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Despite its non-Hermitian nature, the optical beam shift exhibits real eigenvalues and nonorthogonal eigen-
states. To explore this unexpected similarity to typical PT (parity-time)-symmetric systems, we first categorize
the entire parametric regime of optical beam shifts into Hermitian, PT -unbroken, and PT -broken phases. Be-
sides experimentally unveiling the PT -broken regime, crucially, we illustrate that the observed PT transition is
rooted in the momentum-domain inhomogeneous polarization transformation of the beam. The correspondence
with a typical non-Hermitian photonic system is further established. Our work not only resolves a fundamental
issue in the field of optical beam shift but also puts forward the notion of non-Hermitian spin-orbit photonics: a
new direction to study non-Hermitian physics through optical beam shifts.
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I. INTRODUCTION

Optical beam shifts from dielectric interfaces have played
an important role in enriching our understanding of various
light-matter interactions [1], simulating and interpreting anal-
ogous physical phenomena [2,3], and also producing optical
devices for metrology and sensing [4]. There are different
platforms that exhibit such beam shifts starting from natu-
ral light-matter interactions [5], e.g., partial reflection (PR)
[5], total internal reflection (TIR) [5], transmission from an
interface [5], or through a tilted anisotropic medium [6,7]
to exotic metastructures [8]. The longitudinal shift is called
Goos-Hänchen (GH) shift [5] and originates from the disper-
sion of dynamical parameters, e.g., Fresnel coefficients [5] or
anisotropic transmission coefficients [6]. The transverse shift
is called Imbert-Fedorov (IF) shift or spin-Hall shift [5,9]. It is
associated with more intriguing physical phenomena involv-
ing the evolution of the geometric phase [5] and the spin-orbit
interaction of light [9].

These optical beam shifts are often described by shift
matrices [10,11], also known as the Artman operators [10],
whose eigenvalue corresponds to the magnitude of the beam
shifts [11]. In general, the shift matrices can be non-Hermitian
[10,11], and depending on the system parameters, these show
some peculiarities. For example, although for TIR the shift
matrix is Hermitian, as one goes from TIR to PR, interestingly,
the IF shift matrix changes its Hermiticity [5,10]. Moreover,
for PR, even though the shift matrix remains non-Hermitian,
the eigenvalues can still be real, identical to a PT (parity-
time) symmetric non-Hermitian system, which was previously
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alluded to in Ref. [11]. On the other hand, the non-Hermitian
GH shift matrix does not exhibit such a transition (see
Appendix A for details). Although the optical beam shifts
have been studied extensively for the last two decades
[2,5,6,9–13], such peculiar non-Hermitian nature and its ori-
gin remain largely unexplored. Moreover, the optical beam
shifts rooted in the straightforward diffractive corrections of
the beam [5] exhibiting such strong analogies with intricate
PT -symmetric non-Hermitian systems also demand a deeper
understanding of its origin. In this work, we address this issue
by taking an example of IF shift from reflection of a funda-
mental Gaussian beam. All the explanations and discussions
can be trivially extrapolated for all other polarization-
dependent beam shifts (e.g., GH shift) in different light-matter
interactions due to their common origin in the momen-
tum or position-domain polarization modulation of the beam
[5,8,10].

