will still evolve
independently in their definite subspaces. In this case, how-
ever, the overall superposed state does not have definite parity.
For this scenario, we have set the initial state as (|2, g〉 +
|3, g〉)/

√
2 and the calculated dynamics confirmed the

predictions.
The superposition within a parity subspace deserves further

discussion. We consider the superposition of two bare states in
the same parity chain as the initial state. This scenario has two
distinct cases, depending on whether these two bare states are
nearest neighbors or next-nearest neighbors.

For the nearest-neighbor case, the dynamics of the sys-
tem with initial states (|2, g〉 + |3, e〉)/

√
2 (even parity) and

(|3, g〉 + |4, e〉)/
√

2 (odd parity) is calculated. The evolution
processes and strengths of the two nearest-neighboring bare
states are different, leading to the absence of any distinctive
features in the dynamics corresponding to this superposition
of states. However, the overall dynamical behavior remains
parity sensitive.

For the next-nearest-neighbor case, we calculated the dy-
namics of (|2, g〉 + |4, g〉)/

√
2 (even parity) and (|3, g〉 +

|5, g〉)/
√

2 (odd parity) as the initial states, respectively. We
found that the dynamical behaviors are consistent with those
of the bare states |2, g〉 and |3, g〉, respectively. This is because
the bare states at higher energy levels quickly radiate to the
lower levels by the two-photon dissipation processes through
|4, g〉 ⇒ |2, g〉 and |5, g〉 ⇒ |3, g〉 and then undergo the same
dissipative dynamics as the lower states.

The more complicated initial states, such as coherent states
and cat states, can be understood as a combination of the

(a) (b)

FIG. 9. Final steady states of mean photon numbers and qubit
populations in (a) even- and (b) odd-parity subspaces.

superposition discussed above, and thus the resulting dynam-
ics can be predicted.

APPENDIX G: STEADY STATES VERSUS
QUASISTEADY STATES

To further clarify the difference between the final steady
and quasisteady states shown in Figs. 3(h) and 4(h), we cal-
culate the mean photon number and qubit population with
respect to the coupling strength g1 in the final steady state
through the Lindblad master equation.

The steady state in even-parity subspace, displayed in
Fig. 9(a), is similar to that of the quasisteady state in Fig. 3(h),
but the peaks that exist in the quasisteady state are absent.
In the odd-parity subspace, Fig. 4(h) and the corresponding
analysis show that the oscillations persist and it takes a long
time to arrive at the steady state. Therefore, the steady state
in Fig. 9(b) is rather different from the quasisteady state in
Fig. 4(h), especially in the regimes with relatively small cou-
pling strengths.
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