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Quantum phase transition in a quantum Rabi square with next-nearest-neighbor hopping
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We propose a quantum Rabi square model where both the nearest-neighbor and the next-nearest-neighbor
photon hopping are allowed among four quantum Rabi systems located at the vertices of a square. By tuning
the next-nearest hopping strength, we realize a first-order phase transition between the antiferromagnetic
superradiant phase and the frustrated superradiant phase, as well as a second-order phase transition between
the normal and the superradiant phases. To understand the emergence of such phases, we show analytically that
the effect induced by next-nearest hopping is equivalent to that of an artificial gauge phase. Our findings suggest
that the next-nearest-neighbor hopping can serve as an alternative for the gauge phase to realize quantum control
in applications of quantum simulation and quantum materials and that our model represents a basic building
block for the frustrated J1-J2 quantum spin model on square lattices.
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I. INTRODUCTION

The study of quantum phase transitions (QPTs) in systems
of light-matter interaction has remained at the frontier of
quantum optics and atomic physics for more than a century.
A prototypical model supporting the QPT is the Dicke model
[1–4], where a superradiant phase transition is induced by
the strong atom-light interaction and the thermodynamic limit
can be satisfied if the atom number N → ∞. Later, the QPT
was revealed in the quantum Rabi model (QRM) and the
Jaynes-Cummings model [5,6], where a single-mode cavity
field and a two-level atom are coupled. With the fast devel-
opment of experimental techniques, significant progress has
been achieved in realizing strong light-matter coupling and
controlling related parameters, making it possible to demon-
strate the QPT in well-controlled manners [7–19]. There has
been much interest in the investigation of exotic quantum
phases in models such as the QRM [5,20–25], the Jaynes-
Cummings lattice model [6,26], the Tavis-Cummings model
[27], the Dicke model [28–34], and so on [35–37].

Among them, QPTs in coupled few-cavity systems, such
as in a Rabi dimer (chain) [23], a Jaynes-Cummings dimer
(chain) [6], a quantum Rabi trimer (ring) [20,21], and a Dicke
trimer [31], have been proposed to simulate and investigate
emergent phenomena in strongly correlated systems. Various
intriguing phenomena traditionally explored in condensed-
matter physics can be observed in such light-matter coupled
systems. In particular, it has been suggested that a one-
dimensional coupled array of cavity systems with an artificial
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gauge field can be mapped to a chiral magnetic model consist-
ing of various kinds of magnetic couplings and present rich
phase diagrams of magnetic orders [20,21]. In such examples,
the nontrivial phase of the photon hopping amplitude results
from the synthetic gauge field, which breaks the time-reversal
symmetry and plays a crucial role in determining the quantum
phases of the system. However, the realization and manip-
ulation of the synthetic gauge field are usually technically
challenging tasks. Considering the long-lasting interest in in-
vestigating quantum magnetic phases, it is then desirable to
seek alternative approaches to realize a similar effect without
the need of a synthetic gauge field.

One promising route to induce exotic phases is through
hopping of longer range than nearest neighbors. To this end,
the atom-photon platform offers a unique advantage in real-
izing and manipulating such long-range coupling, which is
usually very weak and does not have much room to vary in
solids. Long-range coupling has been realized in photonic
systems [38–40], cold atoms [41,42], trapped ions [43], and
superconducting qubits [44]. This experimental progress sug-
gests the use of long-range coupling as a useful tool for
realizing and studying quantum phases. As we will show
here, as a potential substitute for the synthetic gauge field,
the quantum Rabi lattices with beyond-nearest-neighbor hop-
ping provides new possibilities to manipulate various quantum
phases.

In this paper we study a quantum Rabi square (QRS) model
constructed of four QRMs of an interacting two-level atom
and a cavity photon, residing on the vertices of a square,
as schematically depicted in Fig. 1. The QRMs are coupled
by both the nearest-neighbor and the next-nearest-neighbor
photon hopping, with respective hopping amplitudes J1
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FIG. 1. Schematic diagram of the QRS model. Four individual
QRMs with identical parameters are located in the vertices of a
square lattice, respectively, with the nearest hopping J1 and the next-
nearest hopping J2 included in the lattice.

and J2. We consider both hopping parameters to be of real val-
ues and hence there is no artificial gauge field present. From
a different perspective, our model can also be regarded as a
building block for the J1-J2 spin Heisenberg model [45–47],
which has been extensively studied in quantum magnetism
and hence can shed light on the implementation and inves-
tigation of interacting spin models.

