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Detecting single photons is not always necessary to evidence interference of
photon probability amplitudes
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Subtracting accidental coincidences is a common practice in quantum optics experiments. For zero mean
Gaussian states, such as a squeezed vacuum, we show that if one removes accidental coincidences, the measure-
ment results are quantitatively the same for both photon coincidences at very low flux and intensity covariances.
Consequently, pure quantum effects at the photon level, like interference of photon wave functions or photon
bunching, are reproduced in the correlation of fluctuations of macroscopic beams issued from spontaneous
down-conversion. This is true both in experiment if the detection resolution is smaller than the coherence
cell (size of the mode) and in stochastic simulations based on sampling the Wigner function. We also discuss
the limitations of this correspondence, such as Bell inequalities (for which one cannot subtract accidental
coincidences), highly multimode situations such as quantum imaging, and higher-order correlations.
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I. INTRODUCTION

Many iconic experiments in quantum optics, such as the
Hong-Ou-Mandel (HOM) experiment [1], the demonstration
of Einstein-Podolsky-Rosen (EPR) position-momentum cor-
relations [2,3], and experimental tests of Bell inequalities [4],
are based on correlations between detections of two photons.
However, initial demonstrations of these experiments were
done by subtracting accidental coincidences. Therefore, these
initial experiments measured the covariance of the detection
rates.

Later versions of these experiments were able to measure
coincidences between single-photon detections without sub-
traction of accidental coincidences. For instance, this was
achieved for the HOM experiment in [5,6], for the demon-
stration of EPR position-momentum correlations in [7], and
for experimental tests of Bell inequalities in [8–11].

One of the aims of the present paper is to clarify the
interpretation of experiments in which the covariance of de-
tection rates is used. To illustrate how these notions appear
in quantum optics, one can consider the correlations between
two beams impinging on two photodiodes, D1 and D2 [as
illustrated in Fig. 1(a)]. To this end one can use the mean
of the product of the numbers of photons n1 and n2 de-
tected, respectively, on D1 and D2, with a delay τ between
the detections, G(2)

12 (τ ) = 〈n1n2〉, or its normalized version,
g(2)

12 (τ ) = G(2)
12 (τ ) /(〈n1〉〈n2〉). Alternatively, one can use the

covariance C12(τ ) = 〈n1n2〉 − 〈n1〉〈n2〉. The first quantity is
often used to characterize a single-photon source. Indeed, if
D1 and D2 are placed at the output of a balanced beam splitter,
then g(2)

12 (0) gives direct access to the purity of a single-photon

*Contact author: eric.lantz@univ-fcomte.fr

source 1 − g(2)(0), where g(2) is the autocorrelation function
of the beam before the beam splitter [6]. [Indeed, it is easy to
demonstrate that, in this detection scheme, g(2)(τ ) = g(2)

12 (τ ).]
For a perfect single-photon source at zero delay, we have
g(2)(0) = 0, meaning that the detection of a photon on one
photodiode prevents the simultaneous detection of a photon
on the other photodiode, and consequently, the covariance is
negative. On the other hand, the second quantity can be used to
remove accidental coincidences when a measurement would
otherwise be affected by excessive noise. For instance, in the
original HOM experiment [1] performed with twin beams
issued from spontaneous parametric down-conversion [SPDC;
see Fig. 1(b)], the second quantity, i.e., the covariance, was
measured, and “suppression of coincidences” meant zero
covariance.

The aim of photodetection is to measure the number oper-
ator n. Due to technological limitations this measurement is
always imperfect and falls into two broad categories. Single-
photon detectors are generally of the on-off type: they are
able to distinguish between the vacuum state |0〉 and states
with one or more photons. When the average photon number
〈n〉 � 1 is small, this is close to an ideal photon-number
measurement. These detectors are affected by several im-
perfections, such as dark counts and limited efficiency. On
the other hand, photodetectors, which are used at a higher
average photon number, produce a current proportional to
the number of photons, but with added noise that prevents
the exact photon number from being resolved. Recently,
photon-number-resolving detectors were developed with the
capability of resolving up to a dozen photons (see, e.g.,
[12–14]). (For simplicity, we will not consider such detectors
in the present paper.) One of the aims of the present work is
to better understand the relation between experiments carried
out in the low-flux regime, in which on-off single-photon
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TABLE I. Status of subtraction of accidental coincidences or
subtraction of the product of mean intensities.

Subtraction of
accidental coincidences

Experiment Very low flux Higher flux

Characterization of twin photon sources Optional Necessary
HOM Optional Necessary
Bell Forbidden Forbidden
Purity of single-photon sources Forbidden Irrelevant

detectors are used, and in the high-power regime in which
photodetectors with a continuous output are used. Better
understanding this relation will provide answers to the fol-
lowing question: do we really need single-photon detectors to
exhibit interferences of individual photons?