We first segregate the whole parametric regime into Her-
mitian, PT -unbroken, and PT -broken phases of IF shifts. We
then experimentally detect the momentum-domain eigenshifts
in the PT -broken regime, which was not explored earlier.
Next and more importantly, we find the origin of the discussed
non-Hermiticity in the momentum-domain polarization evo-
lution of the beam and demonstrate that the observed PT
transition [14–16] stems from the momentum-domain inho-
mogeneous polarization [17] modulation. This way, we not
only establish the previously indicated connection of PT
symmetry with optical beam shifts [11] but also lay down a
foundation to study the physics of PT symmetry in the realm
of optical beam shifts. Moreover, our calculation reveals that
such PT -symmetry physics and PT transition are not limited
to the IF shift operator; instead, it occurs for a similar inho-
mogeneous polarization element for all possible polarization
anisotropy effects.
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Note that the PT -symmetric system has recently found
great interest in various areas ranging from condensed matter
physics [18], optics [19–21], and photonics [22] to material
science and engineering [23], especially in the context of
non-Hermitian systems. Earlier, losses in physical systems
were perceived as undesirable, and measures were taken to
avoid them. This is where the alliance between PT symme-
try and non-Hermitian systems offers a great advantage in
using or, more so, tuning the loss for various applications
[24–26]. Here, we also develop a correspondence with a typi-
cal non-Hermitian photonic system, where equal and opposite
polarities of pristine spin-Hall shift mimic the two coupled
modes with linear polarization-dependent losses representing
the coupling. This way, we found that all the signatures of
a typical PT -symmetric system can be thoroughly adapted
to the optical beam shifts platform. More importantly, un-
like other photonic platforms [27], optical beam shifts offer
a relatively straightforward platform to model the physics
of PT -symmetric non-Hermitian systems through the partial
reflection of a Gaussian beam. Therefore, our study not only
tackles a fundamental issue in the field of optical beam shift
but also puts forward an effective prototype for investigating
typical non-Hermitian systems.

II. HERMITICITY OF IF SHIFT IN DIFFERENT
PARAMETRIC REGIMES

We start with the well-known shift matrix of the IF shift in
the reflection of a light beam with wave number k [10,11].

Ây = i
cot θ

k

(
0 (1 + rp/rs)

−(1 + rs/rp) 0

)
. (1)

Here, rp and rs are the Fresnel reflection coefficients [28]
for longitudinal (x̂) and transverse (ŷ) polarized incident
light, respectively, and θ is the angle of incidence. The shift
matrix acts as the Hamiltonian for the evolution of polar-
ization in the transverse momentum ky space, resulting in
the polarization-dependent IF shift [10]. The matrix Ây is, in
general, non-Hermitian with eigenvalues λ± and eigenstates
(right) |±〉 [11],

λ± = ± cot θ/k(
√

rp/rs + √
rs/rp), |±〉 ∼

( √
rp

±i
√

rs

)
. (2)

Importantly, when the polarization of the incident beam
matches with the |±〉, the magnitude of the IF shift, corre-
sponding to the eigenvalues, becomes the maximum. Note
that the real (imaginary) eigenvalues of Ây give rise to phase
(amplitude) gradient in ky, which manifests as shifts in y (ky)-
space, producing spatial (angular) beam deflections [10,11].
Now we examine the behavior of Ây, λ±, and |±〉 with chang-
ing system parameters rp, rs, and θ .

In the case of TIR (θ > the critical angle θc), the Fresnel
reflection coefficients consist of only phase factors rTIR

p =
eiδp, rTIR

s = eiδs , with δp − δs = δ [1]. In this case, ÂTIR
y

is Hermitian and takes the form − cot θ/k[(1 + cos δ)σ̂y +
sin δσ̂x], where σ̂i, i = x, y, z are the standard Pauli matrices
[12,29]. The eigenvalues are real λTIR

± = ±2 cot θ
k cos (δ/2),

indicating a spatial shift [Figs. 1(a) and 1(b)], and

FIG. 1. Schematic illustration of (a) transverse optical beam
shifts and (b) the nature of corresponding eigenvalues and eigen-
states in different experimental regimes. For TIR, i.e., θ > θc [blue
beams in (a)], the shift is spatial owing to the real eigenvalues of
the corresponding Hermitian shift matrix [blue-shaded area in (b)].
The corresponding eigenstates are elliptic and orthogonal (green
and yellow ellipses). For PR, the corresponding non-Hermitian shift
matrix has real eigenvalues for θ > θB and imaginary eigenval-
ues for θ < θB, manifested as spatial [magenta beams in (a)] and
momentum-domain shifts [red beams in (a)], respectively. For θ >

