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We propose a mechanism to significantly enhance the photon-phonon entanglement twice by coupling an
auxiliary magnetic sphere to a standard cavity magnomechanical system. The deformed sphere acts as a cold
reservoir that can simultaneously cool two hybrid modes superposed over the optical cavity and the mechanical
oscillator by modulating the relationship between the coupling strengths, which enables us to obtain large
steady-state cavity-oscillator entanglement. On the basis of the double-mode cooling effect, the steady-state
photon-phonon entanglement can be significantly improved by opening the single-coupled auxiliary-sphere-
assisted channel due to the fact that the nonsuperposed optical mode can be efficiently cooled via the auxiliary
sphere. More importantly, the photon-phonon entanglement can be significantly enhanced again by switching the
dual-coupled auxiliary-sphere-assisted (DC-ASA) passage, where the auxiliary sphere serves as an additional
cold bath to simultaneously cool both the nonsuperposed optical mode and the reservoir mode. Moreover, in
the DC-ASA regime, the steady-state entanglement is more robust against the mechanical thermal noise. This
DC-ASA scheme can be potentially applied to accelerate magnomechanical cooling and enhance magnome-
chanical squeezing.
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I. INTRODUCTION

In the past few decades, among ferromagnetic materials,
the yttrium iron garnet (YIG) sphere has especially been
widely used in various fields because it has the excellent
properties of a low dissipation rate and high spin density
[1–3]. The magnon (the quanta of collective spin excita-
tions) in the YIG can be coherently coupled with optical and
microwave photons, as well as with phonons via magneto-
optical effects [4–11], magnetic dipole interactions [12–16],
and magnetostrictive forces [17,18], which induces three
branches of quantum optics, namely, cavity optomagnon-
ics, cavity electromagnonics, and cavity magnomechanics.
These magnon-based hybrid systems provide promising plat-
forms for the study of novel quantum phenomena, such as
magnomechanically induced transparency [19,20], bistability
[21], magnon dark modes [22], nonreciprocity [23–25], the
magnon Kerr effect [26,27], slow light [28–30], the magnon
blockade [31–36], and so on.

In particular, in an initial work, the magnon-photon-
phonon tripartite entanglement was realized in a standard
cavity magnomechanical system [18]. This opened the door
to the development of quantum correlations. Subsequently,
various coupling schemes based on hybrid cavity-magnon
systems have been proposed to generate quantum cooling
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[37–40], quantum coherence [41], quantum steering [42],
quantum squeezing [43–45], etc. Moreover, quantum entan-
glement has attracted considerable attention as an indispens-
able ingredient for quantum information processing. Recently,
the steady-state entanglement between different degrees of
freedom, including photons, phonons, magnons, and atoms,
has been extensively studied through a large number of cavity
magnomechanical theory schemes [18,26,31,41,42,46–56].
However, entanglement as a fragile quantum resource is
highly susceptible to environmental thermal noise. Therefore,
to observe quantum entanglement under more demanding
experimental conditions, various methods have been pro-
posed to enhance entanglement and its robustness against
temperature, such as the reservoir-engineering approach
[57], optical-parametric-amplifier scheme [58], auxiliary-
microwave-cavity-assisted method [59], coherent-feedback-
loop mechanism [60], and so on. The reservoir-engineering
scheme can significantly enhance entanglement, although it
has higher requirements for experimental parameters. Several
other approaches are feasible with experimentally tractable
parameters but do not severely enhance entanglement. Thus,
exploring a perfect scheme to improve entanglement is an
urgent task in cavity magnomechanics.

In this paper, inspired by the auxiliary-cavity-assisted
mechanism [59,61,62], we propose a dual-coupled auxiliary-
sphere-assisted (DC-ASA) approach to significantly enhance
the photon-phonon entanglement with experimentally feasi-
ble parameters. We design a hybrid cavity-magnon device
consisting of a standard cavity magnomechanical system and
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an auxiliary YIG sphere. The standard cavity magnome-
chanical system can interact with the auxiliary sphere via
magnon-photon and magnon-magnon couplings, where the
magnon-magnon dipolelike interaction strength is tunable
through the distance between the two spheres [63]. Inside
a standard magnomechanical cavity, the magnon mode is
directly coupled to the optical mode via magnetic dipole in-
teraction and parametrically coupled to the mechanical mode
by the magnetostrictive effect [18]. By optimizing the rela-
tionship between the magnetic dipole and magnetostrictive
interaction strengths, we achieve simultaneous cooling of a
pair of superposed modes with a common reservoir mode.
This is beneficial for the cooling of the system and for the
entanglement between the cavity and the oscillator. In the
double-mode cooling parameter regime, one of the compo-
nents of the superposed mode, the optical mode, can be
cooled directly by opening a single magnon-photon cou-
pling channel between the auxiliary sphere and the standard
system. This motivates us to enhance the photon-phonon en-
tanglement with the single-coupled auxiliary-sphere-assisted
(SC-ASA) mechanism. Interestingly, when we simultane-
ously open the dual magnon-photon and magnon-magnon
coupling passages between the auxiliary sphere and the stan-
dard system, the photon-phonon entanglement can be further
significantly enhanced, which is not possible with the single-
coupled auxiliary-cavity-assisted scheme [59,61,62]. This is
due to the fact that not only the nonsuperposed optical mode
but also the reservoir mode can be efficiently cooled by the
auxiliary sphere using the DC-ASA method. Furthermore,
the robustness of entanglement against temperature can also
be dramatically enhanced, which provides a viable way to
protect fragile quantum resources. The main innovations are
briefly summarized in our work as follows: (1) The double-
mode cooling effect is achieved by optimizing the ratio of the
magnetic dipole and magnetostrictive interaction strengths.
(2) In the two-mode cooling regime, the cavity-oscillator en-
tanglement can be sharply enhanced by opening the SC-ASA
channel between the auxiliary sphere and the standard mag-
nomechanical system. (3) The photon-phonon entanglement
can be significantly improved again by switching the DC-
ASA passage on the basis of the SC-ASA mechanism, and
(4) the cavity-mechanical entanglement is also more robust
against environmental thermal perturbations when the system
operates in the DC-ASA regime.