For definiteness, in the present work, we consider only the
case used in many experiments today [15] in which photon
pairs are produced via SPDC. First of all, we will show that
when covariances are used, such experiments often have direct
analogs in the high-power regime, where twin beams are very
strongly correlated and in which the single-photon detectors
would be replaced experimentally by photodetectors that mea-
sure light intensities. In this regime the intensity correlations
exhibit the same behavior as the coincidence rate between
single-photon detections. This is true for Bell experiments
using SPDC, but we will see in Sec. III C that the classical
reasoning leading to Bell inequalities involves products of
intensities, not covariances. We summarize in Table I the
status of subtraction of accidental coincidences in the different
experiments considered in this paper.

In the present paper, we address some of the consequences
of this equivalence between the low- and high-power regimes.
First, the HOM experiment [1] can be considered the first
experiment evidencing the existence of a photon without
destroying it: two indistinguishable photons interfere in a
balanced beam splitter and pursue together their path to one
of the detectors, proving that photons do exist and are not
a mere extrapolation of the quantification of the light-matter
interaction [16]. It is worth noting and somewhat troubling
that this experiment can be performed at sufficiently high
power with photodetectors that measure light intensities, not
individual photons. Note, however, that even at high power
the twin beams are highly quantum: even if the intensity in
each beam fluctuates, the two beams experience exactly the
same fluctuations because of the photon pairs that constitute
the beams. We aim to better understand the connection be-
tween the low- and high-power versions of this and other
experiments.

A final important motivation for the present work con-
cerns stochastic simulations of SPDC. This is a very useful
tool for simulating quantum optics experiments (see, e.g.,
[17–21]). Indeed, stochastic sampling of the Wigner function
is by far the fastest method to simulate highly multimode
quantum optics experiments, providing considerable speedup
compared to computing the biphoton wave function. However,
as practitioners of this method know, using a (much) higher
gain in simulations than in experiment leads to qualitatively

similar results, but with a large saving in computational time.
The present work helps us understand why one can use the
high-gain regime in simulations: quantities like covariances
will be similar in the low- and high-gain modes. We will illus-
trate this in Sec. IV B with an example based on a multimode
HOM experiment.

Finally, we discuss limitations of the correspondence be-
tween the low- and high-gain regimes. We show that in
experiments involving two photons, this correspondence is not
perfect in the multimode case because the gains experienced
by the different modes may not be all equal and may there-
fore not scale in the same way as one increases the pump
power. This correspondence also breaks down in experiments
involving more than two photons. And Bell experiments, of
course, require single-photon detections. In Table I we list
some iconic quantum optics experiments and indicate when
the subtraction of accidental coincidences is allowed in both
the low-flux and high-flux regimes. In the conclusion we
discuss the implication of this correspondence for stochastic
simulations of quantum optics experiments, as well as con-
nections to hidden-variable models.

II. STOCHASTIC FIELD REPRESENTATION OF
SYMMETRIZED CORRELATIONS

To address the above-mentioned correspondence between
low- and high-power regimes, we use the Wigner representa-
tion as follows.

It was shown by Cahill and Glauber [22] [Eq. (4.23)] that
the expectation value of a symmetrically ordered product of
creation and annihilation operators a† and a can always be
expressed as an integral in the entire complex plane of the
c-number α weighted by the Wigner function W (α):

〈(a†)nam〉S = 1

π

∫
C

d2 α(α∗)nαmW (α). (1)

Furthermore, [17,18,23] showed that the Wigner function
for pump, signal, and idler fields in a ξ (2) medium obeys the
classical equations of motion if the pump beam is undepleted,
which is a good approximation in the cases studied here.
Hence, if the initial Wigner function is Gaussian, then the
Wigner function will stay Gaussian. We will use this below.

When the initial Wigner function of the signal and idler
fields is positive (which is the case if they are in the vacuum),
then these results provide an efficient way to compute nu-
merically symmetrized products of creation and annihilation
operators in highly multimode situations. To this end one
randomly samples the initial signal and idler fields using the
initial Wigner function as the probability distribution and then
propagates—through the nonlinear crystal, beam splitters, fo-
cusing optics, etc.—these stochastic fields using the classical
equations of motion. The average over the final distribution
yields the desired expectation value. To obtain the expecta-
tion of normal ordered operators a correction is required, for
instance, subtraction of the constant 1/2 for the intensity and
1/4 for the variance (when expressed in units of the photon
number).

To illustrate the above we consider a SPDC experiment
with two detectors at two distinct positions, D1 and D2. The
symmetrized product of the corresponding field operators is
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given by the expectation of the stochastic classical fields,

〈E†
D1

ED1 E†
D2

ED2〉S

≡ 〈(E†
D1

ED1 + ED1 E†
D1

)(E†
D2

ED2 + ED2 E†
D2

)〉
4

= 〈ED1 E∗
D1

ED2 E∗
D2

〉, (2)

where, on the left-hand side, we have the positive- and
negative-frequency field operators and a quantum expectation
value and, on the right, the expectation value of the classical
stochastic fields. In the following we will generally work with
the stochastic fields, which will be obvious from the notation,
as they get complex conjugated E∗

D1
rather than Hermitian

conjugated E†
D1

.
Since the Wigner function is Gaussian, the fields at D1 and

D2 obey the Gaussian moment theorem [24–26]:

〈ED1 E∗
D1

ED2 E∗
D2

〉 = 〈ED1 E∗
D1

〉〈ED2 E∗
D2

〉
+ 〈ED1 E∗

D2
〉〈ED2 E∗

D1
〉

+ 〈ED1 ED2〉〈E∗
D1

E∗
D2

〉 . (3)

Equation (3) can be rewritten in terms of detected intensities
ID1 = ED1 E∗

D1
and ID2 = ED2 E∗

D2
as

〈ID1 ID2〉 = 〈ID1〉〈ID2〉 + |〈ED1 E∗
D2

〉|2 + |〈ED1 ED2〉|2 .