θB, the nonorthogonal eigenstates are elliptical and become orthogo-
nal circular at θ → 90◦ [magenta-shaded area in (b)]. For θ < θB,
the nonorthogonal eigenstates are linear and become orthogonal
±45◦ when θ → 0◦ [magenta-shaded area in (b)]. At θ → θB, the
eigenstates become collinear. The transition in the eigenspectrum
around θ = θB resembles a typical PT -transition, i.e., transition of a
non-Hermitian system from PT -unbroken to PT -broken phase.

corresponding eigenstates are elliptic and orthogonal |±〉TIR

∼ [eiδ/2 ± i]T .
However, peculiarity arises for PR as rPR

p and rPR
s are real,

and the corresponding shift matrix ÂPR
y is non-Hermitian,

ÂPR
y = cot θ

k

[
−

(
1 + rp/rs + rs/rp

2

)
σ̂y + i

rp/rs − rs/rp

2
σ̂x

]
.

(3)

Interestingly, Eq. (2) suggests that the eigenvalues and eigen-
sates of ÂPR

y undergo a transition around θ = Brewster’s angle
θB [corresponding to rPR

p = 0 for a nonmagnetic dielectric
interface, e.g., an air-glass interface in Fig. 2(a)] [1,28]. Al-
though ÂPR

y is non-Hermitian, at an angle of incidence θ > θB

(rPR
p < 0), the eigenvalues are still real; however, the cor-

responding eigenstates are nonorthogonal elliptical [11]. On
the other hand, at θ < θB (rPR

p > 0), the eigenvalues become
imaginary, manifested as a momentum-domain beam shift,
and the nonorthogonal eigenstates become linear [Figs. 1(a)
and 1(b)]. This change from imaginary to real eigenvalues es-
sentially resembles a typical PT transition in a non-Hermitian
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FIG. 2. Experimental detection of momentum-domain giant eigenshifts and extraction of the imaginary eigenvalues at θ < θB. (a) Experi-
mental setup. The laser beam from a He-Ne laser source (633 nm) is partially reflected from a glass prism of refractive index ∼1.5. The focal
length of the first lens, L1, is used to tune the spot size of the incident beam to get further control over the magnitude of the momentum-domain
eigenshift. The second lens, L2 (focal length 100 mm), is used as a Fourier lens to implement a conventional 2 − f momentum-space imaging
system [30]. (b) Variation of the experimentally observed momentum-domain transverse shift with varying angle of the polarization of the input
beam for two representative θ = 54◦ (green solid line) and 56◦ (blue solid line). When the input polarization matches with the left eigenstates
|−〉 (yellow shaded region) and |+〉 (green shaded region) of APR

y , we get giant shifts, as presented in (c) for θ = 56◦. Color bars are intensities
in arbitrary units. White scalebar represents a momentum-domain length of ∼0.24 µm−1. (d) The theoretically calculated left eigenstates match
well with experimentally determined [from the orientation of the polarizer (P) and half wave plate (HWP)] input polarization state. The states
are represented in standard x-y Cartesian space. (e) Variation of the momentum-domain eigenshifts with changing angle of incidence for two
different focal lengths of L1: 250 mm (black squares) and 75 mm (black circles). Error bars indicate statistical errors. The color code follows
that of Fig. 1. (f) The variation of retrieved eigenvalues (from a larger data set of eigenshifts) with changing angle of incidence for 75 mm focal
length of L1 are in agreement with theoretical prediction [Eq. (2)].

system around an “exceptional point” [11,14–16]. This was
partly alluded to by Götte and colleagues [11]. Therefore, the
demonstration of such transformations in the eigenspectrum
of the IF shift matrix in PR mimicking a PT transition appear
to be the first outcome of the present study [Figs. 1(a) and
1(b)]. More importantly, this work reveals the origin of all
these transformations, starting from TIR to PR, as we discuss
in Sec. IV.