The rest of this paper is organized as follows. In Sec. II,
we give the cavity magnomechanical model and Hamilto-
nian for the SC-ASA and DC-ASA systems. In Sec. III, we
study the steady-state dynamics of the system, derive the
linearized Hamiltonian for our physical model using the quan-
tum Langevin equations (QLEs), and quantify the bipartite
entanglement via the logarithmic negativity. In Sec. IV, using
the double-mode cooling effect, we discuss the cooling of
the system and steady-state photon-phonon entanglement with
numerical results in both the SC-ASA and DC-ASA regimes.
Finally, the conclusion is presented in Sec. V.

II. MODEL AND HAMILTONIAN

To significantly enhance quantum entanglement we pro-
pose to construct a coupled four-mode bosonic system, where

the Hamiltonian of this system is given by (h̄ = 1)

Hdc =ωaa†a + ω1m†
1m1 + ω2m†

2m2 + ωbb†b

+ Gam(am†
1 + a†m1) + J1(am†

2 + a†m2)

+ G0
bmm†

1m1(b + b†) + J2(m†
1m2 + m1m†

2)

+ iε
(
m†

1e−iωd t − m1eiωd t
)
. (1)

Here, the bosonic mode m2 acts as an auxiliary subsystem
realizing dual coupling with the main system via the interac-
tions J1 and J2. The single-coupling auxiliary mechanism can
be applied to enhance entanglement and cooling, which was
already demonstrated in optomechanical and magnomechan-
ical systems [59,61,62]. Therefore, we believe that we can
find more interesting phenomena in a dual-coupled auxiliary
system. Next, we will confirm our idea by comparing the
single-coupling and dual-coupling mechanisms.

A. SC-ASA model and Hamiltonian

First, we consider the case of J2 = 0 in Eq. (1), i.e., the
single-coupled auxiliary mechanism. To construct such a de-
vice, we focus on cavity magnomechanical platforms which
recently attracted wide interest.

As a representative, we envision a SC-ASA hybrid mag-
nomechanical system, where an auxiliary YIG sphere is
coupled to a standard cavity magnomechanical system only
by the magnon-photon interaction J1, as shown in Fig. 1(b).
Inside the standard system, the deformed sphere m1 is coupled
to the mechanical mode b by magnetostrictive interaction and
to the microwave cavity a via magnetic dipole interaction.
Discarding the interaction J2(m†

1m2 + m1m†
2) in Eq. (1), this

is the Hamiltonian of the SC-ASA system. For the SC-ASA
Hamiltonian, a, mj ( j = 1, 2), and b are the annihilation op-
erators of the microwave-field (frequency ωa), jth magnon
(frequency ω j), and vibrational (frequency ωb) modes, re-
spectively. And the frequency ω j of the jth magnon mode is
defined as ω j = ηHj , where η/2π = 28 GHz/T is the gyro-
magnetic ratio and Hj is the bias magnetic field of the jth YIG
sphere. Gam is the coupling strength between the deformed
sphere m1 and the cavity field a. The J1 term is the single cou-
pling (with strength J1) between the auxiliary sphere m2 and
the magnomechanical cavity a. G0

bmm†
1m1(b + b†) describes

the magnomechanical interaction between the magnon mode
m1 and the mechanical mode b with a single-magnon weak-
coupling rate G0

bm. The last term in Eq. (1) indicates that the
magnon mode m1 is directly driven by a microwave source
with frequency ωd and driving strength ε. The Rabi frequency
ε is defined as ε =

√
5

4 η
√

NB0, where B0 is the amplitude of
the driving source and N = ρV is the total number of spins,
with ρ = 4.22 × 1027 m−3 being the spin density of the YIG
and V being the volume of the sphere.

Then the SC-ASA Hamiltonian, in the rotating frame with
respect to the laser driving frequency ωd , can be expressed as

H rot
sc = �aa†a + �′

1m†
1m1 + �2m†

2m2 + ωbb†b

+ Gam(am†
1 + a†m1) + J1(am†

2 + a†m2)

+ G0
bmm†

1m1(b + b†) + iε(m†
1 − m1), (2)

where �a = ωa − ωd , �′
1 = ω1 − ωd , and �2 = ω2 − ωd are

the corresponding detunings.

023707-2



TWICE-ENHANCED QUANTUM ENTANGLEMENT IN A … PHYSICAL REVIEW A 110, 023707 (2024)

FIG. 1. (a) Schematic of a hybrid cavity magnomechanical
device. The auxiliary sphere is placed in a standard cavity magnome-
chanical system consisting of a deformed sphere and a microwave
cavity. The deformed sphere is driven directly by an additional
microwave source, which induces a mechanical oscillator. (b) The-
oretical model of the SC-ASA magnomechanical system. A standard
cavity magnomechanical system is shown in the dashed box. The
magnon mode m1 interacts with the mechanical mode b (the cavity
mode a) via the magnomechanical coupling Gbm (the magnetic dipole
coupling Gam). The auxiliary magnon mode m2 interacts with the
standard magnomechanical system via a single coupling J1.