Reorganizing terms, we obtain an expression for the
covariance:

cov(ID1 , ID2 ) = 〈ID1 ID2〉 − 〈ID1〉〈ID2〉
= |〈ED1 E∗

D2
〉|2 + |〈ED1 ED2〉|2 . (4)

Because of the subtraction of the product of the mean intensi-
ties (unlike in the G2 coefficient), the covariance between the
detected intensities can therefore be deduced from two mean
products of two stochastic fields. In practice, only one mean
product remains: one of the two means vanishes because only
phase differences make sense. This mean product of stochastic
fields has a form similar to the product of creation operators
in the biphoton wave function. Hence, the behavior of the
covariance of signal-idler intensities is the same as the corre-
lation of the signal and idler photons in a pair. This is true in a
vast number of quantum optics experiments using SPDC, both
at very low fluxes, where photon coincidences are detected,
and for intense twin beams, where one measures intensities
without photon resolution. It can be noted that the formalism
of the biphoton concerns a single pair and, consequently, is
valid in a regime of very low flux where the probability of
accidental coincidences is weak and can be neglected. In such
a regime, results are similar with and without subtraction of
coincidences: as quoted in Table I, this subtraction is optional.
On the other hand, at high flux this subtraction, or the subtrac-
tion of the product of mean intensities, is necessary to keep
only the same product of two fields as at low flux.

We note also that in the high-intensity case one needs to
use photodetectors with resolution much smaller than the co-
herence cell (size of the mode) in the time domain as well as in
the space domain. Otherwise, the fluctuations will be averaged
out. On the other hand, in the low-intensity regime, when
single-photon detectors are used, the time and space windows
can be much larger than the coherence length, provided the

FIG. 1. Experimental setups considered in this work: (a) nonde-
generate parametric down-conversion (PDC), (b) Hong-Ou-Mandel
(HOM) experiment, (c) Bell experiment, (d) multimode nondegen-
erate PDC, and (e) HOM with multimode nondegenerate PDC. In
(d) and (e), A1 and A2 are the imaging planes of cameras (possibly
with single-photon resolution). The pump beam is in blue; signal and
idler photons produced by PDC are in red. In (e), θBS represents an
angular shift of the beam splitter, used in the abscissa in Fig. 2.

probability of a single photon being detected in each window
is much smaller than 1. In this regime the subtraction of the
accidental coincidences [the second term in Eq. (4)] is not
compulsory. It improves the results, but the accidental coin-
cidence term can be much smaller than the true coincidence
term. The accidental coincidences in this regime could come
from pairs in different modes or from dark counts.

III. EXAMPLES

A. Nondegenerate SPDC

We now give some examples of the use of (4) to establish
well-known results usually deduced from the biphoton wave
function. These examples are illustrated in Fig. 1.

We first consider the very simple case of nondegenerate
SPDC and direct detection, at the output of the crystal, of the
intensities Is and Ii of the signal and idler beams, respectively.
At perfect phase matching, the classical equations of paramet-
ric amplification give, for a single pair of signal and idler fields
Es and Ei after amplification in a crystal of length L,

Es(L) = CEs(0) − iSE∗
i (0),

Ei(L) = CEi(0) − iSE∗
s (0), (5)

where C = cosh(gL) and S = sinh(gL), with g being the gain
per length unit, proportional to the pump amplitude. The
phases are defined with respect to the pump.

Using the fact that Es(0) and Ei(0) are independent vacuum
fields, each with a mean intensity of 1/2 in units of photons
per mode [22,27], we obtain from (4)

〈Es(L)Es(L)〉 = 〈Ei(L)Ei(L)〉 = 〈Es(L)E∗
i (L)〉 = 0
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and

cov(Is(L), Ii(L)) = |〈Es(L)Ei(L)〉|2
= C2S2〈Es(0)E∗

s (0) + Ei(0)E∗
i (0)〉2

= C2S2 . (6)

We can also calculate the mean intensity and the variance:

〈Is(L)〉 = 〈Es(L)E∗
s (L)〉 − 1/2

= C2〈Es(0)E∗
s (0)〉 + S2〈Ei(0)E∗

i (0)〉 − 1/2

= S2,

var[Is(L)] = |〈Es(L)E∗
s (L)〉|2 − 1/4

= 〈
C2Es(0)E∗

s (0) + S2Ei(0)E∗
i (0)

〉2 − 1/4

= C2S2. (7)

The subtraction of 1/2 for the intensity and 1/4 for the
variance is necessary to pass from the symmetrized order to
the normal order [22,27], while this correction is zero for
covariances.