By treating the cavity photon via a mean-field approxima-
tion, we obtain an analytic solution of the ground state and
map out the phase diagram by tuning the atom-light coupling
and the relative hopping strength of J2/J1. When the atom-
light coupling is weak, all QRMs are in the normal phase (NP)
with zero expectation of a cavity photon. By increasing the
coupling strength across the critical point, the system will go
through a second-order phase transition to enter a superradi-
ant phase (SRP) along with the spontaneous breaking of the
Z2 symmetry of photons and geometric C4 symmetry of the
square. The SRP can be further divided into two branches
distinguished by the symmetry of the ground state when
tuning the next-nearest-neighbor hopping. The two different
branches of the SRP can be mapped to (anti)ferromagnetic and
frustrated phases of quantum magnetic models, which are also
observed in the quantum Rabi ring (QRR) model involving the
artificial gauge phase [20,21]. Finally, we derive an analytic
correspondence between the next-nearest-neighbor hopping
and gauge field for this model. Our work suggests the usage of
long-range coupling as a versatile tool in the simulation and
study of QPTs.

II. QUANTUM RABI SQUARE MODEL

We consider a QRS model constructed of four identical
QRMs sitting on the vertices of a square, as shown in Fig. 1.
Each QRM is coupled with its two nearest neighbors with a
photon hopping amplitude J1 (edges of the square) and with
the opposite node with hopping amplitude J2 (diagonals). The
system Hamiltonian reads

H =
4∑

i=1

HR,i + Hhop + Hnext,

HR,i = ωa†
i ai + �

2
σ z

i + λ(a†
i + ai )σ

x
i ,

Hhop =
4∑

i=1

J1aia
†
i+1 + H.c.,

Hnext = J2(a1a†
3 + a2a†

4 + H.c.). (1)

In the Hamiltonian of the QRM on the ith site HR,i, ai and a†
i

are the field operators for the optical field and σ z
i stands for the

Pauli spin operator in the z direction for the two-level atom.
The four QRMs have the same photon frequency ω, the energy
gap of the two-level atom �, and the cavity-atom coupling
strength λ. The general scenario of nonidentical nodes can
be investigated analogously. The nearest-neighbor and next-
nearest-neighbor hopping of photons are represented by Hhop

and Hnext, respectively. Notice that here we consider only real
values for both J1 and J2. Thus, the system does not possess
any gauge field, which is the main focus of the previously
studied quantum Rabi ring model [20,21].

When all the couplings between the four sites are zero,
the system consists of four identical and isolated QRMs,
which can host a QPT between the NP and SRP [5], in the
so-called classical oscillator limit, i.e., �/ω → ∞. This is
because the macroscopic photonic occupation of the cavity
mode is proportional to �/ω. By turning on a finite nearest-
neighbor hopping J1, the system can present a richer phase
diagram with multiple superradiant phases showing magnetic
and chiral signatures [21]. A recent theoretical study involved
the next-nearest-neighbor coupling J2 for a one-dimensional
Dicke lattice model [34]. However, the effect of such long-
range hopping on the SRPs is still an open question.

Before showing our main results in detail, we briefly ana-
lyze the symmetry of the QRS model. The parity symmetry of
the total excitation number is preserved in the QRS, which is
isomorphic to the Z2 symmetry. Defining the parity operator
as P̂ = exp(iπ

∑4
i=1 N̂i ), where N̂i ≡ a†

i ai + σ+
i σ−

i represents
the excitation number of the ith cavity, the commutation rela-
tion [H, P̂] = 0 can be easily verified. The two eigenvalues of
the parity operator are ±1, denoting the vectors in subspace
with even or odd total excitations, respectively. Furthermore,
the cyclic symmetry is also present in this Hamiltonian. This
means that the system remains unchanged by rotating the four
sites as 1234 → 2341 → 3412 → 4123, which composes the
element of the C4 group. Thus, the Hamiltonian H follows a
total Z2 × C4 symmetry.

III. NORMAL PHASE

With the aid of the Schrieffer-Wolff transformation, the
original Hamiltonian (1) can be simplified. The idea of the
Schrieffer-Wolff transformation is to rotate the system into an-
other representation by a well-designed unitary operator U =
eS , where S is an anti-Hermitian operator and the coupling be-
tween the spin-up and spin-down subspaces can be effectively
eliminated by the term [H, S]. The transformation matrix can
be expressed as U = �nUn, where Un = exp[−i g√

η
σ

y
n (a†

n +
an)]. Here the two key dimensionless parameters are
defined as

g ≡ λ/
√

�ω, η ≡ �/ω,
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representing the normalized atom-cavity coupling strength
and the ratio of the atomic and the photon frequencies, re-
spectively. The normalized coupling strength is kept finite in
our discussion, and the hopping strengths among the sites
are much lower than the frequencies of the optical modes. In
summary, the parameters of the model are assumed to satisfy
� � λ � ω � J1, J2.

