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Controllable helical collapse caused by a nonlinearity-related Gouy phase shift
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Helical filamentation of optical fields has gained significant attention due to its potential physical properties,
complexity, and practicality. However, conventional methods of manipulating filament formation face a major
challenge in achieving controllable helical filamentation. We propose a method to manipulate helical collapse
based on a nonlinearity-related Gouy phase shift. This method is triggered by the nonlinear interaction between
vector vortex beams and anisotropic Kerr media. It is uncovered that, in the absence of the vortex, the radially
polarized beam can only form the multifilament at specific locations in a BaF2 crystal. Nevertheless, once the
vortex is attached, the beam can rotate based on the multifilament. The direction and angle of the rotation can be
controlled by varying the topological charge number of the vortex phase. In addition, spin-orbit coupling and a
rotational nonlinear refractive phase shift are generated during the helical collapse process. Finally, the physical
mechanism behind this helical collapse is illustrated by a nonlinearity-related Gouy phase shift. This research
presents a different approach to controlling optical field collapse and filamentation, with potential applications
in various fields, including optical communications, optical manipulation, and optical microprocessing.
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I. INTRODUCTION

With the wide application of femtosecond laser filamen-
tation, helical filamentation has received more and more
attention due to the special propagation trajectory [1–3].
However, it remains a significant challenge to achieve con-
trollable rotation while precisely controlling the number and
position of the collapsed filaments. On the one hand, the
collapse and filamentation of the optical field become ran-
dom due to the Kerr induction modulation instability caused
by random noise [4–12]. On the other hand, achieving op-
tical field controllable rotation during collapse filamentation
is also a major difficulty, which will show novel properties
and unique applications in many applications of filament
formation.

Conventional methods of controlling optical filamentation
mainly involve manipulating the spatial structure of the scalar
optical field in both phase and amplitude [13–18]. In recent
years, vector optical fields have also been used to investigate
controllable optical field collapse and filament formation due
to their unique polarization properties. Controllable and sta-
ble collapse of various vector optical fields into filaments in
isotropic and anisotropic Kerr media have been achieved by
manipulating the polarization state distribution of the optical
field [19–24]. Yet, one limitation of these methods is their
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inability to achieve controllable rotation in the collapse po-
sition during collapse filamentation. In this regard, the vortex
beam is a good candidate for this purpose. It can indeed rotate
in the direction dictated by the chirality of this vortex during
collapse filamentation [25–27], but it is difficult to control the
position and number of collapse filaments. In conclusion, the
controllable helical filamentation of optical fields remains an
area for further investigation.

Inspired by the above challenge, this work presents a
method for achieving controllable helical collapse of vector
vortex beams in anisotropic Kerr media. Furthermore, we
discover a nonlinearity-related Gouy phase shift caused by
the nonlinear interaction of the optical field with the medium.
It is revealed that in the absence of the vortex, the radially
polarized beam can only form the multifilament at certain
locations in a BaF2 crystal. Once the vortex is present, how-
ever, the beam can rotate on the basis of the multifilament.
During this helical collapse, the nonlinear interaction be-
tween the beam and the medium will result in spin-orbit
coupling and a rotational nonlinear refractive phase shift.
The rotation of nonlinear refractive phase shift distribution
affects the phase distribution of the optical field, generating
a nonlinearity-related Gouy phase shift that leads to helical
collapse. Moreover, the direction and angle of the rotation
are determined by the orbital angular momentum carried by
the incident field, which can be modulated by changing the
topological charge of the vortex phase. Lastly, a possible
experimental prototype is proposed preliminarily. This
method opens up a way for controllable optical field collapse
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FIG. 1. The nonlinear propagation schematic of the radially polarized vortex beam in a BaF2 crystal. A radially polarized vortex beam is
focused by a focusing lens and propagates along the [001] crystal axis of a thick BaF2 crystal. The red beam represents a radially polarized
vortex beam, and the lens represents a focusing lens. The gray square is a thick BaF2 cubic crystal.

and filamentation, which has enormous application value in
many fields such as guided microwave radiation [28], gen-
eration of millijoule femtosecond supercontinuum spectral
sources [29], optical communications [30], and terahertz ra-
diation enhancement [31].