We note that the variance of one of the twin beams is equal
to the covariance between the beams. Thus, even at high flux,
the beams are perfectly correlated.

The quantum efficiency η of the detectors is easily taken
into account by adding fictitious beam-splitters that mixe the
actual fields with vacuum fields:

ED1 = √
ηEs +

√
1 − ηEv1 ,

ED2 = √
ηEi +

√
1 − ηEv2 , (8)

where Ev1 and Ev2 are two independent vacuum fields. As
detailed in Appendix A, a straightforward calculation using
(8), (4), and (5) leads to

var(ID1 ) = var(ID2 ) = η2S4 + ηS2,

cov(ID1 , ID2 ) = η2S4 + η2S2 . (9)

The fluctuations of the classical intensity (first terms) remain
perfectly correlated. This result should be contrasted with the
shot noise (second terms): random deletion of photons leads
to detection of photons without a twin.

B. Hong-Ou-Mandel experiment

We now move to the HOM experiment [1] [see Fig 1(b)].
As in the original experiment, we assume that the signal and
idler photons are made indistinguishable by rotation of polar-
ization and arrive at the two input ports, s and i, of a balanced
and lossless beam splitter, with output ports labeled 1 and 2.
Conservation of energy imposes

|ts1 |2 + |rs2 |2 = |ti2 |2 + |ri1 |2 = 1,

ts1 r∗
s2

+ ri1t
∗
i2 = 0, (10)

where tkl (rkl ), with k = s, i and l = 1, 2, are the transmission
(reflection) coefficients from k to l , in amplitude. We obtain

E1 = ts1 Es + ri1 Ei,

E2 = rs2 Es + ti2 Ei,

cov(I1, I2) = |〈E1E∗
2 〉|2 + |〈E1E2〉|2

= |(ts1ti2 + ri1 rs2 )〈EsEi〉|2. (11)

To establish (11), we used (10), 〈EsE∗
s 〉 = 〈EiE∗

i 〉 and
〈EsEs〉 = 〈EiEi〉 = 〈EsE∗

i 〉 = 0. If the beam splitter is bal-
anced, ts1ti2 + ri1 rs2 = 0, and we obtain, as expected,
cov(I1, I2) = 0.

We emphasize that this result holds both in the low-gain
(single-photon) regime and in the high-gain (photodetector)
regime.

C. Bell experiment

Our next example concerns the Bell state 1√
2
(|H1V2〉 +

|V1H2〉), where 1 and 2 denote two distinct locations where the
two photons of a pair are respectively detected and H and V
stand for horizontal and vertical polarizations [see Fig. 1(c)].
SPDC is the most often used way to produce such entangled
pairs; for instance, Kwiat et al. [28] showed how to obtain
such a state at the double intersection of the two cones of
type-II SPDC.

If the signal and idler are horizontally and vertically po-
larized along x and y, respectively, then the fields E1+ and
E2+ at locations 1 and 2 after passing through polarizing beam
splitters oriented along θ1 and θ2 are written as

E1+ = E1x cos(θ1) + E1y sin(θ1),

E2+ = E2x cos(θ2) + E2y sin(θ2). (12)

Using (6), this leads to a covariance between the respective
intensities I1+ and I2+:

cov(I1+, I2+) = |E1+E2+|2
= |E1xE2y cos(θ1) sin(θ2)

+E1yE2x sin(θ1) cos(θ2)|2
= C2S2 sin2(θ1 + θ2). (13)

By dividing by the variance given in (7), we obtain the corre-
lation coefficient,

ρ = cov(I1+, I2+)√
var(I1+)var(I2+)

= sin2(θ1 + θ2), (14)

which has exactly the same form as the probability of de-
tecting two photons in this configuration. Thus, by replacing
the product of the intensities by their correlation coefficients
in the Clauser-Horne-Simony-Holt (CHSH) inequalities [29],
we can retrieve, whatever the field intensity, the same value
of the Bell parameter B as for a biphoton state, with a well-
known maximum of 2

√
2.

However, the above does not provide a violation of the
CHSH inequality because the positivity of intensities is one
of the ingredients that is used to derive the CHSH inequality.
For instance, if we follow the reasoning presented in [30,31],
there is a step which uses the inequality:∣∣∣∣ I+ − I−

I+ + I−

∣∣∣∣ < 1, (15)

where I+ and I− are the two output intensities of one of
the polarizing beam splitters. Using covariances is equivalent
to replacing I+ (I−) by I+ − 〈I+〉 (I− − 〈I−〉), but then these
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quantities are not always positive and do not fulfill condition
(15).