Taking this condition into account, the effective Hamil-
tonian after the Schrieffer-Wolff transformation can be
calculated through H eff = e−SHeS , resulting in

H eff =
4∑

i=1

H eff
R,i + Hhop + Hnext + O(ωη−1),

H eff
R,i = ωa†

i ai + �

2
σ z

i + ωg2σ z
i (ai + a†

i )2. (2)

After projecting the effective Hamiltonian into the four-
fold spin-down subspace, i.e., H eff

↓ ≡ tr[(|↓〉 〈↓|)⊗4H eff ], the
Hamiltonian will take the form

H eff
↓ =

4∑
i=1

(ω − 2ωg2)a†
i ai − ωg2

(
a2

i + a†2
i

)

+
4∑

i, j=1

a†
i Mi ja j + E0,

E0 = 4

(
−�

2
− ωg2 + ω2g2

�

)
,

M =

⎛
⎜⎜⎝

0 J1 J2 J1

J1 0 J1 J2

J2 J1 0 J1

J1 J2 J1 0

⎞
⎟⎟⎠. (3)

The term
∑4

i, j=1 a†
i Mi ja j originates from the nearest- and

next-nearest-neighbor hopping interaction Hhop + Hnext.
Since the translation invariance is preserved in this system,

the Bloch theorem can be applied. To this end, we transform
the creation and annihilation operators into momentum space
as a†

n = (1/
√

N )
∑N

n=1 einqa†
q, where q = 2π l/N is the system

momentum, with l = 0, 1, . . . , N − 1 and N = 4 for our QRS
model. By means of this transformation, the Hamiltonian in
momentum space can be expressed as

H eff
↓ =

∑
q

[ωqa†
qaq − ωg2(aqa−q + a†

qa†
−q)

] + E0, (4)

where ωq = ω − 2ωg2 + J2 cos(2q) + 2J1 cos(q). Then, us-
ing the two-mode squeezing transformation, i.e., the Bo-
goliubov transformation Sq = exp[λq(a†

qa†
−q − aqa−q )], with

λq = 1
8 ln ωq+ω−q+4ωg2

ωq+ω−q−4ωg2 , we can obtain the ground-state energy
Eg and the excitation energy εq,

Eg = E0 + 1

2

∑
q

(εq − ωq),

εq = 1

2
[
√

(ωq + ω−q)2 − 16ω2g4 + ωq − ω−q], (5)

and write the effective Hamiltonian as H eff
↓ = ∑

q εqa†
qaq +

Eg. The critical points will be reached when the excited energy

εq vanishes, giving

4g2
c(q) = 1 + J2

ω
cos(2q) + 2J1

ω
cos(q). (6)

It is straightforward to verify that gc(π/2) = gc(3π/2) and
gc(π ) < gc(0) when J1 > 0. Thus, we only need to focus on
the two branches of the SRP denoted by q = π and q = π/2
(3π/2) for J1 > 0. For the case of J1 < 0, a similar analysis
can be carried out and will be briefly discussed later.

IV. SUPERRADIANT PHASE

When the dimensionless coupling strength g exceeds the
critical point gc, the first-excited energy derived in the preced-
ing section [i.e., Eq. (5)] will be revised and the superradiant
phase transition occurs. By treating the optical mode via a
mean-field approach, the annihilation operator can be rewrit-
ten as an → an + αn, where the mean value of the optical field
amplitude is complex and defined as αn = An + iBn. Then the
Hamiltonian becomes

H =
∑

n

(
ωa†

nan + �n

2
τ z

n + λn(an + a†
n)τ x

n

+ J1a†
n(an+1 + an−1) + J2a†

nan+2

)
+ V + E0,

E0 =
∑

n

|αn|2 + J1

∑
n

α∗
n (αn+1 + αn−1) + J2

∑
n

α∗
nαn+2,

V =
∑

n

{ω(αna†
n + α∗

nan) + λ sin(2γn)τ z
n (a†

n + an)

+ J1[a†
n(αn+1 + αn−1) + H.c.] + J2(a†

nαn+2 + H.c.)},
(7)

where the transformed Pauli Z operator τ z
n = (�σ z

n +
4Anλσ x

n )/�n and �n = √
�2 + 16λ2A2

n. Then the eigenvec-
tors of τ z

n can be obtained as

|+〉 = cos(γn) |↑〉 + sin(γn) |↓〉 ,

|−〉 = − sin(γn) |↑〉 + cos(γn) |↓〉 , (8)

where tan(2γn) = 4λAn/�.
Typically, the local minimum can be determined by de-

manding V = 0, which will give us the concrete value for the
optical displacement {αn} in Appendix A. Then the Hamilto-
nian retains only two parts in the form

H =
∑

n

(
ωa†

nan + �n

2
τ z

n + λn(an + a†
n)τ x

n

+ J1a†
n(an+1 + an−1) + J2a†

nan+2

)
+ E0. (9)