II. THEORETICAL ANALYSIS

First, this work analyzes the nonlinear propagation be-
havior of a radially polarized vortex beam in an anisotropic
Kerr medium. Under the weak focusing situation, a radially
polarized vortex beam can be written as

E⊥ = [Ex êx + Eyêy] = A(r) exp( jmϕ)(cos ϕêx + sin ϕêy),
(1)

where êx and êy are a pair of orthogonal line polarization
unit vectors in the polar coordinate system (r, ϕ); ϕ is the
azimuth angle; A(r) = A0r exp(−r2/2r2

0 ) and exp( jmϕ) rep-
resent the spatial distribution of the amplitude and the phase,
respectively; m denotes the vortex phase topological charge;
and r0 is the radius of the focal ring. When m = 0, the
optical field degenerates into a normal radially polarized opti-
cal field with a hollow structure and without orbital angular
momentum (OAM). When m �= 0, the optical field is a ra-
dially polarized vortex optical field with a hollow structure
and OAM.

BaF2 crystal, as an example of anisotropic Kerr media,
whose third-order nonlinear polarization intensity strongly
depends on the polarization angle of the incident optical field
as well as the crystal orientation. In this work, we consider that
a vector vortex beam is incident on the BaF2 crystal and prop-
agates parallel to the [001] crystallographic axis (the z-axis
direction in Fig. 1). In order to investigate the nonlinear prop-
agation behavior of the vector vortex beams in this crystal,
a (2 + 1)-dimensional vector-version nonlinear Schrödinger
(NLS) equation should be used. Under the slowly varying
envelope and paraxial approximations, the NLS equation can
be divided into a pair of coupled NLS equations for two
orthogonal components as follows [21],

j
∂ψx

∂ζ
+ ∇2

⊥ψx + 8P

Pcr
|ψx|2ψx + 8P

Pcr

×
(

1 − σ

3

)
(2|ψy|2ψx + (ψy)2ψ∗

x ) = 0 (2a)

j
∂ψy

∂ζ
+ ∇2

⊥ψy + 8P

Pcr
|ψy|2ψy + 8P

Pcr

×
(

1 − σ

3

)
(2|ψx|2ψy + (ψx )2ψ∗

y ) = 0, (2b)

where ψx(ψy) is the dimensionless x (y) component normal-
ized by the total field as

ψx,y(ρ, ϕ; ζ ) = Ex,y(ρ, ϕ; ζ )√∫∫ |Ex(ρ, ϕ; ζ )|2 + |Ey(ρ, ϕ; ζ )|2ρdρdϕ

,

(3)
where ρ = r/r0 and ζ = z/4zd are the dimensionless cylin-
drical coordinates; zd = πr2

0/λ is the Rayleigh distance
of the optical field propagating within a vacuum; P =
2n0ε0c

∫∫ |Ex(ρ, ϕ; ζ )|2 + |Ey(ρ, ϕ; ζ )|2ρdρdϕ is the inci-
dent power; Pcr = αλ2/4πn0n2 represents the critical powers
for self-focusing, where n2 is the nonlinear refractive in-
dex; n0 denotes the linear refractive index; λ, ε0, and c are
the wavelength, the permittivity, and the speed of light in
the free space, respectively; α is a parameter related to a
Gaussian profile and so should be taken as α = 2 [32]; and
σ is the the anisotropy parameter. For the isotropic Kerr
media, σ = 0. For the anisotropic Kerr media, σ �= 0, and
for a BaF2 crystal, σ = −1.2 [33]. On the left-hand side
of Eq. (2), the second term represents the contribution from
the diffraction described by the transverse Laplacian ∇2

⊥ =
∂2/∂ρ2 + ρ−1∂/∂ρ + ρ−2∂2/∂ϕ2. The third and fourth terms
are from the Kerr nonlinearity. It is evident that Eq. (2) fails to
satisfy the principle of linear superposition, and there exists no
universal analytical solution. However, we can still simulate
the propagation characteristics of the vector vortex beams
in anisotropic Kerr media based on the beam propagation
method [34]. As is well known, when m �= 0, the optical
field is a radially polarized vortex optical field, which will
carry the orbital angular momentum induced by the vortex
phase [35,36]. Moreover, the orbital angular momentum of
the optical field is inextricably linked to the phase distribution
of the optical field. Therefore, to facilitate the investigation
of the physical mechanisms behind the propagation behavior
of the radially polarized vortex beam propagating in a BaF2

crystal, the optical angular momentum and phase theories are
analyzed in this section.
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Based on the definition of angular momentum (AM) den-
sity, it is apparent that the angular momentum density in
the propagation direction can also be divided into two parts:
OAM density and spin angular momentum (SAM) density
jz = jo

z + js
z. Then jo

z and js
z can be written as [37],

jo
z ∝ Im

(
E∗

x

∂Ex

∂ϕ
+ E∗

y

∂Ey

∂ϕ

)
,

js
z ∝ Im(E∗

x Ey − ExE∗
y ). (4)