It is, nevertheless, possible to use our approach to calculate
the maximum gain G that allows the Bell inequalities to be
violated (giving only a threshold separating the regime of
nonlocal pairs and the regime of correlated intensities, not
proof that this is the actual threshold). It is, indeed, easy to
show from (12) and (5) that, whatever the angles,

G = 〈I1+〉 = 〈I1−〉 = 〈I2+〉 = 〈I2−〉 = S2, (16)

leading, using (13), to

〈I1+I2+〉 = 〈I1−I2−〉 = C2S2 sin2(θ1 + θ2) + S4,

〈I1+I2−〉 = 〈I1−I2+〉 = C2S2 cos2(θ1 + θ2) + S4. (17)

Upon inserting this into the Bell expression B, one finds, after
some manipulations, that

B(G) = 1 + G

1 + 3G
B(0), (18)

where B(0) is the Bell parameter at vanishing gain and B(G) is
the Bell parameter at gain G. To violate the CHSH inequality
we need B(G) > 2 while B(0) = 2

√
2, leading to the thresh-

old for violation of the CHSH inequality 1+G
1+3G < 1√

2
. This was

stated in a different, but equivalent, form in [31], using the
Heisenberg point of view and in this form in [27] and then
in [32]. The approach developed here appears particularly
simple. The details of the calculation are given in Appendix B.

D. Multimode case

We now discuss how to take into account the multimode
character of the SPDC. We consider, for definiteness, spatial
degrees of freedom, as illustrated in Fig. 1(d), although the
same reasoning would apply for temporal degrees of freedom.
We consider two detector planes, and we label the pixels of
the detector array on the signal side with a subscript l and on
the idler side with a subscript m. For a given crystal length L,
the mean product of signal-idler fields used in the calculation
of the covariance in (6) can be expressed, using the singular-
value decomposition [33], as

〈EslEim〉 =
∑

k

UlkλkVmk, (19)

with U and V being unitary matrices and 0 � λk being the
singular values. A gain gk can be defined for each mode k as

λk = cosh(gk ) sinh(gk ) = CkSk . (20)

The fields in each pair of Schmidt modes can be written as in
(5):

Esk (L) = CkEsk (0) − iSkEi∗k (0),

Eik (L) = CkEik (0) − iSkEs∗
k (0). (21)

The actual fields remain Gaussian since they result from the
superposition of the Gaussian Schmidt fields:

Esl =
∑

k

UlkEsk,

Eim =
∑

k

VmkEik . (22)

Because U and V are unitary, Eqs. (6), (21), and (22) lead to
(19). More generally, the unitarity of these matrices means
that all the above monomode relations have a multimode
equivalent, with a gain which is mode dependent. For exam-
ple, the intensity on a pixel on the signal side can be written
in an analogous way to Eq. (7):

Isl = 〈EslEs∗
l 〉 − 1/2

=
{ ∑

k

|Ulk|2[C2
k 〈Esk (0)Es∗

k (0)〉

+ S2
k 〈Eik (0)Ei∗k (0)〉]

}
− 1/2

=
∑

k

|Ulk|2S2
k . (23)

Analyzing the spatiotemporal variation of correlations in
detail is beyond the scope of this paper. The analysis in the
temporal domain was already detailed in the original HOM
paper [1]. For a numerical and experimental analysis of spa-
tiotemporal effects in the HOM experiment, see [20,21]. Here,
we would like to stress that the simple fact that the fields
are Gaussian means that Eq. (4) remains valid: for SPDC,
the analysis of intensity covariances can be performed at high
intensities and gives the same results as the analysis of photon
coincidences at low flux.

The main difference from the single-mode case is that,
because the different modes have different gains, changing
the power of the pump laser in a multimode SPDC experi-
ment will not simply multiply all intensities and correlation
coefficients by a particular factor. Thus, a high gain allows the
amplification of modes that are not perfectly phase matched.
Hence, in a HOM experiment [see Fig. 1(e) for the spatial
multimode case], a higher gain leads to a wider bandwidth in
the spatial or temporal frequency domain. This is illustrated
in Fig. 2 by the simulation of a spatial multimode HOM
experiment with varying pump power. However, the small
dependence of the dip in Fig. 2 as a function of pump power
means that one can use the simulations at high power, which
are much faster, to describe with high precision the experi-
ment in the low-power, photon-counting regime.

E. Multiparticle correlations

The above considerations were made for correlations be-
tween two intensities. How does this generalize to correlations
between more than two intensities? For definiteness, we con-
sider the fourfold correlation between two signal intensities,
detected in two close locations, s1 and s2, separated by less
than the size of the coherence cell, and two idler intensities in
two close locations, i1 and i2 [34].

The fourfold covariance

Co = (Is1 − 〈Is1〉)(Is2 − 〈Is2〉)(Ii1 − 〈Ii1〉)(Ii2 − 〈Ii2〉) (24)

has nine terms. To see this, we reason as follows:
(1) Using the Gaussian moment theorem, we find that the