III. EXPERIMENTAL DETECTION
OF MOMENTUM-DOMAIN IF SHIFT

FOR PARTIAL REFLECTION

Although the spatial shift at θ > θB has been detected in
Ref. [11], the momentum-domain shifts at θ < θB are still
unexplored. We first experimentally detect these shifts. Note
that the typical magnitudes of the eigenvalues of ÂPR

y are
small. However, the eigenvalues can directly be measured
around singular points, e.g., Brewster’s angle, where the mag-
nitude of the eigenvalues becomes large [2,11]. A fundamental
Gaussian beam from a 633-nm He-Ne Laser is partially re-

flected from a glass prism [Fig. 2(a)]. To generate the desired
linear eigenstates |±〉 in the incident beam, we put a polar-
izer (P)–half wave plate (HWP) combination [Fig. 2(a)]. Two
different focal lengths of L1, 250 mm and 75 mm, are used to
tune the spot size of the incident beam and get further control
over the magnitude of the momentum-domain eigenshift (see
Materials and Methods). The second lens, L2 (focal length
100 mm), is used as a Fourier lens to image the momen-
tum space of the prism plane into the camera. When the
input polarization state, by tuning P and HWP, matches with
the left eigenstates of ÂPR

y (see Materials and Methods),
the momentum-domain shifts become giant [Figs. 2(b) and
2(c)]. The difference in the centroid positions in the mo-
mentum domain of the reflected beam for two eigenstates
|±〉, i.e., eigenshifts [7], are plotted with changing angle of
incidence in Fig. 2(e). Due to the increasing magnitude of
the imaginary eigenvalues, the momentum-domain eigenshift
increases around Brewster’s angle [11,31]. As also evident
from Fig. 2(e), the eigenshifts increase significantly with
reducing the focal lengths of L1, which is a signature of
momentum-domain beam shifts [5,13]. Ideally, the eigenshifts
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should be maximum at θ = θB and fall to zero above θB, as
the eigenstates are no longer linear in that region. However,
in the experimental situation, although the magnitude of such
eigenshifts falls rapidly at θ > θB, there is still some apprecia-
ble amount of momentum-domain shift. This happens because
the incident beam also has a momentum distribution in the
longitudinal direction (kx). Due to this spread, there is always
some part of the beam that gets incident at θ < θB even though
the central wave vector of the beam falls at θ > θB. This
gives rise to a momentum-domain eigenshift even at θ > θB.
The longitudinal spread reduces significantly for the 250-mm
focal length of L1. Therefore, the magnitude of the angular
eigenshift falls more quickly at θ > θB in this case; however,
the magnitudes of the eigenshifts, in this case, are lower.

The momentum-domain eigenshift � and the magnitude
of the eigenvalue λ [see Eq. (2)] are connected through the
following relation [7]:

|λ| = πw2
0

2ξ f
�. (4)

Here, w0 is the beam waist at focus of L1 on the air-prism
interface, ξ is the wavelength of the incident light, and f is
the focal length of the Fourier lens, i.e., f = 100 mm. Equa-
tion (4) is used to retrieve the eigenvalues from experimentally
detected eigenshifts � in Fig. 2(f). The retrieved eigenvalues
agree with the theoretical predictions as noted in Eq. (2) [see
Fig. 2(f)]. Error-prone estimation of w0 [quadratic presence in
Eq. (4)] is the cause of the slight mismatch between experi-
mentally retrieved eigenvalues and corresponding theoretical
prediction in Eq. (2).