The AM distribution is reflected by the AM density, whereas
the average AM in the propagation direction can be expressed
as [37–40]

Jz =
∫∫

jzdxdy

E
=

∫
jo
z dxdy

E
+

∫
js
z dxdy

E
= Jo

z + Js
z , (5)

where E represents the full energy of the optical field, Jo
z

denotes the average OAM, and Js
z denotes the average SAM.

According to Eq. (1), the transverse optical field E⊥ can be
regarded as a superposition of the x-direction component Ex

and the y-direction component Ey. In this work, we specify
the magnitude and the direction of E⊥ as

E⊥ =
√(

E2
x + E2

y

)
,

ψ = arctan
(
Ey/Ex

)
. (6)

Therefore, the phase of Ei can be expressed as �i =
arctan[Im(Ei )/ Re(Ei )], i = x, y, and ⊥.

III. RESULTS

According to the principle outlined in Fig. 1, this work
numerically simulates the propagation characteristics of the
radially polarized vortex beams with different vortex phases
propagating along the [001] crystallographic axis in a BaF2

crystal at an incident power of P = 6Pcr.
When m = 0, the optical field degenerates into an ordinary

radially polarized optical field. As the propagation distance
increases, the optical field collapses into four filaments at
fixed locations, as shown in Fig. 2 (first row). When m �= 0,
the optical field is a radially polarized vortex optical field.
As the propagation distance increases, the optical field not
only collapses into four filaments but also rotates during the
collapse process, as shown in Fig. 2 (from the second row
to the fifth row). If m > 0, the optical field carries a posi-
tive vortex and rotates counterclockwise, as shown in Fig. 2
(second and third rows). If m < 0, the optical field carries
a negative vortex and rotates clockwise, as shown in Fig. 2
(fourth and fifth rows). For m = ±1, the optical field rotates
by 0◦, 7◦, 14◦, and 20◦ (Corresponding to ζ is 0, 0.05, 0.11,
and 0.18 in turn), respectively, as shown in Fig. 2 (second
and fourth rows). For m = ±3, the optical field rotates by
0◦, 19◦, 34◦, and 48◦ (Corresponding to ζ is 0, 0.07, 0.13,
and 0.22 in turn), respectively, as shown in Fig. 2 (third and
fifth rows). The rotation angle during the collapse process
increases as the propagation distance and the absolute value of
m increases. Therefore, the direction and angle of the rotation
can be modulated by varying the vortex phase topological
charge m. To comprehensively observe the nonlinear propa-
gation characteristics of radially polarized vortex beams in a

FIG. 2. The intensity of radially polarized vortex beams with dif-
ferent vortex phases propagating in a BaF2 crystal. The topological
charges of the vortex phases are m = 0 (first row), m = ±1 (second
and fourth rows), and m = ±3 (third and fifth rows). Each row from
left to right corresponds to four sequentially increasing propagation
distances ζ . The white dotted lines reflect the change in rotation
angle. The intensity is normalized to its maximum value in each
image separately. The color bar represents normalized light intensity
values.

BaF2 crystal, this work numerically simulates the propagation
in three dimensions for m = 0 and m = ±3, respectively, at
the same incident power, as shown in Fig. 3. The propagation
behavior illustrated in Fig. 3 is consistent with the results of
Fig. 2.

The above results show that radially polarized beams with-
out a vortex will collapse into four filaments at fixed locations.
However, radially polarized vortex beams will collapse into
four filaments and rotate along the vortex chiral direction as
it propagates in the BaF2 crystal. In addition, the rotation
angle can be modulated by varying the vortex phase topolog-
ical charge m. Compared to normal radially polarized beams,
radially polarized vortex beams carry OAM induced by the
vortex phase. For an optical field with a particular polarization
and phase structure, its AM can be divided into OAM and
SAM. In general, these two types of angular momentum are
independent and conserved in their own way. However, in
some anisotropic Kerr media, the conservation of these two
angular momenta is lost and the spin-orbit interaction occurs
[41,42]. To investigate the role of AM in this helical collapse,
the variation curves of OAM and SAM of radially polarized
vortex beams with different vortex phases propagating in a
BaF2 crystal are simulated at the same incident power, as
shown in Figs. 4 and 5.
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FIG. 3. Three-dimensional collapse diagram of radially polar-
ized vortex beams with different vortex phases propagating in a BaF2

crystal. The topological charges of the vortex phases are m = 0 (a),
m = 3 (b), and m = −3 (c). The orange circle reflects the rotation
during the optical field collapse. The units of the x axis and the y
axis are r0. The unit of the propagation distance ζ is the Rayleigh
distance.