fields Es1 , Es2 , E∗
i1 , and E∗

i2 give nonzero terms only when asso-
ciated with the fields E∗

s1
, E∗

s2
, Ei1 , and Ei2 [see (6)], resulting

in 4! = 24 terms in 〈Is1 Is2 Ii1 Ii2〉.
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FIG. 2. Influence of the gain 〈S2〉 in a multimode HOM experi-
ment realized using the setup illustrated in Fig. 1(e), obtained using
stochastic simulations. The gains in the different curves correspond
to average numbers of photons per pixel of 0.01, 0.1, 1, and 10. On
the abscissa, θBS is the rotation angle of the beam splitter used to
control momentum indistinguishability between the signal and idler
beams. The horizontal angular shift of the reflected beams is 2 times
θBS. The results of numerical simulations using the stochastic model
are averaged over 100 iterations. The crystal length is L = 0.8 mm.
On the ordinate, the normalized amplitude of the HOM dip is ob-
tained by dividing the correlation between the two output far-field
images by the correlation between the two input far-field images.
The correlation is obtained by dividing the covariance by the square
root of the product of the variances [see Eq. (14)]. Note that as the
gain changes by 4 orders of magnitude, the width σθ changes by less
than a factor of 3. (The width σθ given in the legend is obtained from
Gaussian fits to the numerical data). Note that the curves at low gain
are noisier (especially in the wings of the curves), in contrast to the
curves at high gain.

(2) Hence, Co has 24 terms from 〈Is1Is2 Ii1Ii2〉 minus 4 × 6 =
24 terms with a mean intensity times a threefold product like
〈Is1〉〈Is2 Ii1 Ii2〉 plus 6 × 2 = 12 terms with a product of two
mean intensities minus 4 terms with three mean intensities
plus 1 term product of the four mean intensities. The 15
removed terms include at least a mean intensity, and this is
precisely the number of terms in 〈Is1 Is2 Ii1 Ii2〉, which include
such a mean.

Hence, Co includes only the nine terms without a mean
intensity:

Co = 〈Es1 E∗
s2
〉〈Es2 E∗

s1
〉〈E∗

i1 Ei2〉〈E∗
i2 Ei1〉 (25)

+〈Es1 E∗
s2
〉〈Es2 Ei1〉〈E∗

i1 Ei2〉〈E∗
i2 E∗

s1
〉 (26)

+〈Es1 E∗
s2
〉〈Es2 Ei2〉〈E∗

i1 E∗
s1
〉〈E∗

i2Ei1〉 (27)

+〈Es1 Ei1〉〈Es2 E∗
s1
〉〈E∗

i1 Ei2〉〈E∗
i2 E∗

s2
〉 (28)

+〈Es1 Ei1〉〈Es2 Ei2〉〈E∗
i1 E∗

s1
〉〈E∗

i2 E∗
s2
〉 (29)

+〈Es1 Ei1〉〈Es2 Ei2〉〈E∗
i1 E∗

s2
〉〈E∗

i2 E∗
s1
〉 (30)

+〈Es1 Ei2〉〈Es2 E∗
s1
〉〈E∗

i1 Ei2〉〈E∗
i2 E∗

s2
〉 (31)

+〈Es1 Ei2〉〈Es2 Ei1〉〈E∗
i1 E∗

s1
〉〈E∗

i2 E∗
s2
〉 (32)

+〈Es1 Ei2〉〈Es2 Ei1〉〈E∗
i1 E∗

s2
〉〈E∗

i2 E∗
s1
〉. (33)

These terms scale differently as a function of the gain.

Term (25) is a term of incoherent bunching, proportional to
S8.

The terms

(29) + (30) + (32) + (33)

= |Es1 Ei1 Es2 Ei2 + Es1 Ei2 Es2 Ei1 |2, (34)

proportional to C4S4, are the only ones that remain at low
gain. They can result in interferences in the four-photon
coincidences [34].

The four remaining terms, proportional to C2S6, have a less
clear interpretation. They can be written as

(26) + (27) + (28) + (31)

= {〈Es1 E∗
s2
〉(〈Es2 Ei1〉〈E∗

i1 Ei2〉〈E∗
i2 E∗

s1
〉

+ 〈Es2 Ei2〉〈E∗
i1 E∗

s1
〉〈E∗

i2 Ei1〉)} + c.c. (35)

These relations can be extended to the multimode case, most
easily using the singular-value decomposition (19).

IV. DISCUSSION

A. Correspondence between low- and high-power experiments

The first message conveyed here is that purely quantum
effects, intimately linked to the particle character of photons,
have an exact counterpart in the fluctuations of macroscopic
twin beams. These macroscopic twin beams are not classi-
cal beams: they are formed by pairs and possess quantum
properties [35]. For example, if the photon number of each
beam strongly fluctuates with a thermal statistics, the fluctu-
ations of both beams are strictly the same, and the variance
of the difference of photon numbers is exactly zero in an
ideal experiment [36]. A practical illustration is the use in
quantum imaging experiments of a variance of the difference
in photon numbers smaller than the Poisson noise to prove
the particle character of twin images [2,37–39]. Furthermore,
with twin macroscopic beams, the visibility of interference
in a HOM experiment is not limited to 0.5, as is the case
for classical beams [40,41], but can go down to zero. Thus,
the HOM interference for a photon pair can be generalized
to the interference of many photon pairs in a single mode,
with covariance as the quantity that is used in both situations.
Subtracting accidental coincidences is a useful procedure not
only to eliminate the effect of independent pairs coming from
other modes (or electronic noise) but also to take into account
correlated pairs in a mode, obeying a Bose-Einstein (thermal)
statistics. If the use of the subtraction of accidental coinci-
dences to remove noise coming from other modes is quite
obvious, the use of covariance even inside a single mode is
much less intuitive but is correct for Gaussian statistics. Bell
inequalities are an exception: they use products of intensities,
not their covariance. Indeed, the violation of Bell inequalities
describes the nonlocal character of the correlation of two
photons forming a unique pair.