B. DC-ASA model and Hamiltonian

Now, we consider the case of J2 �= 0 in Eq. (1), which can
be obtained by adjusting the distance between the two YIG
spheres in the microwave cavity in Fig. 1(a). The DC-ASA
model as displayed in Fig. 2 matches the Hamiltonian (1) that
we aspired to realize at the beginning of the article perfectly.
The J2 term in the DC-ASA Hamiltonian (1) symbolizes the
beam-splitter-like interaction between the two magnetostatic
modes m1 and m2, for which the coupling strength J2 enters
the strong-coupling regime when the distance between the two
YIG spheres is smaller than their diameter [63].

Up to now, we have constructed the SC-ASA and DC-ASA
systems by simply engineering an auxiliary YIG sphere. Next,
we will discuss the steady-state dynamics and bipartite entan-
glement in these two regimes in detail.

III. STATIONARY DYNAMICS

In this section, we investigate the steady-state dynamics of
the system by means of the QLEs and linearization techniques
and quantify two-body entanglement through the logarithmic
negativity in the SC-ASA and DC-ASA mechanisms.

FIG. 2. (a) Sketch of a coupled cavity magnomechanical setup.
A deformed YIG sphere and an auxiliary YIG sphere are placed in
a microwave cavity, which is the same as in Fig. 1(a). However,
here, we consider the coupling between the deformed sphere and
the auxiliary sphere compared to Fig. 1(a). (b) Theoretical model
of the DC-ASA magnomechanical scheme. The dashed box rep-
resents a standard cavity magnomechanical system. The auxiliary
magnon mode m2 interacts with the typical cavity magnomechanical
system via dual coupling J1 and J2. Here, J2 describes the dipole-
like interaction between the deformed magnon m1 and the auxiliary
magnon m2.

A. SC-ASA system dynamics

It is well known that an imperfect open quantum system
is susceptible to decay and ambient noise. Therefore, under
the Markovian approximation, the dynamical evolution of the
system can be described by the QLEs as follows:

ȧ = − i�aa − iGamm1 − iJ1m2 − κaa +
√

2κaain,

ṁ1 = − i�′
1m1 − iGama − iG0

bm(b + b†)m1 + ε

− κ1m1 +
√

2κ1min
1 ,

ṁ2 = − i�2m2 − iJ1a − κ2m2 +
√

2κ2min
2 ,

ḃ = − iωbb − iG0
bmm†

1m1 − γbb +
√

2γbbin, (3)

where κa, κ1, and κ2 are the dissipation rates of the
microwave cavity, deformed sphere, and auxiliary sphere,
respectively, and γb is the damping of the mechanical
resonator. ain, min

j , and bin are input quantum noises for
the photon, jth magnon, and phonon modes, respectively.
We consider the case where the optical mode and the jth
magnon mode are coupled to a vacuum reservoir and the
mechanical mode is subjected to a thermal environment. In
this case, these noise operators have zero mean values and
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follow the following nonzero correlation functions ( j = 1, 2):

〈ain(t )a†
in(t ′)〉 = δ(t − t ′),〈

min
j (t )min,†

j (t ′)
〉 = δ(t − t ′),

〈bin(t )b†
in(t ′)〉 = (nb + 1)δ(t − t ′),

〈b†
in(t )bin(t ′)〉 = nbδ(t − t ′). (4)

Here, the mean thermal excitation number of the mechanical
oscillator is given by nb = [exp(h̄ωb/kBT ) − 1]−1, where kB

is the Boltzmann constant and T is the bath temperature. In the
high-temperature limit, the excitation number nb � kBT/h̄ωb.

When the deformed sphere m1 is driven strongly, the clas-
sical mean value of each bosonic mode is much larger than
the quantum fluctuation, which leads to nonlinear effects in
the system. To eliminate the nonlinear terms in the Hamilto-
nian, we rewrite each Heisenberg operator in Eq. (3) as the
sum of the steady-state amplitude and the additional fluc-
tuation, a = α + δa, mj = χ j + δmj , and b = β + δb, with
|α|, |χ j | � 1 and 〈δO〉 = 〈δmj〉 = 0 (O = a, b). By studying
the evolution of the classical amplitudes and the quantum
fluctuations separately, we obtain a set of equations for the
steady-state averages,

α̇ = −i�aα − iGamχ1 − iJ1χ2 − κaα,

χ̇1 = −i�1χ1 − iGamα + ε − κ1χ1,

χ̇2 = −i�2χ2 − iJ1α − κ2χ2,

β̇ = −iωbβ − iG0
bm|χ1|2 − γbβ, (5)

and a set of linearized QLEs for the additional fluctuations,

δ̇a = − i�aδa − iGamδm1 − iJ1δm2 − κaδa +
√

2κaain,

˙δm1 = − i�1δm1 − iGamδa − iG0
bmχ1(δb + δb†)

− κ1δm1 +
√

2κ1min
1 ,

˙δm2 = − i�2δm2 − iJ1δa − κ2δm2 +
√

2κ2min
2 ,

δ̇b = − iωbδb − iG0
bm(χ∗

1 δm1 + χ1δm†
1) − γbδb +

√
2γbbin,

(6)

where �1 = �′
1 + G0

bm(β + β∗) is the normalized detuning
of the deformed sphere. In the linearization process, we rea-
sonably omit the higher-order nonlinear terms. Conversely,
starting from Eq. (6), we can obtain the linearized Hamilto-
nian of the SC-ASA system for the fluctuation operators,

H lin
sc = �aδa†δa + �1δm†

1δm1 + �2δm†
2δm2 + ωbδb†δb

+ Gam(δa†δm1 + δaδm†
1 ) + J1(δa†δm2 + δaδm†

2 )