Notice that the mean-field Hamiltonian (9) acquires a form
similar to the original Hamiltonian (1). Thus, we can employ
the same approach to obtain the ground-state energy, which
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FIG. 2. Ground-state energy Eg (red solid line with circles) and
order parameter |α| (blue dashed line with squares) with (a) J2 =
0.02 and (b) J2 = 0.07. The numerical results (circles and squares)
agree well with the analytical results (red solid and blue dashed
lines). We set the fixed parameters � = 50, J1 = 0.05, and ω = 1
as the unit of energy in all the figures of this paper.

reads

Eg =
∑

n

{
ω

(
A2

n + B2
n

) + 2J1[(AnAn+1 + BnBn+1)]

+ J2(AnAn+2 + BnBn+2) − 1

2
�n

}

+
∑

n

(
−ωg2

n + ω2g2
n

�n

)
+ 1

2

∑
q

(ε′
q − ω′

q). (10)

Here gn = λn/
√

ω�n and λn = λ�/�n. By minimizing the
first two lines of (10), which serve as the main contribution
to the ground-state energy, we can also get the same solutions
for An and Bn as the ones in Appendix A. In the QRS, gn and
�n are independent of the site index n, so we denote all the gn

and �n by g′ and �′ in the following. The ground-state energy
for all three branches is summarized as

Eg = −
(

λ2

g2
c(q0)ω

+ �2

λ2
g2

c(q0)ω

)

+ 4

(
−ωg′2 + ω2g′2

�′

)
+ 1

2

∑
q

(ε′
q − ω′

q). (11)

Here ε′
q = 1

2 [
√

(ω′
q + ω′

−q)2 − 16ω2g′4 + ω′
q − ω′

−q], with
ω′

q = ω − 2ωg′2 + J2 cos(2q) + 2J1 cos(q) the excitation
energy of the SRP, which acquires a similar form as in the NP
with g replaced by g′. Note that g′ can be expressed in terms
of g and gc as g′ = g3

c(q0)/g2, if we combine the definition
g′ = λ′/

√
ω�′ with the identities

�′ =
√

�2 + 16λ2A2,

A2 = 1

16λ2

(
16λ4[

4ωg2
c(q0)

]2 − �2

)
,

λ′ = λn = λ�

�′ . (12)

The ground-state energy Eg and the order parameter |α|
are depicted in Fig. 2, where J2 is set equal to 0.02 and
0.07 in Figs. 2(a) and 2(b), respectively. In both cases,
numerical simulations (red circles and blue squares) are
obtained for comparison by diagonalizing the displaced
Hamiltonian D(�α)HD†(�α), where H is the original Hamil-
tonian (1), �α ≡ [α1, α2, α3, α4]T , and D(�α) ≡ �nD(αn) =
�n exp(α∗

nan − αna†
n) stands for the total displacement

FIG. 3. Excited energy scaling around the critical point with
(a) J2 = 0.02 and (b) J2 = 0.07. Here the solid lines correspond
to the normal phase and the dashed lines represent the superradi-
ant phase, with the branch of (a) q = π and (b) q = π/2 (3π/2)
dominating.

operator. The truncated dimension of all four bosonic modes
is Nc = 5 to guarantee convergence. These numerical re-
sults agree well with the analytical solutions (red solid and
blue dashed lines). Additionally, the first-order derivative
of the order parameter and the second-order derivative of
the ground-state energy are discontinuous around the critical
points, indicating a second-order QPT. The accuracy of the
analytical mean-field ground state is analyzed in Appendix B
by comparing with numerical results obtained by exact
diagonalization.

To characterize the QPT between the NP and the SRP,
next we analyze the scaling behavior of the excitation energy
near the critical point g = gc(q0). It is easy to verify that
ωq = ω−q for the NP and ω′

q = ω′
−q for all possible SRP

branches with q = {0, π/2, π, 3π/2}. Thus, the excited en-
ergy in the NP and SRP can be reduced to εq =

√
ω2

q − 4ω2g4

and ε′
q =

√
ω′2

q − 4ω2g′4, respectively. Taking the NP as an
example, we can expand the two terms in the square root up
to linear order as ω2

q(g) ∼ ω2
q(gc) + k1(g − gc) and 4ω2g4 ∼

4ω2g4
c + k2(g − gc), where k1 < 0 and k2 > 0. The combina-

tion of them thus gives a nonzero linear coefficient (k1 − k2)
in the expansion of εq. The same analysis can also be applied
to the SRP and lead to a linear term as well. With that, the ex-
cited energy around g → gc scales as εq, ε

′
q ∝ |g − gc|1/2. The

behaviors of the excited energy around the critical point are
demonstrated in Fig. 3, where the SRP branch is q = π with
J2 = 0.02 in Fig. 3(a) and q = π/2 (3π/2) with J2 = 0.07 in
Fig. 3(b). In both cases, a typical 1/2 scaling rule is clearly
observed.

