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Dynamics of a generalized Dicke model for spin-1 atoms
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The Dicke model is a staple of theoretical cavity quantum electrodynamics (cavity QED), describing the
interaction between an ensemble of atoms and a single radiation mode of an optical cavity. It is studied both
quantum mechanically and semiclassically for two-level atoms, and demonstrates a rich variety of dynamics
such as phase transitions, phase multistability, and chaos. In this work we explore an open, spin-1 Dicke model
with independent co and counterrotating coupling terms as well as a quadratic Zeeman shift enabling control
over the atomic energy-level structure. We investigate the stability of operator and moment equations under
two approximations and show the system undergoes phase transitions. To compliment these results, we relax
the aforementioned approximations and investigate the system semiclassically. We show evidence of phase
transitions to steady-state and oscillatory superradiance in this semiclassical model, as well as the emergence
of chaotic dynamics. The varied and complex behaviors admitted by the model highlights the need to more
rigorously map its dynamics.
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I. INTRODUCTION

Since the advent of quantum theory, the study of many-
body atomic systems and their interactions with light have
provided fundamental insights into a variety of complex be-
haviors. Among these is Dicke superradiance [1], where a
cloud of initially excited atoms radiates collectively with
high intensity in a pulse of short duration, provided inter-
atomic separations within the cloud are much smaller than
the wavelength of the emitted light. This is in stark contrast
to spontaneous emission by a cloud of independent, distantly
separated atoms, the intensity of which decays exponentially
over a much longer timescale set by the atomic excited-state
lifetime.

A useful experimental and theoretical framework to ex-
plore such systems is cavity QED since it allows for fine
control over the relevant modes of the electromagnetic field
and system parameters. Hepp and Lieb [2] studied superra-
diance by considering an ensemble of N two-level emitters
confined to an optical cavity and interacting with only one of
its modes, in what is referred to as the “Dicke model.” Like the
aforementioned variation between spontaneous emission and
Dicke superradiance, this first version of the Dicke model was
shown to undergo a quantum phase transition dependent on
the atom-cavity coupling strength. With increasing coupling
strength the model transitioned from the normal phase (NP),
with an unexcited cavity mode and ground-state atoms at
equilibrium, to the superradiant phase (SP), with finite and
constant cavity mode (and atomic) excitation. The critical
coupling strength for the Dicke model transition, however, is
of the order of the cavity mode and atomic transition frequen-
cies, thus rendering it unfeasible in the optical domain with
electric dipole transitions in real atoms.

More recently, though, a proposal by Dimer et al. [3]
showed that implementation of an effective Dicke model and

demonstration of the phase transition was feasible in optical
cavity QED through careful engineering of Raman transitions
between hyperfine ground states of multilevel atoms. More-
over, their scheme allowde for independent control over the
rotating and counterrotating terms in the (effective) atom-field
interaction Hamiltonian (a so-called “unbalanced” or “gener-
alized” Dicke model) thereby opening the door to possible
new behavior.

Experiments subsequently followed, utilizing this or simi-
lar kinds of Hamiltonian engineering to realize effective Dicke
models in a variety of systems. These ranged from Bose-
Einstein condensates (BECs) or cold-atom clouds in optical
cavities [4–7] to spin-orbit-coupled BECs in harmonic traps
[8] and trapped-ion arrays [9].

Uniquely, the experiment of the authors of Ref. [6], in fact,
realized a spin-1 version of the Dicke model (cf. spin-1/2),
using the F = 1 hyperfine ground state of 87Rb and following
a scheme similar to that of Ref. [3], as outlined in detail in
Ref. [10]. However, the experiment was performed in such
a way that the phenomena observed only depended on the
total collective spin length rather than on the individual atomic
spin. Nevertheless, their exploration of unbalanced coupling
in a dissipative setting (due to cavity loss) revealed the ex-
istence of a third, oscillatory phase (OP), with the cavity
photon number oscillating about a finite mean value in the
steady state. Spurred on by these results, Stitely et al. [11]
investigated the nonlinear, semiclassical (mean-field) ordinary
differential equations (ODEs) describing the system in the
thermodynamic limit (N → ∞). They uncovered a rich vari-
ety of nonlinear phenomena and a complicated phase diagram
for the system as function of the (unbalanced) atom-cavity
coupling strengths.

In comparison, little work has been done on generalized
Dicke models involving atoms with spin larger than 1/2.
Masson et al. [10,12] investigated spin-1 versions of the
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Dicke model, but focused on specific applications in specific
coupling regimes. Other investigations of three-level Dicke
models [13–18], although more general in their choice of
coupling, considered closed systems, or specific energy-level
structures, such as V or � configurations. By constraining the
level structure, these models potentially explored a smaller
range of behavior and lost a degree of generality.

We, therefore, aim to generalize the spin-1 Dicke model
by considering arbitrary coupling and level structures in both
dissipative and nondissipative scenarios. We allow for un-
balanced coupling by using the aforementioned scheme of
Refs. [6,10], and for general atomic energy-level structures
by introducing a quadratic Zeeman shift to the model. Con-
trol over this shift and the regular atomic splitting (which
is already a part of the spin-1 Dicke model) effectively al-
lows one to move the ground magnetic sublevels at will,
and thereby engineer any level configuration. In the present
investigation, we consider both a fully quantum-mechanical
treatment with simplifying approximations, and an initial sur-
vey of the semiclassical behavior. For the first, we map the
dynamics according to two behaviors (oscillatory or diver-
gent), while in the second we already find a plethora of
dynamics and derive a rudimentary phase diagram. On the
whole, our exploration provides an extension and adds gener-
ality to the spinor Dicke model, and consequently contributes
to our understanding of this important and interesting physical
system.

This work is structured as follows. In Sec. II we describe
the physical system and model under consideration, show the
Hamiltonian and master equation under various approxima-
tions and introduce the quadratic Zeeman shift. Section III
demonstrates the connection between our model and that of
single-mode spinor BECs under said approximations and in a
particular parameter regime. In Sec. IV A we investigate the
closed system under the aforementioned approximations by
characterizing the stability of operator equations of motion.
In particular, we present the eigenvalues characterizing these
equations, and use them to find regions in parameter space
where the system diverges. In Sec. IV B, we extend this inves-
tigation to the open system by using a master equation method
to obtain equations of motion for first- and second-order op-
erator expectations. We analyze these equations as before,
albeit numerically, and confirm that the addition of dissipation
causes widespread divergence of the operator moments. To
study the system’s behavior in these regions of divergence
of the simpler model, we turn to a semiclassical description
in Sec. V, first with no dissipation in Sec. V A and later
with dissipation in Sec. V B. We observe distinct behaviors in
various, different parameter regimes, and create a rough map
of these behaviors using a simple numerical scheme. Lastly,
we conclude our findings and remark about future work in
Sec. VI.