IV. ORIGIN OF ALL THE PECULIARITIES IN THE
HERMITICITY OF IF SHIFT

The beam shifts have their origin in the correspond-
ing momentum-domain polarization modulation of the beam
[5,10]. The transverse IF shift, specifically, originates from
the polarization distribution along the transverse component
of momentum (ky) in the beam [5], and therefore we consider
a polarized one-dimensional (1D) Gaussian beam consisting
only of ky. The momentum-space evolution of such a vector
beam after TIR or PR is governed by a momentum-domain
Jones matrix Ĵ (ky). While Ây provides the information of
these polarization-dependent beam shifts, the corresponding
Ĵ (ky) consists of all the information of the momentum-domain
polarization transformation of the beam exhibiting beam shift.
In fact, the shift matrix is conventionally derived from this
momentum-domain Jones matrix Ĵ (ky) [10,11], i.e.,

(
rp

−ky cot θ
k (rp + rs)

ky cot θ
k (rp + rs) rs

)
∼ e−ikyÂy

(
rp 0
0 rs

)
.

(5)

Here, (rp 0
0 rs

) is the zeroth-order Fresnel reflection matrix
[10,11], and the diffractive corrections of the beam lead to the
correction term Ĵc(ky) = e−ikyÂy responsible for the beam shift.
The real and imaginary eigenvalues of Ây, therefore, result in
the spatial and angular shift of the beam, respectively [11].

Note that Ây acts as the corresponding differential Jones
matrix of Ĵc(ky) [32,33]. Although the conventional Jones
algebra has been extensively used in polarization optics [28],
its differential formalism is less noticed [32]. However, differ-
ential Jones matrix formalism is quite profound, particularly
due to its structural analogy with Schrödinger’s formalism of
quantum mechanics [29,32].

The eigenvalues of Ĵc(ky) are

	± = e−iky (±λ), with eigenstates|±〉. (6)

It is well known that the phase and amplitude eigenvalues
of a Jones matrix are associated with polarization retar-
dance (unitary) and diattenuation (nonunitary) effect [28].
Moreover, it is apparent from Eqs. (2) and (6) that the
ky-dependent phase and amplitude eigenvalues of Ĵc(ky) cor-
respond to the real and imaginary eigenvalues of Ây. The
eigenstates of both Ây and Ĵc(ky) are also the same. Hence,
real and imaginary eigenvalues of Ây are manifestations of
momentum-domain polarization retardance [phase eigenval-
ues of Ĵc(ky)7 and diattenuation [amplitude eigenvalues of
Ĵc(ky)] effects, respectively. This one-to-one correspondence
between the eigenspectrums of Ĵc(ky) and Ây allows us to use
the polarization property of Ĵc(ky) to understand the physical
origin of all the transformations in the eigenspectrum Ây.

For TIR, the Jones matrix ĴTIR
c (ky) indicates a simulta-

neous presence of two unitary systems—circular and ±45◦
linear retarder [32,33] in the momentum domain of the beam
[Fig. 3(a)]; ĴTIR

c (ky) [see Appendix B] is, therefore, unitary
and has phase eigenvalues 	TIR

± = e−iky (±λTIR ) with orthogonal
elliptic eigenvectors |±〉TIR. The corresponding shift matrix
ÂTIR

y is therefore Hermitian, having real eigenvalues ±λTIR.
On the contrary, the shift matrix for partial reflection ÂPR

y
is non-Hermitian, and can be written as an imaginary combi-
nation of σ̂y and σ̂x, as mentioned earlier. iσ̂x is the differential
matrix for a ±45◦ linear diattenuator (nonunitary) [32,33].
Such a simultaneous presence of circular(linear) retarder and
linear(circular) diattenuater mimics an inhomogeneous polar-
ization anisotropy element [17] (see Appendix C for details)
in the momentum (ky) domain. Note that nonorthogonal eigen-
states (like |±〉) are one of the signatures of inhomogeneous
polarization elements [17]. Now we discuss how an inho-
mogeneous polarization element with the differential matrix
aσ̂y + ibσ̂x (a, b are real) behaves under different conditions
on the relative magnitude of a and b.

(1) It acts as a diattenuating retarder at a2 > b2 (see
Appendix B), where the retardance effect dominates. Even
though the differential matrix is non-Hermitian and the cor-
responding exponential Jones matrix is nonunitary [32,33], it
still has phase eigenvalues. The corresponding eigenstates are
nonorthogonal elliptic [Fig. 3(a)].