+ [Gbm(δm†
1δb + δm1δb) + H.c.], (7)

where Gbm = G0
bmχ1 is the effective magnomechanical cou-

pling strength. Without loss of generality, we assume that Gbm

is a positive real number.
Now, we define a column vector U =

[δxa, δya, δx1, δy1, δx2, δy2, δq, δp]T consisting of a set
of quadrature operators which can be represented by
all the quantum fluctuation operators of the system,
where δxa = (δa + δa†)/

√
2, δx j = (δmj + δm†

j )/
√

2, and

δq = (δb + δb†)/
√

2 are quadrature position operators
and δya = (δa − δa†)/i

√
2, δy j = (δmj − δm†

j )/i
√

2, and

δp = (δb − δb†)/i
√

2 are quadrature momentum operators
( j = 1, 2). Then, the linearized QLEs for the small
fluctuations in Eq. (6) can be expressed by the quadrature
operators as

U̇ = MscU + N, (8)

where the coefficient matrix Msc is given by

Msc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κa �a 0 Gam 0 J1 0 0
−�a −κa −Gam 0 −J1 0 0 0

0 Gam −κ1 �1 0 0 0 0
−Gam 0 −�1 −κ1 0 0 −2Gbm 0

0 J1 0 0 −κ2 �2 0 0
−J1 0 0 0 −�2 −κ2 0 0

0 0 0 0 0 0 −γb ωb

0 0 −2Gbm 0 0 0 −ωb −γb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and N = [
√

2κaX in
a ,

√
2κaY in

a ,
√

2κ1X in
1 ,

√
2κ1Y in

1 ,
√

2κ2X in
2 ,√

2κ2Y in
2 ,

√
2γbQin,

√
2γbPin]T is the vector of input noises.

The Hermitian noise operators have forms similar to
the quadrature operators, X in

a = (ain + a†
in )/

√
2, Y in

a = (ain −
a†

in )/i
√

2, X in
j = (min

j + min,†
j )/

√
2, Y in

j = (min
j − min,†

j )/i
√

2,

Qin = (bin + b†
in )/

√
2, and Pin = (bin − b†

in )/i
√

2. After per-
forming the above quadrature transformation, the dynamics
of the system are always linearized, and the ambient noise is
Gaussian, so the relevant quantum properties of the continu-
ous variable system can be described by the symmetric 8 × 8
covariance matrix �sc with matrix elements defined as

�sc
kl = 〈UkUl + UlUk〉/2, k, l = 1 − 8. (9)

The verification of quantum entanglement via numerical
simulation is key to quantum information science. In this
section, we will demonstrate how to characterize quantum
entanglement for continuous-variable systems.

Based on the Routh-Hurwitz criterion [64–67], the stability
condition of the system can be found by letting all eigenvalues
of the matrix Msc have negative real parts. We consider the
system in the stable case, in which the covariance matrix �sc

fulfills the Lyapunov equation

Msc�sc + �scMT
sc = −D, (10)

where D is defined by

Dklδ(t − t ′) = 〈Nk (t )Nl (t
′) + Nl (t

′)Nk (t )〉/2. (11)
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By careful calculation, we found that D is a diagonal matrix
( j = 1, 2),

D = diag[κa, κa, κ j, κ j, γb(2nb + 1), γb(2nb + 1)]. (12)

For continuous-variable systems, it is appropriate to use
logarithmic negativity to measure the magnitude of entangle-
ment. To calculate the logarithmic negativity, we must identify
each matrix element of the covariance matrix �sc. Because the
coefficient matrix Msc and the diagonal matrix D are given in
Eqs. (8) and (12), respectively, the covariance matrix �sc can
be obtained directly by solving the Lyapunov equation (10).
Then the bipartite entanglement between any pair of bosonic
modes of the four-mode system can be calculated from the
simplified 4 × 4 covariance matrix �̃sc, which is extracted
from the complete 8 × 8 covariance matrix �sc by keeping
the corresponding mode components. When the dual-mode
covariance submatrix �̃sc is expressed as

�̃sc =
(

�1 �3

�T
3 �2

)
, (13)

where �1, �2, and �3 are 2 × 2 block matrices, the bipartite
entanglement described by the logarithmic negativity EN is
defined in the following form [57,59,64]:

EN = max[0,− ln(2μsc)], (14)

where μsc ≡ 2−1/2{�sc − [�2
sc − 4 det �̃sc]1/2}1/2 and �sc =

det �1 + det �2 − 2 det �3.

B. DC-ASA system dynamics

In this section, we study the steady-state dynamics of the
DC-ASA magnomechanical system using an approach similar
to that in Sec. III A and derive the logarithmic negativity of
bipartite entanglement in the DC-ASA case.

Applying the QLEs and the typical linearization technique
to the DC-ASA system, we then obtain the linearized Hamil-
tonian for the quantum fluctuation operators as follows:

H lin
dc = H lin

sc + J2(δm†
1δm2 + δm1δm†

2). (15)

In the linearized system, we can study the steady-state dynam-
ics of our dual-coupled model.