B. Stochastic simulations

The second message concerns stochastic simulations,
which are a very useful tool for simulating quantum optics
experiments (see, e.g., [17–19]). Indeed, stochastic sampling
of the Wigner function is by far the fastest method to simulate
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highly multimode quantum optics experiments, such as quan-
tum imaging involving an image of N by N pixels. Indeed, the
computation time will be proportional to N2. In comparison,
the computation time of the biphoton wave function is at least
proportional to N6 [42]. For recent illustrations of the appli-
cation of this method, we refer to highly spatially multimode
HOM experiments presented in [20,21],

As practitioners of this method know, using a (much)
higher gain in simulations than in experiment leads to qualita-
tively similar results, but with a large saving in computational
time. The reasons for the qualitative similarity of the results is
explained by the present analysis: quantities like covariances
will be similar in the low- and high-gain modes. The (small)
differences are due, for instance, to phase-matching condi-
tions: a high gain allows the amplification of some modes that
are not perfectly phase matched [43]. As an illustration, in a
HOM experiment, a higher gain leads to a slightly wider band-
width in the spatial or temporal frequency domain. This is
illustrated in Fig. 2 for the spatial HOM experiment described
in Fig. 1(e). We see that, whatever the gain, the covariance
falls close to zero in the center of the dip, validating the use in
numerics of a higher gain than in the experiment.

The advantage of using a high gain in simulation is drastic:
stochastic simulations with a low gain imply a huge number
of repetitions of the simulation to obtain an acceptable signal-
to-noise ratio (SNR). This is due to the fact that the signal
has the level of the actual intensity without the input vacuum
noise, while the noise includes this vacuum noise [44]. Thus,
for a small gain the SNR (defined as the ratio between the
mean intensity and its standard deviation) will be equal to the
average number of photons per mode (which in experimental
situations will be 0.1 or less). On the other hand, with a
gain of many photons per mode, the influence of the input
vacuum noise on the SNR becomes negligible. Thus, with a
high gain and for one repetition, the SNR is equal to 1 because
of the Bose-Einstein statistics of the intensity. Hence, for R
repetitions, the SNR is equal to

√
R. The total computational

cost will thus be R × N2.
On the experimental side, using high gain to demonstrate

quantum effects at the photon level is possible in principle
but less evident than in simulations. The principal reason is
that the time resolution of the detectors is often much greater
than the duration of a SPDC mode, given by the inverse of
the spectral bandwidth of phase matching or of the added
spectral filter, if any. In the 1987 HOM experiment [1], the
time window for coincidences of twin photons was 7 ns for
a coherence time of about 100 fs. With such timescales, the
fluctuations of more than 104 independent modes would be
averaged if a high-intensity beam was used. An obvious so-
lution to work in the quasimonomode regime is to use short
pulses and narrow spectral filters with a time separation of
the pulses smaller than the time window of the detectors.
This was done in [37,45–47]. Eisenberg et al. [45] analyzed
two-photon coincidences with a small quantum efficiency and
up to 50 photons per mode. However, their use of on-off
detectors led to a strong distortion of the statistics. For ex-
ample, at high fluxes, the probability of coincidences tends to
1, and the covariance tends to zero. In [46], photon-number-
resolving detectors were employed. For images, Jedrkiewicz
et al. demonstrated [37] the sub-shot-noise character of the

difference between signal-idler images issued from type-II
SPDC with 100 photons per mode. In [47], high-intensity
images produced by type-I SPDC were obtained and used
to demonstrate the Bose-Einstein character of the statistics,
and an image was reported in which the twin character of the
signal-idler fluctuations was clearly visible but not quantita-
tively analyzed.

C. A hidden-variable model

Stochastic simulations use the propagation of classical
fields to reproduce the predictions of quantum experiments.
We discuss here their connection with hidden-variable mod-
els of quantum mechanics. Such hidden-variable models are
interesting because they can, in some cases, provide an intu-
itive, classical picture of the underlying quantum phenomena.
Ideally,

such a hidden-variable model should have the following
characteristics:

(1) The hidden-variable model reproduces the outcomes
of one or several observables. That is, individual realizations
of the hidden-variable model predict individual outcomes of
the observable, with the correct probability distribution being
reproduced when averaged over the hidden variables.

(2) The hidden-variable model is local; that is, when
describing multiparticle systems, one can assign hidden vari-
ables to each particle, and the evolution of these hidden
variables depends only on the local environment of each
particle.

Bell’s theorem [48] proves that one cannot satisfy both
requirements. Bohm’s model [49] shows that the first require-
ment can be met for position measurements of single particles.
But Bohm’s model, or extensions thereof, cannot be extended
to a local model of two or more entangled particles (since,
otherwise, a contradiction with Bell’s theorem would occur).