II. MODEL

The physical system we wish to investigate is an ensemble
of N spin-1 atoms (e.g., 87Rb atoms in the F = 1 ground
hyperfine state) coupled collectively to a single mode of the
electromagnetic field in an optical cavity, which we take to be

FIG. 1. (a) Illustration of the physical system under considera-
tion: an ensemble of spin-1 atoms in an optical cavity is driven by
σ+ (red arrow) and σ− (blue arrow) polarized light, and coupled to a
single, π -polarized cavity mode (gray dashed line). One mirror of the
cavity is considered perfectly reflective, while the other is considered
only partially reflective, with a cavity field decay rate κ . (b) Atomic
level diagram of the implementation, where cavity-assisted Raman
transitions occur between the three ground magnetic sublevels corre-
sponding to m = 0,±1. The m = ±1 sublevels are shifted by q ± ω0

from the m = 0 sublevel, respectively.

linearly (π ) polarized. The ensemble is additionally driven by
two counterpropagating laser beams with σ− and σ+ circular
polarizations, respectively. As described by Masson et al. in
Ref. [10], and shown pictorially in Fig. 1, atoms are able to ab-
sorb photons from the driving beams and emit into the cavity
mode or vice versa, enabling transitions to magnetic sublevels
of higher or lower magnetic number, depending on the ab-
sorbed photon. By tuning the cavity and laser frequencies
far from the atomic dipole transition frequency, transitions
into excited atomic states become off-resonant and the excited
states are negligibly populated. Consequently, the cavity and
laser fields predominantly drive Raman transitions between
the ground-state sublevels.

For very large detunings of the fields from the atomic
transition frequency, such a system is described, in a frame
rotating at the laser frequency, by the Dicke model, with
Hamiltonian (h̄ = 1)

Ĥ = ωâ†â + ω0Ŝz + λ−√
2N

(âŜ+ + â†Ŝ−)

+ λ+√
2N

(âŜ− + â†Ŝ+) , (1)

where ω and ω0 are tunable, effective cavity, and atomic
frequencies, respectively, and λ± (given by Raman transition
rates) are similarly tunable coupling constants for the co and
counterrotating terms. Note that â is the cavity mode anni-
hilation operator, while Ŝz and Ŝ± are collective atomic spin
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operators given by

Ŝz,± ≡
N∑
k

Ŝ(k)
z,± , (2)

where Ŝ(k)
z,± is the spin operator for the kth atom.

We note that controlling ω0 allows for shifting of the
m = ±1 sublevels by equal and opposite amounts, i.e., m = 1
is shifted up by ω0, while m = −1 is shifted down by ω0.
Therefore, to allow for arbitrary sublevel structures we intro-
duce a quadratic Zeeman shift to the model. Such a shift raises
(or lowers) the energy of the m = ±1 sublevels by an equal
amount, which we specify through the parameter q, meaning
the m = ±1 sublevels are shifted, respectively, by q ± ω0 in
total.

More specifically, the quadratic shift is implemented via
addition of the term

ĤQZ = q
N∑

k=1

Ŝ(k)2
z (3)

to the Hamiltonian in Eq. (1), giving the total Hamiltonian

ĤT = Ĥ + ĤQZ . (4)

Note that ĤQZ has no convenient representation in terms of
the collective spin operators Ŝz,±. Hence, unlike the standard
Dicke model in Eq. (1), the total Hamiltonian in Eq. (4)
cannot, for q �= 0, be written in terms of operators obeying
SU(2) algebra. Instead, an SU(3) operator basis can be used,
e.g., the Gell-Mann matrices [18].

Physically realizing such a quadratic Zeeman shift can be
achieved with static magnetic fields, i.e., through the Zeeman
effect, where q would be positive and proportional to the
square of the field strength. It could also be achieved with
off-resonant laser fields to implement differential Stark shifts
of the atomic levels, which potentially allows for negative
q [19].

Lastly, we model dissipation due to cavity loss in the stan-
dard way via the master equation for the total system density
operator ρ̂,

d ρ̂

dt
= −i[ĤT , ρ̂] + κD[â]ρ̂ , (5)

where D is the superoperator defined by

D[X̂ ]ρ̂ = 2X̂ ρ̂X̂ † − X̂ †X̂ ρ̂ − ρ̂X̂ †X̂ . (6)

A. Model with adiabatic elimination of the cavity mode

In certain parts of this work we consider a regime where
the cavity-assisted Raman transitions used to implement the
model are themselves off-resonant, i.e., when ω � {λ±, ω0}.
In this “dispersive” limit, the cavity mode is sparsely popu-
lated and effectively only mediates atom-atom interactions.
We may then adiabatically eliminate the cavity mode by trac-
ing over the cavity degrees of freedom and making standard
approximations to arrive at the modified master equation

d ρ̂A

dt
= −i[ĤS, ρ̂A] + κ

κ2 + ω2
D[Ŝθ ]ρ̂A , (7)

where ρ̂A is the atomic density operator, ĤS is the adiabatically
eliminated Hamiltonian,

ĤS ≡ ĤQZ + ω0Ŝz − ω

κ2 + ω2
Ŝ†

θ Ŝθ

= ĤQZ + ω0Ŝz

− ω

2N (κ2 + ω2)

[
(λ− + λ+)2Ŝ2

x

+ (λ− − λ+)2Ŝ2
y + (λ2

− − λ2
+)Ŝz

]
, (8)

and we define

Ŝθ ≡ 1√
2N

(λ−Ŝ+ + λ+Ŝ−) . (9)

The full derivation of this adiabatically eliminated
Hamiltonian is detailed in the Supplemental Material of
Ref. [10].

We may also represent the atomic operators in terms of
bosonic mode annihilation and creation operators (in the
Jordan-Schwinger representation), denoted by b̂± for the
m = ±1 sublevels and b̂0 for the m = 0 sublevel. These
obey the regular annihilation and creation operator algebra,
namely,

[b̂i, b̂ j] = 0, [b̂i, b̂†
j] = δi j , (10)

where i, j = 0,±, and δi j is the Kronecker delta. In this repre-
sentation, summation over an arbitrary atomic operator X̂ can
be mapped according to [20]

N∑
k=1

X̂ (k) →
∑
i, j

b̂†
i b̂ j〈i|X̂ | j〉 , (11)

where i and j have the same meaning as above, and |i〉 ≡ |m =
i〉. For example, ĤQZ is mapped to

ĤQZ → q
∑
i, j

b̂†
i b̂ j〈i|Ŝ2

z | j〉

= q
∑
i, j

j2b̂†
i b̂ j〈i| j〉

= q(b̂†
+b̂+ + b̂†

−b̂−) . (12)

One similarly finds that

Ŝz = b̂†
+b̂+ − b̂†

−b̂− , (13)

Ŝ± =
√

2(b̂†
±b̂0 + b̂†

0b̂∓) . (14)

B. Undepleted mode approximation

When treating the system quantum mechanically, we ad-
ditionally specialize to the case where all atoms are initially
prepared in the m = 0 sublevel. If we further make the ap-
proximation that the ensemble contains a large number of
atoms, i.e., essentially that N → ∞, then we can assume
that the m = 0 sublevel remains macroscopically occupied
throughout the evolution of the system. This allows us to
replace the bosonic mode operator for the m = 0 sublevel
with a constant c-number, b̂0 → √