When m = 0, the incident optical field carries no OAM
or SAM. The average SAM and the average OAM of the
optical field remain conserved as the propagation distance
increases, as shown in Figs. 4 and 5. When m �= 0, the incident
optical field carries the OAM caused by the vortex phase. As
the propagation distance increases, the average OAM and the
average SAM of the optical field are no longer conserved,
and spin-orbital coupling occurs. Among them, changes in
the average OAM are more apparent, as shown in Figs. 4 and
5. When m > 0, the optical field carries a positive OAM. As
the propagation distance increases, the absolute value of the

FIG. 4. The average OAM variation curve of radially polarized
vortex beams with different vortex phases propagating in a BaF2

crystal. The topological charges of the vortex phases are m = 0
(black with square curve), m = 1 (red with circle curve), m = −1
(pink with inverted triangle curve), m = 3 (blue with triangle curve),
and m = −3 (light blue with lozenge curve). The unit of the average
OAM is h̄.

FIG. 5. The average SAM variation curve of radially polarized
vortex beams with different vortex phases propagating in a BaF2

crystal. The topological charges of the vortex phases are m = 0
(black with square curve), m = 1 (red with circle curve), m = −1
(pink with inverted triangle curve), m = 3 (blue with triangle curve),
and m = −3 (light blue with lozenge curve). The unit of the average
SAM is h̄.

average OAM decreases. Similarly, when m < 0, the optical
field carries a negative OAM, and the absolute value of the
average OAM decreases with the propagation distance in-
creasing. As the absolute value of m increases, the absolute
value of the average OAM of the incident field will also in-
crease. Additionally, the decrease in the absolute value of the
average OAM during the collapse will also increase, as shown
in Fig. 4. On the other hand, although the average SAM is not
conserved, it will only fluctuate slightly with propagation, as
shown in Fig. 5. Thus, the average AM exhibits a decreasing
trend during the collapse. This reduction in AM may be ab-
sorbed by the medium when the optical field interacts with
it.

To summarize, in a BaF2 crystal, the helical collapse of
the radially polarized vortex beam is regulated by the OAM
carried by the incident field. The rotation direction is deter-
mined by the direction of the OAM, and the rotation angle is
determined by the magnitude of the OAM. Therefore, we can
control the rotation by adjusting the vortex phase topological
charge. With the spin-orbit coupling, the conservation of the
SAM and the OAM is lost, and the change of the OAM
becomes dominant. It is widely acknowledged that the phase
of the optical field is closely related to the OAM carried by the
optical field. Therefore, it is highly probable that changes in
the optical field OAM will be accompanied by changes in the
phase distribution. This section will further analyze the phase
change of radially polarized vortex beams in a BaF2 crystal at
the same incident power, as shown in Fig. 6.

When m = 0, as the propagation distance increases, the
phase distribution will gradually concentrate on the four col-
lapsed positions of the optical field, as shown in Fig. 6 (first
row). When m �= 0, as the propagation distance increases, the
phase distribution not only gradually concentrates on the four
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FIG. 6. The phase of radially polarized vortex beams with dif-
ferent vortex phases propagating in a BaF2 crystal. The topological
charges of the vortex phases are m = 0 (first row), m = ±1 (second
and fourth rows), and m = ±3 (third and fifth rows). Each row from
left to right corresponds to four sequentially increasing propagation
distances ζ . The white dotted lines reflect the change in rotation
angle. The color bar represents phase values in radians.

collapsed positions of the optical field but also rotates, as
shown in Fig. 6 (from second row to fifth row). If m > 0,
the optical field phase rotates counterclockwise, as shown in
Fig. 6 (second and third rows). If m < 0, the optical field
phase rotates clockwise, as shown in Fig. 6 (fourth and fifth
rows). For m = ±1, the optical field phase rotates by 20◦
during the whole collapse process, as shown in Fig. 6 (second
and fourth rows). For m = ±3, the optical field phase rotates
by 48◦ during the whole collapse process, as shown in Fig. 6
(third and fifth rows). The rotation angle during the whole
collapse process increases as the propagation distance and the
absolute value of m increases.