(2) At a2 < b2, however, the Jones matrix has amplitude
eigenvalues, and eigenstates become nonorthogonal linear
(see Appendix B). Amplitude eigenvalues indicate that the
system converts into a retarding diattenuater [Fig. 3(a)]
[32,33]. In this case, the diattenuation dominates.

(3) At a2 = b2, the diattenuation and retardance ef-
fects contribute equally and give rise to the maximally
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FIG. 3. Momentum-domain polarization transformation is the origin of the discussed characteristics of the eigenspectrum [noted in
Fig. 1(b)] of transverse optical beam shift. (a) For TIR, the system acts as a momentum-domain elliptic retarder. In PR, the system acts as a
momentum-domain inhomogeneous polarization element, transforming from diattenuating retarder to retarding diattenuator around θ = θB.
The eigenstates of all the mentioned momentum-domain polarization elements are the same as the corresponding beam shift operator [see
Fig. 1(b) and Eq. (6)]. (b) Variation of the degree of polarization inhomogeneity for partial reflection of a beam from an air-glass (refractive
index = 1.5) interface. Brewster’s angle (θ = θB = 56.31◦) corresponds to the maximum degree of inhomogeneity. The color code follows
that of Fig. 1.

inhomogeneous polarization element where the eigenstates of
the corresponding Jones matrix become collinear [Fig. 3(a)].

Additionally, we observe that such a transition in the eigen-
spectrum of the Jones matrix is general for an inhomogeneous
polarization element with simultaneous retardance and diat-
tenuation (moreover, for an imaginary combination of Pauli
matrices; Appendix D).

As mentioned above, the IF shift in partial reflection is a
natural manifestation of such an inhomogeneous polarization
anisotropy element in the momentum domain. At an angle of
incidence θ > θB, ĴPR

c (ky) (see Appendix B) has phase eigen-
values resulting in real eigenvalues of ÂPR

y with nonorthogonal
elliptic eigenstates |±〉PR [Eq. (6)]. Therefore, the spatial
IF shift in partial reflection for θ > θB (equivalent to Case
1 above) manifests a momentum-domain elliptic diattenuat-
ing retarder [Fig. 3(a)]. For θ < θB, ĴPR

c (ky) has amplitude
eigenvalues resulting in imaginary eigenvalues of ÂPR

y with
nonorthogonal linear eigenstates [Eq. (6), see Appendix B].
Therefore, the spatial IF shift in partial reflection for θ < θB

(Case 2) is the manifestation of the momentum-domain ellip-
tic retarding diattenuator. At θ = θB (Case 3), the eigenstates
become collinear, manifesting the maximum degree of inho-
mogeneity [17]. The variation of the degree of inhomogeneity
1 − |rPR

p /rPR
s | (see Appendix C) with changing the angle of

incidence is plotted in Fig. 3(b). The momentum-domain po-
larization transformation becomes maximally inhomogeneous
when θ → θB and acts as a homogeneous polarization ele-
ment when θ → 0◦, 90◦. Therefore, it can be concluded that
such transition in the eigenspectrum of the transverse IF shift
matrix is a manifestation of the corresponding momentum-
domain inhomogeneous polarization transformation.

Note that all such polarization-dependent optical beam
shifts are essentially rooted in the momentum or space-
domain polarization transformation of the beam [5,8,10].
We considered the IF shift in one of the simplest light-
matter interactions, i.e., partial reflection of a fundamen-
tal Gaussian beam. However, all the above-mentioned

discussions can be trivially extrapolated for all other complex
situations.