N , and consequently to
write Ŝ± as

Ŝ± =
√

2N (b̂†
± + b̂∓) . (15)
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By further defining the operators

Â ≡ b̂†
+ + b̂− , B̂ ≡ b̂†

+ − b̂− , (16)

which satisfy [Â, Â†] = [B̂, B̂†] = [Â, B̂] = 0, [Â, B̂†] =
[B̂, Â†] = −2, we may rewrite the Hamiltonian as

ĤT = (q + ω0)
(Â + B̂)(Â† + B̂†)

4

+ (q − ω0)
(Â† − B̂†)(Â − B̂)

4

− �+(Â† + Â)2 − �−(Â† − Â)2 , (17)

where we define the constants

�± = (λ+ ± λ−)2

4ω
. (18)

Note that, implicit in the undepleted mode approximation
is the assumption that the populations of the m = ±1 states
satisfy 〈N̂±〉 � N at all times. However, in certain regimes
of parameter space, this condition is violated, which, as we
shall see, manifests itself as divergence in the solutions of this
simplified model.

III. ANALOGY WITH SPINOR BEC MODELS

In the particular case where λ+ = 0, the adiabatically elim-
inated model described above was already investigated to
some extent by Masson et al. in Refs. [10,12]. In this case, the
cavity-mediated atomic interactions can emulate collisional
interactions in a single-mode spinor BEC, which, with the
inclusion of the quadratic Zeeman shift, are described by a
Hamiltonian of the general form

Ĥ = �

N
Ŝ2 + q(N̂+ + N̂−) , (19)

where N̂± ≡ b̂†
±b̂±, and the signs and relative strengths of the

parameters � and q determine the ground state phases of the
system.

Effective realization of this Hamiltonian was shown to be
possible based upon the spinor Dicke model presented here,
together with the possibility of spin-nematic squeezing [10],
which has indeed been demonstrated experimentally [21].
Preparation of the atomic ensemble in the spin singlet state,
where the collective spin is zero and atom-atom entanglement
is strong, was also proposed [12], highlighting the potential
utility of the model.

An extensive body of research also exists on the spinor
BEC side. There have been several investigations of spin-
nematic squeezing in this context [22–24], as well as spin
mixing dynamics [25,26]. More specifically, Pu et al. [26]
used an operator mapping from field operators to annihila-
tion and creation operators, and found a range of dynamical
behaviors including persistent oscillations.

In a similar vein, recent work by Evrard et al. [27,28]
explored the system dynamics both semiclassically (i.e., via
a mean-field description) and quantum mechanically. They
observed two qualitatively different dynamics, based on the
value of q: for large q the populations of the m = ±1 sublevels
oscillated with small amplitudes, while for small q there was

significant depletion of the m = 0 sublevel and the dynam-
ics eventually relaxed towards a constant steady state. These
results were in good agreement with numerical solutions of
the Schrödinger equation, but in various degrees of agreement
with the semiclassical description, depending on initial seed-
ing of the m = ±1 sublevels. Larger seeds were less affected
by quantum fluctuations, and thus better approximated by the
semiclassical description, which neglects these fluctuations
entirely.

To test the analogy between our model and the single-
mode BEC system, we follow Masson et al. and set λ+ =
0 (or λ− = 0) and λ− = λ (or λ+ = λ), with the cavity
mode adiabatically eliminated [10,12]. For simplicity and
to give the best comparison, we set κ = 0 in our model
and consider Hamiltonian dynamics only. This gives the
Hamiltonian

ĤS = q(N̂+ + N̂−) + ω0Ŝz − λ2

2Nω

(
Ŝ2

x + Ŝ2
y

)
= (q + ω0)b̂†

+b̂+ + (q − ω0)b̂†
−b̂−

−�(b̂+ + b̂†
−)(b̂†

+ + b̂−) (20)

= (q + ω0)
(Â + B̂)(Â† + B̂†)

4

+ (q − ω0)
(Â† − B̂†)(Â − B̂)

4
− �Â†Â , (21)

where we define � ≡ λ2/ω, and the term −�Ŝz has been
incorporated into the term ω0Ŝz.

The form (20) highlights the connection to two-mode
squeezing, as shown by Masson et al. [10]. Here, however, we
focus instead on the general dynamics and their connection
with the aforementioned spinor BEC work. To this end, we
find the Heisenberg equations of motion for Â and B̂:

d

dt

[
Â

B̂

]
= i

[
ω0 q

q − 2� ω0

][
Â

B̂

]
. (22)

The qualitative behavior of solutions to this system, and by
extension the qualitative behavior of the atomic dynamics, are
determined by the eigenvalues of the matrix appearing in the
above equation. If any of the said eigenvalues have a positive
real part, then solutions will diverge, rendering the model
nonphysical, at least on long timescales, since atomic popula-
tions are clearly not permitted to grow indefinitely. Otherwise,
solutions will be superpositions of complex exponentials and
will exhibit simple oscillations.

The eigenvalues are

α± = iω0 ± i
√

q(q − 2�) . (23)

We will assume that � > 0. If 0 < q < 2�, one eigenvalue
will have positive real part, otherwise both eigenvalues have
zero real part, as shown in Fig. 2, where we plot the real and
imaginary parts of α± as functions of q and ω0. Their behavior
is in agreement with the aforementioned experimental results
of Evrard et al. [27], where our analogous oscillatory behavior
occurs when q > 2� (or q < 0). However, our model di-
verges and becomes nonphysical when 0 < q < 2�, and does
not replicate their relaxation dynamics results; these indeed
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FIG. 2. Imaginary (top row) and real (bottom row) parts of α−
(left two plots) and α+ (right two plots) as functions of q and ω0. The
color bars apply to each row.

correspond to major depletion of the m = 0 sublevel, which
we neglect by making the undepleted mode approximation.

Explicitly, the solutions for the populations of the
m = ±1 sublevels that we obtain from our model, with

initial conditions 〈N̂±(t = 0)〉 = 0, are

〈N̂±(t )〉 = �2

q(q − 2�)
sin2(

√
q(q − 2�)t ) (24)

for q > 2� (or q < 0), and

〈N̂±(t )〉 = �2

q(2� − q)
sinh2(

√
q(2� − q)t ) (25)

for 0 < q < 2�.