It is evident that an additional phase shift occurs during
the propagation. The rotating phase causes the optical field
to rotate almost synchronously with the phase during the
collapse. It is similar to the Gouy phase shift that occurs
when a focused beam passes through a focal point. The Gouy
phase shift of the radially polarized vortex vector optical field
described by Eq. (1) during propagation can be expressed as
follows [43,44],

W (m, ζ ) = (|m| + 1) arctan(ζ ). (7)

According to Eq. (7), the Gouy phase shift of radially
polarized vortex beams can be calculated. When the m of the

incident beam is ±1, the Gouy phase shift of the beam is
0◦, 6.2◦, 13◦, and 20.4◦ (correspondingly ζ is 0, 0.05, 0.11,
and 0.18 in turn), respectively. When the m of the incident
beam is ±3, the Gouy phase shift is 0◦, 17◦, 31◦, and 50◦
(Correspondingly ζ is 0, 0.07, 0.13, and 0.22 in turn), respec-
tively. Obviously, the angle calculated according to Eq. (7) is
consistent with the rotation angle of the intensity and phase
in Figs. 2 and 6 (fourth column). Thus, it can be obtained that
the radially polarized vortex beam does produce a Gouy phase
shift as it propagates in the BaF2 crystal.

IV. DISCUSSIONS

From the above analytical results, it can be concluded that
a radially polarized vortex beam propagating in a BaF2 crystal
will produce a Gouy phase shift that causes the beam to rotate
as it collapses. While the conventional Gouy phase shift is
generally produced by the beam in different linear focusing
systems [45–47]. In contrast, the Gouy phase shift in this
work occurs in a nonlinear anisotropic Kerr medium. What
is the reason for this special Gouy phase shift? When beams
pass through a thin sample of BaF2 along the [001] crystal-
lographic axis, a nonlinear refractive phase shift is generated
due to the nonlinear interaction of the optical field with the
medium [48]. The nonlinear refractive phase shift affects the
phase of the beam. Is the appearance of the Gouy phase shift
related to the nonlinear refractive phase shift? To illustrate the
physical mechanism behind this special Gouy phase shift, we
consider the nonlinear refractive phase shift produced by a
radially polarized vortex beam propagating in a thick BaF2

crystal. For the specific geometry of BaF2 crystals, the effec-
tive third-order nonlinear refractive index is expressed as [49]

neff (θ ) = n0
2[1 + 2σ (sin4 θ − sin2 θ )], (8)

where n0
2 is the third-order nonlinear refraction index related

to the real part of the third-order susceptibility tensor χ
(3)
1111,

and θ is the polarization angle of the beam with respect to the
[100] crystallographic axis. For a thin sample of BaF2 crystal,
the nonlinear refractive phase shift produced by the beam
passing through the crystal along the z axis can be expressed
as [48]

δ0 = kneff (θ )I0L, (9)

where I0 represents the intensity of the incident field, L repre-
sents the length of the thin sample, and k is the wave number
in a vacuum. When the optical field propagates in a BaF2

thick sample with the dimensionless normalized length M, the
crystal can be seen as a collection of N thin samples, each
of which has a dimensionless normalized length �ζ = M/N .
Therefore, the nonlinear refractive phase shift when the opti-
cal field passes through the N th thin sample can be expressed
as

δN = kneff (θ )IN−1�ζ, (10)

where IN−1 represents the light intensity after passing through
the (N − 1)th thin sample. Eventually, the nonlinear refractive
phase shifts created by the optical field whilst passing through
each thin sample are combined to determine the total nonlin-
ear refractive phase shift.
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FIG. 7. The nonlinear refractive phase shift distribution of radi-
ally polarized vortex beams with different vortex phases propagating
in a BaF2 crystal. The topological charges of the vortex phases are
m = 0 (first row), m = ±1 (second and fourth rows), and m = ±3
(third and fifth rows). Each row from left to right corresponds to four
sequentially increasing propagation distances ζ . The white dotted
lines reflect the change in rotation angle. The nonlinear refractive
phase shift is normalized to its maximum value in each row sepa-
rately. The color bar represents normalized nonlinear refractive phase
shift values.