When J2 �= 0, the drift matrix Mdc of the DC-ASA system
can be expressed as the sum of the single-coupled matrix
Msc and the matrix M̃ containing only the magnon-magnon
coupling term J2,

Mdc = Msc + M̃, (16)

where M̃ is given by

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 J2 0 0
0 0 0 0 −J2 0 0 0
0 0 0 J2 0 0 0 0
0 0 −J2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To obtain the information-related properties of the system, we
need to specify the complete 8 × 8 covariance matrix �dc. For

FIG. 3. Steady-state photon-phonon entanglement Eab
N between

the cavity mode δa and mechanical mode δb as a function of de-
tuning �2/ωb for J1 = 0 and J2 = 0 (WO-ASA, green line with
crosses), J1 = 0.32ωb and J2 = 0 (SC-ASA, red line with circles),
and J1 = 0.32ωb and J2 = 0.32ωb (DC-ASA, blue line with stars),
where WO-ASA stands for “without auxiliary sphere assisted.”
The other parameters are ωb/2π = 10 MHz, �a = −ωb, �1 =
ωb, Gam/2π = Gbm/2π = 3.2 MHz, κa/2π = κ1/2π = κ2/2π =
1 MHz, and γb/2π = 100 Hz. Here, we temporarily ignore the effect
of mechanical thermal noise on entanglement (i.e., nb = 0), which
will be discussed in detail in Fig. 8 in Sec. IV. The truncated part of
the blue line indicates that the system is in an unstable region.

a Gaussian state, the component of �dc can be represented by
the vector U as

�dc
kl = 〈UkUl + UlUk〉/2, k, l = 1 − 8. (17)

In the steady-state case, the dynamics of the system will be
governed by the Lyapunov equation

Mdc�dc + �dcMT
dc = −D, (18)

where D is the diffusion matrix which was given in Sec. III A.
Numerically, the covariance matrix �dc can be obtained by
directly solving Eq. (18). Using the matrix �dc obtained in
the DC-ASA regime (J2 �= 0), we can numerically simulate
the logarithmic negativity EN of the bipartite entanglement as
given in Eq. (14). Then, by comparing the result with the SC-
ASA regime (J2 = 0), we can observe the novel properties of
bipartite entanglement under the DC-ASA effect.

IV. RESULTS AND DISCUSSION

The ASA scheme can be applied to realize strong quan-
tum entanglement between the optical mode δa and the
mechanical mode δb. Now we study the properties of bipar-
tite entanglement in the SC-ASA and DC-ASA regimes by
numerically simulating the logarithmic negativity.

In Fig. 3, we show the steady-state cavity-oscillator en-
tanglement Eab

N versus the dimensionless detuning �2/ωb in
the without auxiliary-sphere-assisted (WO-ASA), SC-ASA,
and DC-ASA regimes. Here, we make the magnon mode δm1

resonate with the blue sideband (i.e., �1 = ωb) and the cavity
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mode δa resonate with the red sideband (i.e., �a = −ωb),
which is a superior parameter regime for entanglement gen-
eration in a standard cavity magnomechanical system [18].
Clearly, Eab

N reaches its maximum value at �2/ωb � −1
(�2/ωb � 1) in the SC-ASA (DC-ASA) regime, while it re-
mains almost constant with increasing �2/ωb in the WO-ASA
regime. For the SC-ASA mechanism, both the interaction
terms J1 and Gbm will be preserved in the rotating-wave
approximation when �2 = −ωb, which means that both the
optical mode δa and the mechanical mode δb can be cooled,
and thus, the photon-phonon entanglement Eab

N reaches its
maximum. For the DC-ASA mechanism, although the J1

term is discarded as a high-frequency oscillation term, the
cooling effect of the J2 and Gbm terms on the mechanical
mode δb is optimal at �2 = ωb; thus, the maximum entan-
glement Eab

N between photon δa and phonon δb is obtained
when �2 = ωb. Moreover, the maximum value of Eab

N is much
larger in the case with ASA (SC-ASA and DC-ASA) than in
the case without ASA (WO-ASA), which suggests that the
ASA mechanism can, indeed, enhance entanglement. How-
ever, compared with the SC-ASA mechanism, the DC-ASA
scheme does not further enhance the photon-phonon entan-
glement Eab

N and drives the system to become unstable at
�2/ωb � −1, which is not in line with our expectation. We
speculate that this is related to the symmetric magnetic dipole
and magnetostrictive interactions (i.e., Gam = Gbm).

To verify our conjecture, we plot the cavity-oscillator bi-
partite entanglement Eab

N versus the coupling ratio Gam/Gbm

for �2/ωb = 1 [Fig. 4(a)] and �2/ωb = −1 [Fig. 4(b)]. When
the system is under asymmetric magnetic dipole and mag-
netostrictive interactions (i.e., Gam �= Gbm), especially, when
Gam/Gbm > 1, the photon-phonon entanglement Eab

N can be
significantly enhanced by the SC-ASA [see the labeled red
curve in Fig. 4(a)] and DC-ASA [see the labeled blue curve
in Fig. 4(a)] methods. More interestingly, on the basis of
the SC-ASA mechanism, Eab

N can be significantly enhanced
again via the DC-ASA method in Fig. 4(a), which is the
result we want to see. At the same time, this confirms that
our speculation is reasonable. In contrast to Fig. 4(a), Eab

N is
significantly reduced by the DC-ASA scheme compared to the
SC-ASA mechanism in Fig. 4(b). But the maximum value of
Eab

N is smaller in the SC-ASA scenario in Fig. 4(b) than in
the DC-ASA scenario in Fig. 4(a). And the stability of the
system is highly susceptible to being destabilized with the
increase of Gam/Gbm when the system works in both SC-ASA
and DC-ASA regimes, as can be seen in Fig. 4(b). Therefore,
below, we discard the case of �2/ωb = −1.