V. PHASE DIAGRAM AND CONNECTION
TO QUANTUM MAGNETISM

To analyze the phase diagram of the different SRP
branches, we follow the discussion of Ref. [21] to consider
the real part An and imaginary part Bn of the mean-field
amplitude of the optical mode as two different directions of
the spin operator. As shown in Appendix C, the effective
low-energy Hamiltonian (3) can be mapped into a spin J1-J2

model. With that, the SRP branches with different choices of
q can be characterized by the structure of four local spins
and linked to different phases of quantum magnetism. The
optical displacements also match well with the spin arrange-
ments. Specifically, in the q = 0 branch of the SRP, the spins
are mostly aligned, being analogous to the ferromagnetic
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FIG. 4. (a) Phase diagram with a fixed value of the nearest cou-
pling strength J1 = 0.05. The bottom (gray) region corresponds to
the NP, the upper left (red) region to the AFRP, and the upper right
(blue) region to the frustrated SRP. The spin directions are displayed
when the system is located in the (b) AFRP and (c) frustrated phase,
respectively.

superradiant phase (FRP). In the q = π branch, neighbor-
ing spins are antialigned to demonstrate features of the
antiferromagnetic superradiant phase (AFRP). The q = π/2
(3π/2) branch presents a spin structure with competing
aligned and antialigned tendencies and thus can be referred
to as a frustrated magnetic phase.

In Fig. 4(a) we depict the phase diagram against the next-
nearest-neighbor hopping J2 and the atom-cavity coupling
g, for a fixed nearest-neighbor hopping J1 = 0.05. Three
phases can be clearly found in this phase diagram, with
the background color denoting αnαn+2/|α|. Thus the positive
and negative values represent the AFRP and frustrated SRP
phases, respectively. For small g, the system is in the NP
region, as expected. As g goes beyond the critical value, the
system crosses a second-order QPT to become a SRP. When
J2 < J1, the q = π branch is stabilized and the spins are
organized antiferromagnetically to form an AFRP, as shown
in Fig. 4(b). When J2 > J1, the q = π/2 (3π/2) branch is
favored to present frustrated spin structures as illustrated in
Fig. 4(c). The physical mechanism of the spin frustration can
be understood as follows. When the next-nearest-neighbor
coupling J2 is large enough, the spins connected by diagonal
lines tend to be antialigned. Meanwhile, the nearest-neighbor
hopping also favors antialigned spins connected by edges.
These constraints clearly lead to a frustrated spin configura-
tion with both Z2 and C4 symmetries broken. As a four-site
lattice, the emergency of this frustrated phase also serves as
strong evidence for the true frustration effect as the number
of sites increases towards infinity. The two SRP branches are
separated by a first-order QPT with an abrupt change of spin
arrangement. If the nearest-neighbor hopping J1 is negative,
the phase diagram has the form in Fig. 4(a), with the AFRP
region being replaced by the FRP since the q = 0 branch is
more favorable.

VI. CONNECTION TO THE QRR MODEL
WITH ARTIFICIAL GAUGE FIELD

Next we discuss the connection between the QRS model
with next-nearest-neighbor coupling and the QRR model with

an artificial gauge field. The latter is obtained from our model
by taking J2 = 0 but making J1 → J0

1 eiθ complex. It has
been shown that the QRR with an artificial gauge field can
be mapped to a magnetic system of the coupled Lipkin-
Meshkov-Glick model [21] and has potential application in
the simulation and study of magnetic orders. In the following,
we show analytically that by using the next-nearest-neighbor
coupling instead of the gauge phase, both the energy spectrum
and eigenfunctions can be exactly recovered.

A. Excitation energy

We first focus on the excitation energy and derive a map-
ping between the QRS and QRR models. To distinguish these
two models, a superscript 0 is used to denote the physical
quantities already introduced for the QRS model in the QRR
model, without further specification. The excitation energies
for the NP (ε0

q) and SRP (ε′0
q ) in the QRR model are given as

ε0
q = 1

2

[√(
ω0

q + ω0−q

)2 − 16ω2g4 + ω0
q − ω0

−q

]
,

ε′0
q = 1

2

[√(
ω′0

q + ω′0−q

)2 − 16ω2(g′0)4 + ω′0
q − ω′0

−q

]
, (13)

where ω0
q = ω − 2ωg2 + 2J0

1 cos(q − θ ), ω′0
q = ω − 2ω(g′0)2

+ 2J0
1 cos(q − θ ), and the renormalized coupling strength can

be expressed by the critical points in the QRR model as g′0 =
(g0

c)3q0/g2. Thus, the critical points for different q read

4
(
g0

c

)2
q

= 1 + 4J0
1

ω
cos(q) cos(θ ) + 4(J0

1 )2

ω2 cos(q − θ ) cos(q + θ )

1 + 2J0
1

ω
cos(q) cos(θ )

.