We simulated the variation of the nonlinear refractive phase
shift distribution of a radially polarized vortex beam as it
propagates through the BaF2 crystal by means of Eq. (10),
as shown in Fig. 7. When m = 0, as the propagation distance
increases, the nonlinear refractive phase shift distribution will
gradually concentrate on the four collapsed positions of the
optical field, as shown in Fig. 7 (first row). When m �= 0,
as the propagation distance increases, the nonlinear refractive
phase shift distribution not only gradually concentrates on the
four collapsed positions of the optical field but also rotates,
as shown in Fig. 7 (from the second row to the fifth row). If
m > 0, the nonlinear refractive phase shift distribution rotates
counterclockwise, as shown in Fig. 7 (second and third rows).
If m < 0, the nonlinear refractive phase shift distribution ro-
tates clockwise, as shown in Fig. 7 (fourth and fifth rows).
For m = ±1, the nonlinear refractive phase shift distribution
rotates by 20◦ during the whole collapse process, as shown in
Fig. 7 (second and fourth rows). For m = ±3, the nonlinear
refractive phase shift distribution rotates by 48◦ during the
whole collapse process, as shown in Fig. 7 (third and fifth
rows). The rotation angle during the propagation increases

FIG. 8. The experimental prototype of radially polarized vor-
tex beams propagating in a BaF2 crystal. The laser is an 800-nm
femtosecond laser. VWP is a first-order vortex wave plate. L1 is a
focusing lens. L2 is an achromatic lens.

as the propagation distance and the absolute value of m in-
creases. It can be clearly seen that the change in the nonlinear
refractive phase shift distribution during the collapse is basi-
cally consistent with the change in phase and intensity. Thus,
the reason for the rotation of the phase during collapse is
explained.

To sum up, due to the nonlinear interaction of the radially
polarized vortex beam with the BaF2 crystal, the optical field
undergoes a kind of rotational nonlinear refractive phase shift
during collapse. This phenomena affects the phase during
propagation, causing a phase rotation in the optical field. Ul-
timately, the rotating phase leads to the rotation of the optical
field during the collapse. This phase rotation is a special Gouy
phase shift. It comes from the nonlinear interaction between
the vector vortex beam and the anisotropic Kerr medium.
Therefore, we consider the phase rotation of radially polarized
vortex beams in BaF2 crystals to be a nonlinearity-related
Gouy phase shift.

To facilitate the realization of such a controllable helical
collapse, we propose an experimental prototype, as shown
in Fig. 8. The experiment can be composed of three critical
sections: generation of radially polarized vortex beams, opti-
cal field collapse filamention in the medium, and detection of
helical collapse filamention. Initially, we make the horizontal
linearly polarized beam output from the 800-nm femtosecond
laser pass through a first-order vortex wave plate and a q-plate
successively. This process enables the generation of a radially
polarized vortex beam. In the second step, the generated radi-
ally polarized vortex beam is passed through a focusing lens
and positively incident along the [001] axis onto a 20-mm-
long BaF2 crystal. When the laser output power is greater than
the critical power, this optical field will collapse into filaments
in the crystal. Finally, the optical intensity pattern emitted
from the BaF2 crystal is collected by an achromatic lens and
imaged onto a high-resolution CCD. The device can adjust
the vortex phase of the radially polarized vortex beams by
selecting q-plates with different parameters and thus observe
the helical collapse in the BaF2 crystal. In order to observe
this nonlinearity-related Gouy phase shift more intuitively, an
interferometer can be used to measure the wave-front phase of
the beam before and after the filamentation.

V. CONCLUSIONS

In summary, this work presents a technique to rotate a
radially polarized beam as it collapses into stable multifila-
ment in a BaF2 crystal by attaching a vortex phase to it. We
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find a nonlinearity-related Gouy phase shift caused by the
nonlinear interaction between the vector vortex beams and the
anisotropic Kerr medium. It is shown that the nonlinear in-
teraction between this optical field and the medium causes the
spin-orbit coupling and produces a rotational nonlinear refrac-
tive phase shift. This rotational nonlinear refractive phase shift
affects the phase during the collapse, leading to a nonlinearity-
related Gouy phase shift. Finally, the phase rotation prompts
the rotation of the optical field. The rotation of the optical
field is determined by the OAM carried by the incident field.
The direction and angle of the rotation during collapse can be
controlled by adjusting the vortex potential phase topological

charge. In addition, we give a prototypical experimental
paradigm regarding the controllable helical collapse of optical
fields. This approach and its physical mechanism provide
new perspectives and methods for controlling optical field
collapse filamentation and have potential applications in many
fields.
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