IV. GENERALIZED DICKE MODEL: QUANTUM
MECHANICAL TREATMENT

A. Closed system

Unlike the single-mode spinor BEC systems, our
engineered Dicke model has additional freedom with regards
to tuning parameters and interactions. For example, if we
set λ+ = λ− = λ then atom-atom interactions are governed
by a term solely proportional to Ŝ2

x (rather than Ŝ2), which,
as we shall see, leads to significant changes in behavior.
In this subsection we still consider a closed system, where
operators evolve subject to the Hamiltonian (17), to maintain
the single-mode spinor BEC analogy. We find the equations of
motion for Â, B̂, and their adjoints in the fully general case
are given by

d

dt

⎡
⎢⎢⎢⎣

Â

Â†

B̂

B̂†

⎤
⎥⎥⎥⎦ = i

⎡
⎢⎢⎢⎣

ω0 0 q 0
0 −ω0 0 −q

q − 4(�+ + �−) −4(�+ − �−) ω0 0
4(�+ − �−) −q + 4(�+ + �−) 0 −ω0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Â

Â†

B̂

B̂†

⎤
⎥⎥⎥⎦ . (26)

The eigenvalues of the above matrix are found to be

α = ±i

√
±2

√
q
{
4(�+ − �−)2q + ω2

0[q − 4(�+ + �−)]
} + ω2

0 + q[q − 4(�+ + �−)] , (27)

where each choice of ± denotes a different eigenvalue. Two
eigenvalues are negatives of the other two, and, consequently,
if any eigenvalue has a nonzero real part there must be
an eigenvalue with a positive real part, again leading to
divergence. Hence, we need only consider two linearly
independent eigenvalues to characterize the behavior of the
system. We choose these to have the positive outer sign and
opposite inner signs in Eq. (27), and we denote these by α±
according to said inner sign.

Figure 3 shows the real and imaginary parts of α± as func-
tions of q and ω0, for balanced coupling (i.e., λ+ = λ−). We
see distinct regions where α− has a nonzero real part, which
also include the regions where α+ has a nonzero real part. The
system’s divergence is then conditional purely on the real part
of α−, a condition which holds for all �−.

We can additionally find the boundaries separating the
regions of divergence and oscillation, which occur when
Re(α−) = 0. This condition is satisfied in the specific case

where α− = 0, when the determinant of the matrix in Eq. (26)
is necessarily zero. Although the converse is not generally
true, i.e., a zero determinant does not imply α− = 0, we may
nevertheless find the determinant’s roots and choose those
that correspond to the desired boundaries. The determinant
is

D = [
ω2

0 − q(q − 8�−)
][

ω2
0 − q(q − 8�+)

]
, (28)

and its four roots are

q = 4�+ ±
√

16�2+ + ω2
0, 4�− ±

√
16�2− + ω2

0 . (29)

The remaining boundaries are given by the roots of the
nested square root in Eq. (27), when α± both become purely
imaginary, and are found to be

q = 0 ,
4(�+ + �−)ω2

0

ω2
0 + 4(�+ − �−)2

. (30)
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FIG. 3. Imaginary (top row) and real (bottom row) parts of α−
(left two plots) and α+ (right two plots) as functions of q and ω0

for �− = 0. Boundaries separating the regions of divergence from
regions of oscillation, as given by Eqs. (29) and (30), are plotted
in black. The dashed gray lines represent a constant slice through
the eigenvalue landscape for ω0 = 5�+. The color bars apply to
each row.

These are all plotted over the eigenvalue landscapes in
Fig. 3, where we see they indeed define all of the
boundaries.

The eigenvalue landscape, or “phase diagram” for this
generalized model clearly has much more structure than that
of the effective BEC model of the previous section. There is
now a strong dependence on both ω0 and q, with multiple
regions of stability and instability as a function of either
parameter. The behavior of the populations of the m = ±1
sublevels also display quite distinct behaviors in the different
regions, as demonstrated in Fig. 4, where the populations
are plotted as a function of time for each of the seven dis-
tinct regions of stability or instability. These are associated
with the “slice” of the eigenvalue landscape from Fig. 3
through the line of constant ω0 = 5�+, which crosses through
each of the seven aforementioned regions. In each case from
Fig. 4, the population time series were obtained by numeri-
cally integrating the Heisenberg equations of motion for the
relevant second-order operator expectations, using a standard
fourth-order Runge-Kutta method with a sufficiently small
stepsize. These equations of motion are given in the Ap-
pendix and are discussed further in the case of the general,
open system in Sec. IV B. In principle, however, this is not
required; given the system in Eq. (26) is linear, one could
solve it exactly. The solutions would be superpositions of
complex exponentials whose oscillation frequencies are given
by the imaginary parts of the eigenvalues in Eq. (27). When
none of those eigenvalues have a positive real part, as in
Figs. 4(a), 4(c) 4(e), and 4(g), the solutions oscillate ad infini-
tum. Otherwise, as in Figs. 4(b), 4(d) and 4(f), the solutions
diverge. Hence, although the behaviours in Fig. 4 may appear

FIG. 4. Populations of the m = ±1 sublevels as functions of time
for �− = 0, ω0 = 5�+, and q/�+ = −10 (a), −4 (b), −1 (c), 2 (d),
4 (e), 8 (f), 14 (g). Note that rows (b), (d), and (f) are shown on a log
scale.

complicated, they are simple combinations of finitely many
oscillation frequencies or exponential increases.

Figure 5 shows the real parts of α− and the divergence
boundaries for various choices of �−. We see a gradual
transition from the landscape in Fig. 3 to a single, vertical
band as �− tends to �+ (i.e., as λ+ → 0), as seen in the
previous section. Most importantly, as evident in Fig. 5(b),
the qualitative structure of the eigenvalue landscape survives
through this transition.
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FIG. 5. Real parts of α− and divergence boundaries as functions
of q and ω0 for �−/�+ = 0 (a), 0.5 (b), and 1 (c).

B. Open system

Given our system is considered in a quantum optical setting
to realistically model it we must take dissipation into account.
Doing so will give us a more complete description of the
dynamics and thereby a possible explanation for the behavior

of the system in the regions of divergence from the previous
section.

We begin by considering the master equation in Eq. (7) to
find the equations of motion for various operator moments.
For an arbitrary operator X̂ , we have

d〈X̂ 〉
dt

= Tr

{
X̂

d ρ̂A

dt

}

= −i Tr{X̂ [ĤS, ρ̂A]} + κ

κ2 + ω2
Tr{X̂D[Ŝθ ]ρ̂A}

= −i〈[X̂ , ĤS]〉
+ κ

κ2 + ω2
(〈Ŝ†

θ [X̂ , Ŝθ ]〉 − 〈[X̂ , Ŝ†
θ ]Ŝθ 〉). (31)

Given ĤS can be written in terms of just Ŝθ and N̂±, to find
the equation of motion for 〈X̂ 〉 one simply needs to find
the commutators [X̂ , Ŝθ ], [X̂ , Ŝ†

θ ], and [X̂ , N̂±]. Doing so for
〈Â〉, 〈B̂〉, and their conjugates, one finds

d

dt

⎡
⎢⎢⎢⎣

〈Â〉
〈Â†〉
〈B̂〉
〈B̂†〉

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

iω0 0 iq 0
0 −iω0 0 −iq

iq + 2[+ − − − i(�+ + �−)] −4i
√

�+�− iω0 0
4i

√
�+�− −iq + 2[+ − − + i(�+ + �−)] 0 −iω0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

〈Â〉
〈Â†〉
〈B̂〉
〈B̂†〉

⎤
⎥⎥⎥⎦ , (32)

where we define the constants

�± ≡ ωλ2
±

κ2 + ω2
and ± ≡ κλ2

±
κ2 + ω2

. (33)

We may now perform a similar eigenvalue analysis as in
the previous section to find the regions in parameter space
where this system diverges (or not). One should note that
this is a system of moment equations, not operator equations,
meaning the stability of Eq. (32) does not directly determine
the stability of higher-order moments. Nevertheless, since the
higher-order moments inherently involve the same operators
as the first-order moments, we expect them to diverge or
oscillate in the same regions of parameter space.