To get physical insight, we rewrite the linearized SC-ASA
Hamiltonian (7) as

Hsv
sc = H f r

sc + Hgc
sc + H js

sc ,

H f r
sc = ωb(β†

baβba − β
†
abβab + δm†

1δm1) + �2δm†
2δm2,

Hgc
sc = G(β†

abδm1 + βabδm†
1 ) + cosh r(δm†

1βba + δm1β
†
ba),

H js
sc = J1(δa†δm2 + δaδm†

2 ) − sinh r(δm1βab + δm†
1β

†
ab)

(19)

by introducing two superposed Bogoliubov modes,

βab = δa cosh r + δb† sinh r (20)

FIG. 4. Steady-state photon-phonon entanglement Eab
N as a func-

tion of the coupling ratio Gam/Gbm for (a) �2 = ωb and (b) �2 =
−ωb in the WO-ASA (J1 = 0 and J2 = 0, green line), SC-ASA
(J1 = 0.32ωb and J2 = 0, red line), and DC-ASA (J1 = 0.32ωb and
J2 = 0.32ωb, blue line) cases. The truncated part of the line repre-
sents the unstable regime. Other parameters are the same as those
used in Fig. 3.

and

βba = δb cosh r + δa† sinh r, (21)

where we have taken �1 = −�a = ωb, r =
arctanh(Gbm/Gam) is the squeezing parameter, and

G =
√

G2
am − G2

bm is the effective coupling strength between
the magnon mode δm1 and the superposed mode βab.
Similarly, the full Hamiltonian (15) of the DC-ASA system
can be expressed in terms of the superposed Bogoliubov
modes βab and βba as

Hsv
dc = Hsv

sc + J2(δm†
1δm2 + δm1δm†

2 ). (22)

Physically, the magnon mode δm1 acts as a cold
reservoir that can simultaneously cool the superposed Bo-
goliubov modes βab and βba via beam-splitter-type inter-
actions G(β†

abδm1 + βabδm†
1) and cosh r(δm†

1βba + δm1β
†
ba),
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respectively, which can be found from the Hgc
sc term in

Eq. (19). However, the parametric amplification interaction
sinh r(δm1βab + δm†

1β
†
ab) from the H js

sc term in Eq. (19) sup-
presses the cooling of the superposed mode βab, which is
detrimental for the enhancement of the cavity-oscillator en-
tanglement Eab

N . To eliminate the parametric amplification
process for δm1 and βab, we set G � sinh r, which requires
Gam � Gbm. For the general scheme [68,69], the dark mode
βba is decoupled from the reservoir mode δm1, and only the
superposed mode βab can be cooled. However, we obtain a
double-mode cooling effect for the superposed modes βab and
βba by optimizing the coupling strength relation such that
Gam � Gbm. Under the asymmetric coupling relation Gam �
Gbm, the hybrid system can be rapidly cooled via the double-
mode cooling effect, which drives the photon δa to be strongly
entangled with the phonon δb. This well explains the quan-
tum phenomenon in Fig. 4. Furthermore, the J1(δa†δm2 +
δaδm†

2 ) term in Eq. (19) indicates that the nonsuperposed
mode δa can be cooled via the magnetostatic mode δm2

containing the cooling rate J1. Simultaneously, the auxiliary
mode δm2 acts as an additional cold bath that can efficiently
cool the reservoir mode δm1 via the dipolelike interaction
J2(δm†

1δm2 + δm1δm†
2 ) in Eq. (22). The double-mode cooling

effect of δm1 on the Bogoliubov modes βab and βba can op-
erate more efficiently only if the thermal occupancy stored in
the reservoir mode δm1 is sustainably extracted from the cold
environment δm2.

Next, considering the asymmetric coupling regime Gam =
2Gbm, the steady-state occupancies 〈β†

abβab〉 and 〈β†
baβba〉 of

the superposed modes βab and βba are shown in Fig. 5 and are
expressed as

〈β†
abβab〉 = cosh2 r�a + sinh2 r(�b + 1) + 1

2 sinh 2r�a+b

(23)

and

〈β†
baβba〉 = cosh2 r�b + sinh2 r(�a + 1) + 1

2 sinh 2r�a+b,

(24)

with

�a = 〈δa†δa〉, �b = 〈δb†δb〉, �a+b = 〈δa†δb† + δaδb〉.
In Fig. 5(a), we show the steady-state occupation 〈β†

abβab〉 as
a function of the effective detuning �2/ωb for J1 = 0 and
J2 = 0 (green curve with crosses), J1 = 0.32ωb and J2 = 0
(red curve with circles), and J1 = 0.32ωb and J2 = 0.32ωb

(blue curve with stars). As a whole, the steady-state occu-
pancy 〈β†

abβab〉 remains almost constant (unaffected) for the
WO-ASA case. In the SC-ASA regime, the sudden enhance-
ment of the occupation 〈β†

abβab〉 at �2/ωb � −1 is due to the
fact that the J1(δa†δm2 + δaδm†

2 ) term in Eq. (19) cannot be
discarded under the rotating-wave approximation �a = −ωb

and �2 = −ωb. As a result, only the optical mode δa in
the superposed mode βab can be cooled via the interaction
J1, while the mechanical mode δb cannot be cooled, which
leads to the superposed mode βab itself becoming unbalanced.
When the system is operated in the DC-ASA regime, the
steady-state occupancy 〈β†

abβab〉 also tends to grow signif-
icantly, and the system becomes unstable at �2/ωb � −1.
This is due to the fact that the beam-splitter interaction

FIG. 5. Steady-state occupancies of the superposed modes
(a) 〈β†

abβab〉 and (b) 〈β†
baβba〉 versus the dimensionless detuning

�2/ωb with Gam = 2Gbm in the WO-ASA (J1 = J2 = 0, green line),
SC-ASA (J1 = 0.32ωb and J2 = 0, red line), and DC-ASA (J1 =
J2 = 0.32ωb, blue line) cases. The truncated part of the line denotes
the unstable regime. Other parameters are the same as those used in
Fig. 3.