(14)

The relation between the QRS and QRR models can be es-
tablished by demanding that the excitation energies therein be
equal. Because the critical points are also derived by setting
the excitation energy to zero, the critical points and resulting
phase diagram can be naturally reproduced.

1. Correspondence to the AFRP

By setting q = π , we reach the following conditions in the
NP and SRP, respectively:

ε0
π (θ ) = επ (J2),

ε′0
π (θ ) = ε′

π (J2). (15)

Therefore, we can get the constraints for θ and J2, leading to

J2 = 2
[
J1 − J0

1 cos(θ )
]
. (16)

This relation establishes an exact connection between the
next-nearest-neighbor hopping J2 and gauge phase θ .

2. Correspondence to the frustrated SRP

Since the cases of q = 3π/2 and π/2 are equivalent, in
the following we set q = 3π/2 for simplicity. The matching
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conditions for the NP and SRP are

ε0
3π/2(θ ) = ε3π/2(J2),

ε′0
3π/2(θ ) = ε′

3π/2(J2). (17)

In addition, we can obtain the condition of the parameters for
the two phases as

J2 = 1 − 2g2 −
√[√

1 − 4g2 − 2J0
1 sin(θ )

]2 + 4g4,

J2 = 1 − 2g′2 −
√[√

1 − 4g′2 − 2J0
1 sin(θ )

]2 + 4g′4. (18)

Notice that here the connection between J2 and θ is of dif-
ferent form for the NP and SRP, which join at the critical
point to form a continuous function of the dimensionless
atom-cavity coupling strength g. The value of J2 at the critical
point is obtained as J2(g = gc) = 4(J0

1 )2 sin2(θ ), by inserting

g = gc(3π/2) = 1
2

√
1 − 4(J0

1 )2 sin2(θ ).

3. Boundary for the first-order phase transition

In QRR model with J2 = 0, the boundary between the q =
π and q = π/2 (3π/2) phases is given by the intersection of
the corresponding critical curves, and the coordinate for the
intersection θc can be determined by the equation

1 − 2J0
1 cos(θc) = 1 − 4

(
J0

1

)2
sin2(θc). (19)

In the QRS model, the critical point for the first-order phase
transition is given by J2c = J1. Combining Eqs. (16) and (18),
it can be derived that

J1 = J2c = 2
[
J1 − J0

1 cos(θc)
]
,

J1 = J2c(g = gc) = d34
(
J0

1

)2
sin2(θc). (20)

The value of the nearest hopping rate J1 hence can be de-
termined as J1 = 2J0

1 cos(θc) by the first condition and J1 =
4(J0

1 )2 sin2(θc) by the second condition. The two solutions are
identical according to Eq. (19).

4. Case of negative J1 and the FRP

If we set the nearest hopping strength J1 < 0, the FRP
region can also be simulated in our model with a similar anal-
ysis. In such a case, the AFRP vanishes, while the first-order
phase transition between the FRP and the frustrated SRP can
also be observed. In addition, all of the above discussion is still
valid after replacing J1 and θ by −J1 and π − θ , respectively.

B. Order parameter

We can also establish a mapping between the QRS and
QRR models by requiring the same order parameter A2, i.e.,
displacement for optical modes. In both models, A2 is written

A2 = 1

16λ2

(
16λ4[

4ωg2
c(q0)

]2 − �2

)
. (21)

Obviously, the same critical point is obtained in this mapping.
According to Eq. (14), the conditions for the AFRP and the
frustrated SRP are achieved as

J2 = 2
[
J1 − J0

1 cos(θ )
]
,

J2 = 4
(
J0

1

)2
sin2(θ ), (22)

respectively. In order to acquire the same triple point,
we also require J2c = 2[J1 − J0

1 cos(θc)] = J1, giving J1 =
2J0

1 cos(θc), or equivalently J2c = 4(J0
1 )2 sin2(θc) = J1. Sim-

ilar mapping for the SRP can be reached by setting the
negative nearest hopping rate J1 < 0. We emphasize that
while the relation between J2 and θ in the AFRP is the
same as the one derived from excitation energy, for the frus-
trated SRP the condition in Eq. (22) is different from that in
Eq. (18).

To summarize, the previously studied QRR model with
nearest-neighbor hopping strength J0

1 and gauge phase θ can
be equivalently investigated by using our QRS model without
any gauge phases. In order to obtain the same excitation en-
ergy, J2 is determined by Eqs. (16) and (18). When it comes
to the order parameter, the matching conditions give Eq. (22).
These two considerations give the same requirement of J1 =
2J0

1 cos(θc) to reach the same triple point and phase diagram.
Here θc is obtained through 2J0

1 cos(θc) = 4(J0
1 )2 sin2(θc).