We should also note that although the matrix in Eq. (32) is
not significantly different from that in Eq. (26), its eigenvalues
have significantly more complicated forms. We, therefore,
evaluate them numerically at each point in parameter space
and extract the maximal real part from them, which is suffi-
cient to determine the stability.

The determinant of the matrix is, however, comparatively
simple, and given by

D = {
ω2

0 − q[q − 2(�+ + �−)(1 + K )]
}

× {
ω2

0 − q[q − 2(�+ + �−)(1 − K )]
}
, (34)

where we define

K ≡
√

1 −
(

κ2

ω2
+ 1

)(
�+ − �−
�+ + �−

)2

. (35)

The roots of this determinant are

q = (�+ + �−)(1 + K )

±
√

(�+ + �−)2(1 + K )2 + ω2
0 , (36)

and

q = (�+ + �−)(1 − K )

±
√

(�+ + �−)2(1 − K )2 + ω2
0 , (37)

which, given the analysis in the previous section, we expect
will correspond to boundaries of regions of divergence. In
Fig. 6 we plot these roots alongside our numerical eigenvalue
landscapes for various values of κ , where we see this is actu-
ally not the case.

The addition of a nonzero κ adds a finite background to
the landscape, which increases in magnitude with κ and even-
tually dominates over the landscape. The boundaries between
oscillation and divergence consequently become blurred, and
the roots in Eq. (37) just appear to separate regions of fast
divergence (i.e., large real part) and slow divergence (i.e.,
small real part). In fact, the roots do not separate these regions
perfectly, especially for small q and ω0, but instead only give
their approximate outline.

Lastly, we see that the boundaries disappear when κ

becomes sufficiently large. This occurs when K , and conse-
quently the roots, acquire a nonzero imaginary part, or, more
specifically, when κ reaches the value

κ

ω
= 2

√
�+�−

|�+ − �−| . (38)

Beyond this value of κ the landscapes approach a mostly
uniform shape, tending to a constant value with large q, and
having no ω0 dependence.
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Population dynamics

One should note that balanced coupling (i.e., λ+ = λ−)
was not mentioned in the eigenvalue analysis above. Indeed,
only differences between + and − appear in Eq. (32),
so any dissipative terms are canceled when the coupling is
balanced. This is not to say dissipation does not affect the
dynamics; one simply needs to consider second-order mo-
ments. These are of additional interest since they allow us
to evaluate the atomic populations and thereby get a better
understanding of the system’s behavior for varying parameter
choices.

To find a closed set of equations of motion for the second-
order moments, we may use Eq. (31) in combination with
the parameter and operator exchange symmetry of our model.
That is to say, under the transformation

T : (ω0, λ+, λ−, b̂+, b̂−) → (−ω0, λ−, λ+, b̂−, b̂+) , (39)

both the master equation and Hamiltonian in Eqs. (4) and
(7) remain invariant. We can therefore obtain the equation of
motion for 〈b̂−〉 by applying T to the equation of motion
for 〈b̂+〉, and similarly with higher-order moments such as
〈b̂2

−〉 or 〈b̂+b̂†
−〉. If we further use conjugation to obtain the

equations of motion for adjoint operator moments (e.g., 〈b̂†
+〉

from 〈b̂+〉), we only need to find four second-order moment
equations to find the remaining six.

These are all given in the Appendix and can be numeri-
cally integrated to find the population dynamics. One should
additionally note that they all contain inhomogeneous terms,
corresponding to the averaged effects of quantum fluctuations,
meaning an initial state with no atoms in the m = ±1 sub-
levels is nonstationary. Figure 7 shows the results of four
numerical integrations for increasing values of κ and a partic-
ular choice of �+, ω0, and q, which for κ = 0 corresponded
to a region of oscillation. We see that for κ > 0 the previous

FIG. 6. Real-part eigenvalue landscapes for �+ = 0.5�− and
increasing κ , as well as the roots of the determinant as given in
Eq. (37). The values of κ/�− used are (a) 0, (b) 1, (c) 2, and (d) 5.

FIG. 7. Population expectations for �+ = ω0 = 0.5�−, q =
−�−, and increasing values of κ: row (a) corresponds to κ = 0, (b) to
κ = 0.05, (c) to κ = 0.1, and (d) to κ = 0.5. The initial conditions
for all of these correspond to initially unpopulated m = ±1 sublevels.

oscillation is superimposed over exponential growth, which
becomes more rapid with increasing κ , in agreement with the
eigenvalue analysis.

For sufficiently small κ and over sufficiently small
timescales, the sublevels still remain sparsely populated,
meaning our undepleted m = 0 mode approximation should
still hold to a certain extent and these results should provide a
reasonably accurate picture of the dynamics. However, for all
realistic scenarios where κ > 0 our approximation will even-
tually break down as depletion of the m = 0 mode becomes
significant. In fact, as we will see, finite κ , in combination with
adiabatic elimination of the cavity mode, necessarily leads to
an unphysical irreversibility and subsequent divergence in the
model.

Therefore, to investigate the system more deeply, we must
take not only the dynamics of the m = 0 mode into account,
but also that of the cavity. To do so, we turn to a semiclassical
analysis in the next section.

V. SEMICLASSICAL ANALYSIS

A. Nondissipative dynamics

By relaxing the undepleted mode approximation, we in-
herently need to work with the full form of the collective
spin operators, given by Eq. (14). Given the products of these
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operators appear in the Hamiltonian, inclusion of the m = 0
mode leads to a nonquadratic Hamiltonian, which leads to a
coupling between increasingly higher-order moments in the
equations of motion, which never form a closed set of equa-
tions. For example, first-order moment equations couple to
third-order moments, which themselves couple to fifth-order
moments, and so on.

We therefore take the thermodynamic limit, where N →
∞ and the noncommuting operators can be replaced with
commuting c-numbers. This allows us to factorize high-order
moments into products of first-order moments, and thus arrive
at a closed set of semiclassical nonlinear equations for the
first-order moments. We define the c-numbers

β± = 〈b̂±〉√
2N

, β0 = 〈b̂0〉√
2N

, (40)

and use the Hamiltonian and master equation in Eqs. (4) and
(7) to arrive at the (closed) set of equations

dβ+
dt

= (i�− − i(q + ω0) − −)β+

+ (i
√

�+�− −
√

+−)β−

+ (i(�+ + �−) + + − −)
(
β+|β0|2 + β∗

−β2
0

)
+ 2i

√
�+�−

(
β−|β0|2 + β∗

+β2
0

)
, (41)

dβ0

dt
= i(�+ + �−)(2β+β−β∗

0 + (|β+|2 + |β−|2)β0 + β0)

+ 2i
√

�+�−
(
β2

+β∗
0 + β2

−β∗
0 + β+β∗

−β0 + β∗
+β−β0

)
− (+ − −)(|β+|2 − |β−|2)β0 + (+ + −)β0 ,

(42)

where the equation of motion for β− can be found by applying
the transformation T to Eq. (41).