J2(δm†
1δm2 + δm1δm†

2) between the deformed sphere δm1

and the auxiliary sphere δm2 in Eq. (22) can be safely
neglected when the rotating-wave approximation condition
J2 � 2ωb is satisfied for J2 = 0.32ωb with �1 = ωb and
�2 = −ωb, and therefore, the reservoir mode δm1 cannot
be efficiently cooled. Physically, the thermal excitations
stored in the reservoir mode δm1 cannot be efficiently ex-
tracted from the cold bath δm2, which inhibits the rapid
cooling process between modes δm1 and βab. As a re-
sult, the steady-state occupancy 〈β†

abβab〉 is large, and the
system is susceptible to becoming unstable via thermal
perturbations.

Locally, when �2/ωb = 1, the cooling of the superposed
mode βab can be improved by opening only the SC-ASA chan-
nel, but it can be further significantly enhanced by switching
the DC-ASA passage, as shown in the inset of Fig. 5(a).
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Physically, the cooling process of the magnomechanical sys-
tem can be accelerated by utilizing the DC-ASA method. This
study provides a simple scheme for improving the cooling
limit of the bosonic modes by using only an additional aux-
iliary sphere. By choosing the two-mode cooling parameter
Gam = 2Gbm, the occupancy 〈β†

baβba〉 exhibits a dynamic be-
havior similar to that of 〈β†

abβab〉, as can be seen in Fig. 5(b).
Differently, in the DC-ASA regime, the optimal value of the
steady-state occupation 〈β†

abβab〉 (〈β†
abβab〉 � 0.21) is superior

to that of 〈β†
baβba〉 (〈β†

baβba〉 � 0.36) at �2/ωb � 1, as can
be clearly seen in the insets of Figs. 5(a) and 5(b). This is
attributed to the fact that the coupling rate G between the
reservoir mode δm1 and the superposed mode βab is stronger
than the cooling rate cosh r between modes δm1 and βba when
Gam = 2Gbm.

Figure 5 again demonstrates that the detuning parameter
�2 = −ωb destabilizes the system. Therefore, choosing a
reasonable parameter regime �2 = ωb, we plot the steady-
state occupancies 〈β†

abβab〉 and 〈β†
baβba〉 as a function of the

effective coupling ratio Gam/Gbm for the WO-ASA (J1 =
0, J2 = 0), SC-ASA (J1 = 0.32ωb, J2 = 0), and DC-ASA
(J1 = 0.32ωb, J2 = 0.32ωb) regimes in Figs. 6(a) and 6(b),
respectively. Interestingly, the superposed mode βab under-
goes a “quantum quenching” phenomenon when the ratio
Gam/Gbm varies approximately from 1 to 1.2; i.e., the occu-
pancy 〈β†

abβab〉 decreases sharply over a very small parameter
interval Gam/Gbm ∈ [1, 1.2] for the above three mechanisms.
It is easy to understand that according to Eq. (19), the cooling
process between the reservoir mode δm1 and the superposed
mode βab is weaker than the parametric process between

them when Gam � Gbm (i.e., G =
√

G2
am − G2

bm � sinh r),
and therefore, the Bogoliubov mode βab cannot be cooled ef-
ficiently. However, as Gam/Gbm increases, the cooling process
between δm1 and βab becomes progressively stronger than the
heating process between them, so βab can be efficiently cooled
by the cold reservoir δm1. In particular, when Gam/Gbm > 2,
with a further increase of Gam/Gbm (Gam/Gbm → 10) the Bo-
goliubov mode βab gradually approaches its quantum ground
state (〈β†

abβab〉 → 0), which can be clearly seen from the inset
of Fig. 6(a). More importantly, in the inset of Fig. 6(a), the
cooling of the superposed mode βab can be enhanced by
opening the SC-ASA channel compared to the WO-ASA case,
and the occupancy 〈β†

abβab〉 can be significantly reduced again
when the DC-ASA passage is opened. In the DC-ASA mecha-
nism, both the nonsuperposed mode δa and the reservoir mode
δm1 can be cooled by an additional cold bath δm2 compared to
the SC-ASA approach, which accelerates the cooling process
of βab.

In Fig. 6(b), the occupancy 〈β†
baβba〉 of βba exhibits almost

the same trend with Gam/Gbm evolution as 〈β†
abβab〉. It should

be mentioned that when the ratio Gam/Gbm is approximately
in the interval Gam/Gbm ∈ [3, 10], the cooling effect of βab

is better than that of βba for the WO-ASA, SC-ASA, and
DC-ASA regimes [see insets in Figs. 6(a) and 6(b)]. The
reason for this phenomenon was explained in the discussion
of Fig. 5. Moreover, from the green line with crosses in the
inset of Fig. 6(b) we find that the occupancy 〈β†

baβba〉 will
be monotonically increasing when Gam/Gbm is approximately
greater than 3. This is due to the fact that thermal excitations

FIG. 6. Steady-state occupancies of the superposed modes
(a) 〈β†

abβab〉 and (b) 〈β†
baβba〉 versus the ratio of the effective cou-

plings Gam/Gbm for J1 = J2 = 0 (WO-ASA, green line with crosses),
J1 = 0.32ωb and J2 = 0 (SC-ASA, red line with circles), and J1 =
J2 = 0.32ωb (DC-ASA, blue line with stars). Here, �2 = ωb, and the
other parameters are the same as those used in Fig. 3.

stored in the system in the case of WO-ASA cannot diffuse
into the auxiliary environment, so the system becomes unsta-
ble as Gam/Gbm increases.