In this aspect, the next-nearest-neighbor hopping can play
the same role as the artificial gauge phase. Considering the
fact that an experimental realization of the synthetic gauge
field usually requires a fine-tuning of the hopping param-
eter via some complex schemes, e.g., by applying Floquet
engineering [20,48], and may introduce side effects such as
heating and noises, our work provides another route to im-
plement and explore exotic phases in certain experimentally
friendly platforms [19,49], which involve only real hopping
amplitudes.

VII. SUMMARY

In this paper we proposed a quantum Rabi square model
where the effect of the next-nearest neighbor hopping strength
was mainly investigated. We obtained the analytical ground-
state energy and the critical points for both the first- and the
second-order phase transitions. We saw that the equivalent
spin arrangement of the optical modes will go through a sud-
den change when the next-nearest hopping strength exceeds
the nearest hopping rate. Comparing with the previous work
on the QRR model [21], we found that our model provides
an alternative approach to realize the global gauge phase by
means of the next-nearest hopping strength. The one-to-one
corresponding relations between θ in the QRR and J2 in
the QRS were also obtained from the excited energy and
order parameter, respectively. With these results, it could be
concluded that the gauge phase plays the same role as an
appropriate additional system parameter, such as the next-
nearest hopping rate J2 in our QRS model, which offers a
crucial explanation on how the gauge phase induces exotic
quantum phases. Those extra degrees of freedom will lead
to staggered critical curves of the SRP branches. Among
the branches only one of the SRP branches can be revealed
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without these extra controllable parameters. In addition, the
intersections of these critical curves correspond to the triple
points of the system, where both the first- and the second-
order phase transitions occur. Such a comparison between the
QRR model and the QRS model in our work offers a way to
seek exotic quantum phase transitions in matter-light coupled
systems and provides an alternative method to investigate
emergent phenomena induced by gauge phases in quantum
materials.

Finally, we note that our QRS model can be regarded
as a basic building block for a lattice system with periodic
boundary conditions. The connection and difference between
the artificial gauge phase and long-range hopping in a general
lattice model is of particular interest in the exploration of ex-
otic quantum phases and QPTs. For example, as demonstrated
in Appendix C, our QRS model can be mapped to a frustrated
J1-J2 spin model, which has been intensively investigated in
quantum magnetism. Despite a few decades of active research
[50–52], key questions such as the existence of a spin liquid
phase remain unanswered. Further studies of the QRS model,
especially in one-dimensional and two-dimensional lattices,
may shed new light on the investigation of the J1-J2 spin
model.
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APPENDIX A: ORDER PARAMETERS FOR THE SRP

Notice that the first part of H in Eq. (7) is similar to Eq. (1),
indicating that the Schrieffer-Wolff transformation can also be
applied to project the Hamiltonian into the low-energy spin
subspace P− ≡ |−〉 〈−|. Typically, the local minimum can be
determined by demanding V = 0. Considering the real and
imaginary parts of V , the following equations can be derived
from Re(V ) = Im(V ) = 0:

ωAn − λ sin(2γn) + J1(An+1 + An−1) + J2An+2 = 0,

ωBn + J1(Bn+1 + Bn−1) + J2Bn+2 = 0. (A1)

Taking the periodic condition into consideration, we can eas-
ily get B1 + B3 = B2 + B4 = 0 and Bn = 0. Then the first of
Eq. (A1) can be simplified as

(
ω − 4λ2√

16λ2A2
n + �2

)
An + J1(An−1 + An+1) + J2An+2 = 0.

(A2)

One solution is obtained by assuming A1 = A3 = a and A2 =
A4 = a′, leading to(

ω + J2 − 4λ2

√
16λ2a2 + �2

)
a + 2J1a′ = 0,

(
ω + J2 − 4λ2

√
16λ2a′2 + �2

)
a′ + 2J1a = 0. (A3)

Then we can obtain two solutions

a = a′ = ± 1

4λ

√
16λ4

(ω + J2 + 2J1)2
− �2,

a = −a′ = ± 1

4λ

√
16λ4

(ω + J2 − 2J1)2
− �2. (A4)

The critical point is reached when a2 = a′2 = 0, giving gc =
1
2

√
1 + J2/ω + 2J1/ω and gc = 1

2

√
1 + J2/ω − 2J1/ω, corre-

sponding to the choice of q = 0 and π in Eq. (6), respectively.
The twofold-degenerate ground states in both cases indicate
the breaking of Z2 symmetry.