However, this system of equations does not conserve the
number of atoms, given by N = |β+|2 + |β−|2 + |β0|2, when
κ is nonzero. This is an artifact of the adiabatic elimination
of the cavity mode, where cavity dissipation is essentially
incorporated into the atomic dynamics, and thereby expressed
as a changing total population. Since we already assumed
and relied on number conservation, the system cannot be
relied upon to give physical predictions. To consistently and
properly include cavity dissipation we must include the cavity
dynamics itself, and we do this in the following subsection.
For the moment, however, we set κ = 0 and the above equa-
tions reduce to

dβ+
dt

= i(�− − q − ω0)β+ + i
√

�+�−β−

+ i(�+ + �−)
(
β+|β0|2 + β∗

−β2
0

)
+ 2i

√
�+�−

(
β−|β0|2 + β∗

+β2
0

)
, (43)

dβ0

dt
= i(�+ + �−)(2β+β−β∗

0 + (|β+|2

+ |β−|2)β0 + β0) + 2i
√

�+�−

× (β2
+β∗

0 + β2
−β∗

0 + β+β∗
−β0 + β∗

+β−β0) . (44)

FIG. 8. Numerical integration of the nondissipative semiclassical
equations of motion (43) and (44) for �+ = 0.5�−, and various q
and ω0 lying in different regions of parameter space. Row (a) has q =
−�−, ω0 = 0, (b) has q = 5�−, ω0 = 2�−, (c) has q = �−, ω0 =
0, and (d) has q = 0, ω0 = �−. Referring to the eigenvalue landscape
in Fig. 6(a), row (a) lies in a region of oscillation, rows (b) and
(c) lie in regions of divergence, and row (d) lies on a border between
oscillation and divergence regions. Since our semiclassical treatment
inherently neglects the effects of quantum fluctuations, initially un-
populated m = ±1 sublevels are stationery points of the system.
Thus, small seed populations are necessary to observe the dynamics.
In this figure, all plots have the initial conditions (β+, β−, β0) =
(
√

0.001,
√

0.001,
√

0.998).

This system of equations can be readily integrated, and some
example results are shown in Fig. 8 for several parameter
choices. We see various types of population oscillations, rang-
ing from roughly sinusoidal, to sharply peaked, to seemingly
irregular. They can, however, be separated into two broad cate-
gories: small or large amplitude oscillations. The first involves
sparse population of the m = ±1 sublevels and essentially
sinusoidal oscillation, while the second involves much larger
population of those sublevels, accompanied by large depletion
of the m = 0 sublevel. These large-amplitude oscillations also
tend to have the same general shape: an initial, roughly ex-
ponential increase, followed by a sharp peak, and exponential
decrease.

Furthermore, the locations of these oscillations agree well
with the eigenvalue landscapes of the earlier sections. The
small-amplitude oscillations lie in regions of oscillation in
the landscapes, while the large-amplitude oscillations lie in
regions of divergence. Although here we can only confirm
this result through numerical integration of the equations of
motion (i.e., not through detailed analysis of its bifurcations),
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FIG. 9. Atomic (left three columns) and cavity (right column) populations for κ = ω0 = 0, ω = 10λ−, λ+ = 0.5λ−, and two choices
of q: for row (a) q was set to −λ−, and for row (b) it was set to λ−. The initial conditions for all of these plots are (α, β+, β−, β0) =
(0,

√
0.001,

√
0.001,

√
0.998), corresponding to an empty cavity mode and small seed populations in the m = ±1 sublevels. In relation to the

eigenvalue landscapes of Sec. IV A, row (a) corresponds to a region of oscillation, row (b) to a region of divergence.

it is compelling and offers an explanation for the behavior of
the system in regions of divergence.

B. Dissipative dynamics

Despite the insight we gained through the semiclassical
description above, the issue of incorporating dissipation
remains. To do so we must reintroduce the cavity mode and
account for dissipation through cavity loss. If we once again
take the thermodynamic limit, define the additional c-number

α ≡ 〈â〉√
2N

, (45)

and use the full (i.e., not adiabatically eliminated)
Hamiltonian and master equation, given by Eqs. (4) and (5),
respectively, we arrive the semiclassical equations of motion

dα

dt
= − (κ + iω)α − 2iλ−(β+β∗

0 + β∗
−β0)

− 2iλ+(β∗
+β0 + β−β∗

0 ) , (46)

dβ+
dt

= −i(q + ω0)β+ − 2i(λ−α + λ+α∗)β0 , (47)

dβ0

dt
= −2iλ−(αβ− + α∗β+) − 2iλ+(αβ+ + α∗β−) . (48)

In addition to conserving the number of atoms, this sys-
tem allows us to study the cavity dynamics. For example,
by setting κ = 0 and taking ω to be large, we can approach
the dispersive limit and emulate our previous semiclassical
nondissipative results. In doing so we not only confirm those
results, but gain additional insight into the previous sections’
regions of divergence. Figure 9 shows the cavity and atomic
populations given by numerical integration of Eqs. (46) to
(48) under a parameter regime which approximates the dis-
persive limit. The atomic populations once again follow either
small or large amplitude oscillation, in agreement with the
eigenvalue landscapes. Furthermore, as one might expect, at
every significant depletion of the m = 0 sublevel during large-
amplitude oscillations a burst of photons is generated in the
cavity.

Moreover, we now have the freedom to explore dissipative
scenarios. Figures 10(a) to 10(d) show the system evolution
for four different parameter sets that correspond to the known
phases of the Dicke model. In the normal phase, atoms may
undergo a one-way transition from the m = 0 sublevel to
the other sublevels, accompanied by a burst of photons and
subsequent decay towards a steady state with no photons in the
cavity [Fig. 10(a)]. In the superradiant phase, both the cavity
and atomic modes settle into a steady state with constant
populations, corresponding to balanced atomic transitions
[Fig. 10(b)]. In oscillatory superradiance the steady state is
akin to the superradiant phase, but involves oscillating atomic
and cavity populations [Fig. 10(c)]. Lastly, we see signatures
of normal-superradiant bistability, where the system appears
to pass close to the normal phase equilibrium, but eventually
reaches the superradiant equilibrium [Fig. 10(d)].

These are all in agreement with previous analyses of the
two-level-atom version of the Dicke model [11], which not
only mapped these phases, but also regions of chaotic behav-
ior. It therefore comes as no surprise that we also observe
chaos, which specifically occurs when the counterrotating
terms in the Hamiltonian dominate, i.e., when λ+ > λ−.
Figures 10(e) to 10(g) show variations of the chaos we ob-
serve: two are very similar to the two-level system chaos,
where we see sudden spikes and slower decay of the cavity
population. However, the other, with q �= 0, is quite different;
such spikes and decays are not as easily visible, and the cavity
population appears to fluctuate randomly.