To find the optimal parametric conditions for cavity-
resonator entanglement Eab

N , we show the density plot of
Eab

N versus the dimensionless detuning �2/ωb and the ratio
Gam/Gbm in the WO-ASA, SC-ASA, and DC-ASA regimes
in Fig. 7. Compared to the WO-ASA case, the photon-phonon
entanglement Eab

N can be significantly improved by opening
the SC-ASA channel. Remarkably, Eab

N can be further signif-
icantly enhanced when we switch the coupling mechanism
of the system from the SC-ASA passage to the DC-ASA
channel, which is interesting. In the DC-ASA mechanism, not
only the localized mode δa but also the reservoir mode δm1

can be cooled via the auxiliary mode δm2, which facilitates the
enhancement of the photon-phonon entanglement Eab

N . The
white regions in Figs. 7(b) and 7(c) indicate that the system
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FIG. 7. Steady-state photon-phonon entanglement Eab
N as a function of the dimensionless detuning �2/ωb and the ratio Gam/Gbm for

(a) WO-ASA (J1 = J2 = 0), (b) SC-ASA (J1 = 0.32ωb, J2 = 0), and (c) DC-ASA (J1 = J2 = 0.32ωb). Other parameters are the same as those
used in Fig. 3. The white areas in the density plots in (b) and (c) correspond to the instability of the system.

is in an unstable state. When the system works in the DC-
ASA regime, the photon-phonon entanglement Eab

N reaches
its optimal value Eab

N � 0.51 in the approximate parameter
space 1 < �2/ωb < 2, 1.5 < Gam/Gbm < 3.2 [see Fig. 7(c)].
Moreover, the maximum value of Eab

N obtained with our DC-
ASA scheme is about 2.5 times greater than that obtained in a
standard cavity magnomechanical system [18].

By picking the optimal parameters �2 = 1.35ωb and
Gam = 2.8Gbm based on Fig. 7(c), we plot the steady-
state cavity-resonator entanglement Eab

N as a function of
the mean thermal occupancy nb of the mechanical mode
δb for Gam/Gbm = 0.5, Gam/Gbm = 1, and Gam/Gbm = 2.8
in Figs. 8(a)–8(c), respectively. When Gam = 2.8Gbm, the
two-mode cooling conditions G � sinh r and cosh r > sinh r
hold, and thus, the superposed modes βab and βba can
be cooled simultaneously via the interactions G(β†

abδm1 +
βabδm†

1) and cosh r(δm†
1βba + δm1β

†
ba), respectively, where

δm1 plays the role of a cold reservoir. With the double-mode
cooling effect, βab and βba are cooled down to close to the
quantum ground state, and we can achieve large steady-state
entanglement between the cavity mode δa and the mechanical
mode δb [see Fig. 8(c)]. As a comparison, for Gam � Gbm,
the two-mode cooling conditions G � sinh r and cosh r >

sinh r are no longer satisfied, and thus, the photon-phonon
entanglement Eab

N is small [see Figs. 8(a) and 8(b)]. On the
other hand, both Eab

N and its robustness against the average

thermal phonon nb can be significantly enhanced by sequen-
tially opening the SC-ASA and DC-ASA channels on the
basis of the double-mode cooling effect. In particular, in the
DC-ASA regime, Eab

N can reach Eab
N � 0.5 and can survive

even at the thermal occupancy nb � 104, which corresponds
to a thermal temperature T � 4.8 K [see the blue curve with
stars in Fig. 8(c)]. Physically, these findings provide a fea-
sible approach for realizing strong and temperature-resistant
quantum entanglement simply by switching the dual-coupling
channel between the auxiliary system and the standard cavity
magnomechanical system.

V. CONCLUSION

In summary, we designed a coupled cavity magnomechan-
ical device with a deformed sphere, an auxiliary sphere, and
a microwave cavity, where the auxiliary sphere is coupled
to the microwave field via the magnetic dipole interaction
and coupled to the deformed sphere by the tunable dipolelike
interaction. Moreover, the mechanical oscillator induced by
the deformed sphere interacts with the magnon mode of the
deformed sphere via a magnetostrictive force and with the
microwave cavity via a magnetic dipole coupling. By op-
timizing the beam-splitter interaction G and the parametric
amplification interaction sinh r such that G � sinh r, we can
simultaneously cool the pair of superposed Bogoliubov modes

FIG. 8. Steady-state photon-phonon entanglement Eab
N versus the logarithm log10(nb) of the average thermal occupancy nb of the mechani-

cal mode δb for (a) Gam = 0.5Gbm, (b) Gam = Gbm, and (c) Gam = 2.8Gbm. Here, �2 = 1.35ωb, and the other parameters are the same as those
used in Fig. 3.
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βab and βba through the reservoir mode. The steady-state
photon-phonon entanglement is strong under the double-mode
cooling parameters. And the photon-phonon entanglement
can be significantly enhanced by opening the SC-ASA chan-
nel compared with the case without the auxiliary sphere,
which is due to the fact that the nonsuperposed optical mode
can be efficiently cooled via the single-coupling between the
auxiliary sphere and the microwave cavity. More interestingly,
the photon-phonon entanglement on the basis of the SC-ASA
mechanism can be significantly improved again by switch-
ing the DC-ASA passage, where both the nonsuperposed
cavity mode and the reservoir mode can be cooled by the
dual-coupling between the auxiliary sphere and the standard

magnomechanical system. Our numerical results also show
that the steady-state cavity-vibrator entanglement can survive
at higher thermal temperatures in the DC-ASA regime. This
DC-ASA approach provides a promising platform for the
preparation of strongly squeezed states and enhanced mag-
nomechanical cooling.
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