The stochastic simulations of quantum optics experiments
satisfy the second requirement since the fields are propagated
using the classical equations of motion and hence are local
but do not satisfy the first requirement. To see this explicitly,
consider the symmetrized number operator (a†a + aa†)/2.
This operator has half-integer eigenvalues 1/2, 3/2, . . . . The
stochastic model will, at each repetition, yield a positive real
value for the symmetrized number operator. The average will
yield the correct expectation value [see Eq. (1)]. But the indi-
vidual runs cannot be used so simulate individual outcomes
of the measurement (otherwise, a contradiction with Bell’s
theorem would occur). This can also be seen from the fact that
individual runs can yield values less than 1/2, corresponding
to a negative photon number, which would be unphysical.

A fundamental difference remains, however, between the
low- and high-flux regimes. At high flux, a detection propor-
tional to intensity is described by projection onto a positive
Wigner function, meaning that one repetition of the exper-
iment or of the corresponding stochastic simulation can be
drawn from the same probability distribution [50,51]. On the
other hand, the on-off detectors used at low flux correspond
to a projection on a one-photon state with a partially negative
Wigner function. In this regime, as mentioned above, there
is no correspondence between the experimental and simu-
lated samples. For example, a sample in a simulation can
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correspond to a negative intensity after the subtraction re-
quired to obtain the normal ordered operator. Only the
covariance, i.e., the mean over a large number of repetitions,
is identical in simulations and experiments.

As a final remark, an alternative exists to simulate mea-
surement outcomes at very low flux: the photon pairs can be
considered independent, and the probability distribution can
be directly inferred from the square biphoton amplitude. The
simulation of experimental samples, i.e., sampling from the
classical probability distribution, appears particularly difficult
in the intermediate situation, with a gain neither much lower
nor much higher than 1. Indeed, this is a situation similar
to boson sampling, where it is expected that such sampling
is computationally hard. For a study of quantum imaging
experiments in this regime, see [34].

D. Summary

In the present work we have not presented any new quan-
tum optics results. Rather, we have clarified the connection
between low-flux and high-flux quantum optics experiments
through the lens of stochastic field simulations. For Gaus-
sian states like SPDC, we have shown that the covariance
describes coincidences of photons at very low flux as well
as correlations of intensity fluctuations at high flux. We have
retrieved for covariances some well-known results for coin-
cidences, like the disappearance of coincidences in the HOM
experiment. The computations are analogous to those based
on the biphoton wave functions but are valid for any number
of photon pairs in a mode. We have treated only some simple
cases, but an extension to more realistic or more complex
situations can readily be carried out. The same results can,
of course, also be obtained by using the Heisenberg represen-
tation, but the connection to the biphoton state is less evident.
Our work also shows why high-gain stochastic simulations of
an experimental setup (which are computationally efficient)
will generally yield results close to those obtained in the
experimental, low-gain regime. Finally a conceptual link to
hidden-variable models was discussed.

APPENDIX A: DERIVATION OF EQ. (9)

We detail here the computation leading to expressions
(9) for the variance and covariance for a nonunity quan-
tum efficiency η. As stated in the main text, the addition
of a fictitious beam splitter before the detectors leads to

Eq. (8):

ED1 = √
ηEs(L) +

√
1 − ηEv1 ,

ED2 = √
ηEi(L) +

√
1 − ηEv2 ,

leading to a mean intensity on the photodiode D1:

〈ID1〉 = 〈ED1 E∗
D1

〉 − 1/2

= 〈Es(L)E∗
s (L)〉 + (1 − η)〈Ev1 E∗

v1
〉 − 1/2

= η(C2 + S2)/2 + (1 − η)/2 − 1/2

= ηS2. (A1)

As expected, the intensity is simply multiplied by the quantum
efficiency.

The variance is computed in the same way:

var(ID1 ) = 〈(ED1 E∗
D1

)2〉 − 1/4

= η2[(C2 + S2)/2]2 + η(1 − η)(C2 + S2)/2

+ 1/4(1 − η)2 − 1/4

= η2S4 + ηS2. (A2)

The computation of the covariance between the intensities in
D1 and D2 is simpler since the vacuums v1 and v2 are not
correlated:

cov(ID1 , ID2 ) = |〈(ED1 ED2 )〉|2
= η2|〈Es(L)Ei(L)〉|2
= η2C2S2 = η2S4 + η2S2. (A3)

APPENDIX B: DERIVATION OF EQ. (18)

The coefficients used in the CHSH inequalities have the
form

E (θ1, θ2) = 〈I1+I2+ + I1−I2− − I1+I2− − I1−I2+〉
〈I1+I2+ + I1−I2− + I1+I2− + I1−I2+〉

= 2C2S2[sin2(θ1 + θ2) − cos2(θ1 + θ2)]

2C2S2 + 4S4

= (1 + G)[sin2(θ1 + θ2) − cos2(θ1 + θ2)]

1 + 3G
.

(B1)

Hence, for a non-negligible gain G, the coefficient B is
multiplied by 1+G

1+3G , preventing any violation of the CHSH
inequalities for 1+G

1+3G � 1√
2
.
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