These chaotic behaviors are also manifest in the atomic
dynamics. Although population time series give a useful
context to some behaviors, they become less useful when
the dynamics are chaotic, given they only provide a one-
dimensional projection of our eight-dimensional dynamical
system. A more useful representation of the atomic dynamics
is a plot of the system trajectory in the space spanned by
the spin expectations (hence dubbed the “spin-space”) sx =
〈Ŝx〉, sy = 〈Ŝy〉, and sz = 〈Ŝz〉. Since such a representation is a
three-dimensional projection of the full system, its trajectories
are allowed to self-intersect (though they do not self-intersect
in the full eight-dimensional phase space), but they neverthe-
less provide information on attractors and equilibria in the
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FIG. 10. Atomic (three left columns) and cavity (right column) populations for a variety of parameter sets. Plots in rows (a)–(d) have
κ = ω = 2λ−, with (a) corresponding to q = λ−, ω0 = λ+ = 0, (b) to q = 2λ−, ω0 = 0, λ+ = 0.5λ−, (c) to q = 2λ−, ω0 = λ+ = λ−, and
(d) to q = −λ−, ω0 = λ+ = λ−. Rows (e)–(g) have ω0 = κ = ω and λ+ = 2λ− and varying values of q and λ−: (e) has q = 0, λ− = 2ω,
(f) has q = 0, λ− = 3ω, and (g) has q = 0.5, λ− = 2ω The initial conditions for all of these plots are as in Fig. 9, (α, β+, β−, β0) =
(0,

√
0.001,

√
0.001,

√
0.998). Rows (a)–(c) demonstrate the three known phases of the Dicke mode: (a) the normal phase, (b) superradiance,

(c) and oscillatory superradiance. Plot (d) additionally shows multistability of the normal and oscillatory phases, where the system initially
behaves as in the normal phase, but eventually settles into a limit cycle of the oscillatory phase. Rows (e)–(g) show three chaotic dynamics.
Note that rows (e) and (f) show similar cavity populations to those in Ref. [11], while those in row (g) are markedly different.

system, and have indeed been employed in investigations of
the two-level system [11].

In Fig. 11, we plot the spin-space trajectories of the chaotic
dynamics shown in Fig. 10, which characterize three forms of
chaos in our system. First, in Fig. 11(a), we see a trajectory
typical of the two-level system: a symmetric (about reflections
along the sx = sy diagonal) chaotic attractor is present and the
system maintains a constant spin-length (i.e., the trajectory
lies on the Bloch sphere). In Fig. 11(b), we see an asymmetric
chaotic attractor that also follows the Bloch sphere, which
most likely arises due to the additional atomic degree of

freedom compared with the two-level model. Lastly, in
Fig. 11(c) the attractor is not confined to the Bloch sphere.

This may be explained by considering the total ensem-
ble spin, which is only conserved when atomic transitions
to the m = +1 magnetic sublevel result in energy changes
equal in magnitude but opposite in sign to transitions to the
m = −1 sublevel. In other words, the spin-length is only
conserved when q = 0. One can also see this by noting that
Ŝ2 = Ŝ2

z + Ŝz + Ŝ−Ŝ+ commutes with all of the Hamiltonian
terms except the term pertaining to the quadratic Zeeman
shift. More specifically, the operator b̂†

+b̂+ + b̂†
−b̂− commutes

023705-11



OFRI ADIV AND SCOTT PARKINS PHYSICAL REVIEW A 110, 023705 (2024)

FIG. 11. Three types of chaotic spin-space trajectories: two-
attractor in (a), three-attractor in (b), and non-Bloch sphere
in (c). The parameters for (a)–(c) are the same as those for
Figs. 10(e) to 10(g), respectively. The initial conditions for all of
these are (α, β+, β−, β0) = (0,

√
0.001,

√
0.001,

√
0.998), though

the trajectory is only plotted from λ−t = 100 to λ−t = 200 for
clarity.

with Ŝz = b̂†
+b̂+ − b̂†

−b̂−, but does not commute with Ŝ−Ŝ+ ∝
(b̂†

0b̂+ + b̂†
−b̂0)(b̂†

+b̂0 + b̂†
0b̂−). Therefore, the two trajectories

in Figs. 11(a) and 11(b) follow the Bloch sphere, while the
trajectory in Fig. 11(c) does not.

To construct a preliminary map of the various phases and
chaotic behavior in parameter space, we use a simple numeri-
cal scheme to analyze the mean and any nonzero, steady-state
oscillation amplitude. At each point in a grid of λ+ and λ− val-
ues, we numerically integrate the system of equations, extract
the cavity population over a late portion of the trajectory, and
calculate the mean and oscillation amplitude (if any) of the
sample. The mean is calculated by simply averaging over the
sample, and the amplitude calculated by taking the difference
between the maximum and minimum values and dividing
it by two. It should be noted that the mean and oscillation
amplitude of the steady-state cavity population are sufficient
to characterize the phase of the system: in the normal phase
both the mean and amplitude will be zero, in the superradiant
phase the mean will be nonzero but the oscillation amplitude
is zero, and in the oscillatory phase both will be nonzero.
Since no steady state is reached in chaotic behavior, we expect
it to display seemingly random fluctuations in both the mean
and amplitude.

We must note, however, that these characterizations only
hold true under idealized conditions, and hinge on the system
reaching the steady state (when one exists). Therefore, if a
particular trajectory takes too long to reach the steady state,
or if the portion of the trajectory over which we perform our
average is too short, the calculated mean and amplitude may
not faithfully represent the true phase. In addition, since the
calculation evolves the system in discrete timesteps, if the
timestep is exactly a half-integer multiple of an oscillation
period, the amplitude may register incorrectly as zero. Lastly,
the calculation is somewhat reliant on the initial conditions, so
the emergence of certain phases in a regime of multistability
may not be detected. Nevertheless, these caveats will not
influence the entirety of our calculations, so we can rely on
them to give us at least a rough map for the location of each
phase.

Figure 12 shows the results of three such calculations,
for choices of q and ω0 pertaining to different energy-level
structures. Regardless of the specific values of q and ω0,
we see regions where each phase is displayed, as per the
criteria above, with the most notable separation between the
normal phase and superradiance. In Figs. 12(b1) and 12(b2)
and 12(c1) and 12(c2) there is also a seemingly sharp bound-
ary between chaos and the other phases; in Figs. 12(b1) and
12(b2) specifically, where q = 0, the boundary appears to
agree well with the equivalent phase diagram for the two-level
model [11]. Lastly, we note that Figs. 12(a1) and 12(a2) show
no chaotic regions, possibly owing to the symmetrical energy
level structure (i.e., ω0 = 0) being considered.