Another case occurs when A1 = A4 = a and A2 = A3 = a′.
The conditions are(

ω − 4λ2

√
16λ2a2 + �2

)
a + J1(a + a′) + J2a′ = 0,

(
ω − 4λ2

√
16λ2a′2 + �2

)
a′ + J1(a + a′) + J2a = 0. (A5)

If a = a′, the equations above will be reduced to the first case.
The nontrivial solutions are

a = −a′ = ± 1

4λ

√
16λ4

(ω − J2)2
− �2. (A6)

Thus, the critical point can be obtained as gc = 1
2

√
1 − J2/ω,

which matches well with gc(q = π/2, 3π/2) in Eq. (6). No-
tice that the ground state breaks both the Z2 and C4 symmetries
simultaneously, which means the fourfold-degenerate ground
states occur if we consider the cyclic exchange of the four sites
as 1234 → 2341 → 3412 → 4123.

APPENDIX B: ANALYSIS OF THE VALIDITY
OF THE MEAN-FIELD SOLUTION

The analytical results presented in the main text are based
on the mean-field approximation. Here we provide a quan-
titative comparison between the mean-field results and the
fully numerical results based on the exact diagonalization
of the original Hamiltonian (1). Specifically, we define the
fidelity for our mean-field ground state as f ≡ |〈ψg|ψnum〉|2,
where |ψnum〉 is the ground state from the full numerical
calculation and

|ψg〉 = D†(�α)
3∏

2q/π=0

Sq(|0〉 |−〉)⊗4 (B1)

is the mean-field ground state. Note that in the NP, �α =
�0, |−〉 = |↓〉, and the squeezed operator Sq is defined in
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FIG. 5. Infidelity between the mean-field ground state ψg and the
numerical ground state ψnum with fixed hopping rates J1 = 0.05 and
J2 = 0.07 in our QRS model.

Sec. III, while in the SRP, the squeezed parameter is changed
as λq[g] → λq[g′ = g3

c(q)/g2].
We illustrate in Fig. 5 the infidelity 1 − f as a function of

the coupling strength g. We find that the infidelity is always
small (i.e., 1 − f ∼ 0) far away from the critical point. By
contrast, near the critical point, the infidelity increases sharply.
However, this error can be greatly suppressed by increasing
the ratio �/ω, suggesting that the mean field becomes es-
sentially exact in the thermodynamic limit �/ω → ∞. We
want to point out that the exact diagonalization near the crit-
ical point poses a challenging numerical problem, due to the
divergent photon number. Here we set a cutoff of the bosonic
mode dimension as Nc = 5 to guarantee convergence not too
close to the critical point, which is sufficient to provide quali-
tative conclusions.

APPENDIX C: MAPPING TO THE SPIN J1-J2 MODEL

By means of the Holstein-Primakoff transformation, given
by Sz

n = a†
nan − Sn and S+

n = a†
n

√
2Sn − a†

nan ≈ a†
n

√
2Sn,

where the classic spin limit Sn = S → ∞ is applied, the
Hamiltonian (3) can be mapped into a four-lattice J1-J2

model as

HJ1J2 =
4∑

n=1

(
ωSz

n − 2g2ω

S

(
Sx

n

)2
)

+ J1

S

4∑
n=1

(
Sx

nSx
n+1 + Sy

nSy
n+1

)

+ J2

2S

4∑
n=1

(
Sx

nSx
n+2 + Sy

nSy
n+2

)
. (C1)

By defining Xn ≡ 〈Sx
n〉/S and Yn ≡ 〈Sy

n〉/S, the mean-field en-
ergy of such a spin Hamiltonian is expressed as

EJ1J2

ωS
=

4∑
n=1

(
−

√
1 − X 2

n − Y 2
n − 2g2X 2

n

+ J1(XnXn+1 + YnYn+1) + J2

2
(XnXn+2 + YnYn+2)

)
.

(C2)

A minimization of the energy EJ1J2 can give similar branches
of solutions for {〈�Sn〉}, i.e.,

Xn = Xn+1 = Xn+2 = ±
√

1 −
(

1

4g2 − 4[gc(0)]2 + 1

)2

,

(C3)

Xn = Xn+2 = −Xn+1 = ±
√

1 −
(

1

4g2 − 4[gc(π )]2 + 1

)2

,

(C4)

and

Xn = Xn+1 = −Xn+2 = ±
√

1 −
(

1

4g2 − 4[gc(π/2)]2 + 1

)2

,

(C5)

with the spin-y components Yn = 0 in all three cases. Obvi-
ously, the arrangements for spin-x components Xn correspond
to the optical displacement An in all three different superra-
diant branches, shown as Eqs. (A4) and (A6). In addition,
the dimensionless coupling strengths g will be reduced to the
critical points gc when Xn = 0.
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