VI. CONCLUSION AND OUTLOOK

In this initial work we investigated the spin-1 version
of the Dicke model in a generalized setting, under both
quantum-mechanical and semiclassical lenses, by introduc-
ing to it a quadratic Zeeman shift as a tunable parameter.
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FIG. 12. Oscillation amplitudes (a)–(c1) and means (a)–(c2) of
long-time trajectory portions (from ωt = 150 to ωt = 200) for a vari-
ety of q and ω0 values, pertaining to different energy level structures.
Plots (a1,a2) correspond to q = −ω, ω0 = 0, which is a symmetric
energy level structure, but has an initially inverted population given
q is negative. Plots (b1,b2) correspond to q = 0, ω0 = ω, which is
asymmetrical but follows a similar phase diagram to the two-level
model, given q = 0. Plots (c1,c2) correspond to q = ω0 = 0.5ω,
where one sublevel (m = −1 in this case) has the same energy
as the m = 0 sublevel, while the other (m = 1) has a higher en-
ergy. Initial conditions for all calculations are (α, β+, β−, β0) =
(0,

√
0.001,

√
0.001,

√
0.998).

By varying this parameter and the various other parame-
ters of the Dicke model, we were able to explore arbitrary

atomic energy-level configurations and unbalanced rotating
and counterrotating atom-cavity coupling terms in dissipative
scenarios, and thereby extended the model beyond its tradi-
tional two-level flavor.

We began by making the undepleted m = 0 mode approxi-
mation in the closed model, with the cavity mode adiabatically
eliminated, and analyzing the resultant operator equations of
motion. These equations were all linear and coupled, allow-
ing us to analyze their eigenvalues to determine the stability
of their solutions. This analysis revealed regions in parame-
ter space where solutions oscillated or diverged and whose
boundaries we found analytically.

We then introduced dissipation to the model through cavity
loss and used a master equation approach to arrive at a set
of equations of motion for various operator moments. We
performed an eigenvalue analysis on the first order moments
as before, and discovered the inclusion of dissipation caused
widespread divergence throughout parameter space. Numeri-
cal integration of the second-order moment equations revealed
populations increased exponentially, though in the aforemen-
tioned regions of oscillation this increase was slower.

Given atomic populations are not permitted to increase in-
definitely in realistic scenarios, to proceed further we needed
to relax the undepleted m = 0 mode approximation and take
the thermodynamic limit. Doing so allowed us to factor-
ize expectations and derive nonlinear equations of motion
for first-order moments. These only held in the nondissi-
pative case, and showed that in the aforementioned regions
of divergence, the atomic populations oscillated with large
amplitudes, and the m = 0 sublevel became significantly
depleted.

By incorporating dissipation into this semiclassical de-
scription, we needed to relax the adiabatic elimination of the
cavity mode, and consider the full Hamiltonian and master
equation. We once again arrived at nonlinear semiclassical
equations of motion, which allowed us to not only investigate
dissipative atomic dynamics in the regions of divergence, but
study their accompanying cavity dynamics. Using a parameter
regime which emulated the previous, adabatically eliminated,
nondissipative system, we found that with each significant
depletion of the m = 0 sublevel, a burst of photons was gen-
erated in the cavity.

Our full semiclassical model additionally displayed all
three of the standard, known Dicke model phases, as well as
multistability and chaos, similar to the two-level model. Our
model, however, showed forms of chaos not seen in the two-
level model, namely, asymmetric trajectories, and trajectories
which do not conserve the total spin-length. We created rough
maps of the different phases in varying parameter regimes,
where, notably, we observed sharp boundaries between the
normal phase, superradiance, and chaos.

The richness and variety of behaviors observed in our semi-
classical analysis show that more research needs to be done to
fully characterize the system. For example, bifurcation theory
could be used to determine when the normal-superradiant
transition occurs analytically, and numerical methods, such
as continuation, could be used to map the locations of
superradiant-oscillatory transitions, the emergence of chaos,
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and types of chaotic behavior [11]. This remains the approach
of ongoing work [29].

Lastly, the emergence of these semiclassical behaviors, and
chaos, in particular, from the quantum mechanical description
of the model can be further investigated. Quantum fluctuations
in this transition have led to interesting dynamics in the two-
level system [30], and with the additional atomic degree of

freedom in our model they may give rise to further interesting
and novel behavior.
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APPENDIX: MOMENT EQUATIONS FOR SECOND-ORDER OPERATORS IN THE OPEN SYSTEM

As outlined in Secs. IV A and IV B, we only need to find four second-order moment equations to find the remaining six. We
chose to find these for b̂†

+b̂+, b̂2
+, b̂+b̂−, and b̂+b̂†

−, which are, respectively,

d〈b̂†
+b̂+〉
dt

= i(�+ + �−)(〈b̂†
+b̂†

−〉 − 〈b̂+b̂−〉) + 2i
√

�+�−(〈b̂†2
+ 〉 − 〈b̂2

+〉 + 〈b̂†
+b̂−〉 − 〈b̂+b̂†

−〉)

+ (+ − −)(2〈b̂†
+b̂+〉 + 〈b̂+b̂−〉 + 〈b̂†

+b̂†
−〉) + 2+ , (A1)

d〈b̂2
+〉

dt
= − 2i(q + ω0)〈b̂2

+〉 + 2(+ − − + i(�+ + �−))(〈b̂2
+〉 + 〈b̂+b̂†

−〉)

+ 4i
√

�+�−(〈b̂†
+b̂+〉 + 〈b̂+b̂−〉) + 2i

√
�+�− − 2

√
+− , (A2)

d〈b̂+b̂−〉
dt

= − 2i(q − �+ − �−)〈b̂+b̂−〉 + i(�+ + �−)(〈b̂†
+b̂+〉 + 〈b̂†

−b̂−〉) − (+ − −)(〈b̂†
+b̂+〉 − 〈b̂†

−b̂−〉)

+ 2i
√

�+�−(〈b̂2
+〉 + 〈b̂2

−〉 + 〈b̂+b̂†
−〉 + 〈b̂†

+b̂−〉) − (+ + −) + i(�+ + �−) , (A3)

d〈b̂+b̂†
−〉

dt
= − 2iω0〈b̂+b̂†

−〉 + (+ − − + i(�+ + �−))(〈b̂†2
− 〉 − 〈b̂2

+〉)

+ 2i
√

�+�−(〈b̂†
−b̂−〉 − 〈b̂†

+b̂+〉 + 〈b̂†
+b̂†

−〉 − 〈b̂+b̂−〉) + 2
√

+− . (A4)

The remaining equations, found either by conjugation or using the transformation T , are

d〈b̂†
−b̂−〉
dt

= i(�+ + �−)(〈b̂†
+b̂†

−〉 − 〈b̂+b̂−〉) + 2i
√

�+�−(〈b̂†2
− 〉 − 〈b̂2

−〉 + 〈b̂+b̂†
−〉 − 〈b̂†

+b̂−〉)

+ (− − +)(2〈b̂†
−b̂−〉 + 〈b̂+b̂−〉 + 〈b̂†

+b̂†
−〉) + 2− , (A5)

d〈b̂2
−〉

dt
= − 2i(q − ω0)〈b̂2
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√
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dt
= 2i(q + ω0)〈b̂†2

+ 〉 + 2(+ − − − i(�+ + �−))(〈b̂†2
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− 4i
√

�+�−(〈b̂†
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