V. PT -UNBROKEN AND PT -BROKEN PHASES
OF IF SHIFT

The Jones matrix ĴPR
c (ky) = e−ikyÂPR

y denotes a ky evo-
lution of the input polarization state with ÂPR

y being the
corresponding evolution Hamiltonian. Such a non-Hermitian
Hamiltonian (aσ̂y + ibσ̂x) in the form of a complex combina-
tion of different Pauli matrices are, in general, PT symmetric
[11,34,35] (see Appendix E). At a2 > b2, this Hamiltonian
is in the PT -symmetric phase and has real eigenvalues
[14–16,27]. This situation corresponds to θ > θB in the case
of ÂPR

y . On the other hand, a2 < b2 is the corresponding PT -
broken phase where eigenvalues are imaginary [14–16,27].
In the case of ÂPR

y , this situation arises at θ < θB. There-
fore, the transition from PT -symmetric to PT -broken phase
appears at a2 = b2, corresponding to θ → θB for ÂPR

y . A
general diattenuator-retarder inhomogeneous polarization ele-
ment and transverse IF shifts both exhibit such PT transition,
as both the systems are represented by similar imaginary
combinations of Pauli matrices (see Appendixes D and E).
We further note that the shift matrix ÂPR

y [Eq. (3)], in circular
basis, i.e., in the eigenbasis of σ̂y, holds a similar form to a
conventional PT -symmetric Hamiltonian of photonic modes
[14–16,27],

ÂPR
y = aσ̂z + ibσ̂y. (7)

As apparent from the structure of ÂPR
y in Eq. (7), the equal

and opposite polarities of pristine spin-Hall shift ±a with
left and right circular polarization eigenstates mimic the two
coupled systems. b, comprising linear polarization-dependent
losses (the unequal magnitude of rPR

p and rPR
s during partial

reflection) in the momentum domain, provides the coupling
between the two spin-Hall modes. This hybridization leads to
new sets of eigenvectors, i.e., generally elliptical polarization
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states, which may not be orthogonal. Thus, the parameter
b can be identified as the coupling coefficient in the usual
scenario of resonant systems having gain and loss [14–16,27].
At rPR

p = rPR
s (θ → 90◦), the shifts become purely spin-Hall

analogous to an uncoupled resonant system with real eigen-
value. This is also consistent with the physical origin of
the spin-Hall shift [5]. The spin-Hall shift originates from
the equal and opposite magnitude of the momentum-domain
geometric phase gradient for input left and right circular
polarization [5]. Linear polarization-dependent reflectivities,
i.e., rPR

p and rPR
s , generate an asymmetry of geometric phase

gradient between circular polarization states [5]. It is appar-
ent that when the coupling is small (a2 > b2), although the
eigenstates become nonorthogonal, the pristine spin-Hall sys-
tem dominates and gives real eigenvalues. However, at a2 <

b2, the coupling dominates, providing imaginary eigenvalues.
Although the transition from real to imaginary eigenvalues
happens around Brewster’s angle (a2 = b2) at the same time,
one cannot go arbitrarily close to such a singular point, i.e.,
rPR

p = 0 (in our system), as the exponentiation of ÂPR
y cannot

be done there [Eq. (5)]. However, it should be noted that
in practice, the magnitude of the beam shift at θ = θB takes
finite value [31], as also apparent from Fig. 2(e). Therefore,
the richer physics of the non-Hermitian systems is built in a
simple partial reflection of a Gaussian beam.

VI. DISCUSSION: NON-HERMITIAN
SPIN-ORBIT PHOTONICS

We demonstrate that the observed PT transition, and con-
sequently the existence of real eigenvalues, in non-Hermitian
IF shift originates from the momentum-domain inhomoge-
neous polarization transformation of the beam. We character-
ize the entire parameter space of the IF shift by demarcating
the Hermitian, PT -unbroken, and PT -broken regimes. We
probe the previously unexplored PT -broken regime of the
IF shift by experimentally detecting the momentum-domain
giant eigenshifts. More importantly, the description involving
momentum-domain inhomogeneous polarization transforma-
tion can be generalized to all such polarization-dependent
beam shifts occurring in different light-matter interactions.
Although this work encompasses the fundamental physics
of PT symmetry in optical beam shifts, there remain gaps
that invite further investigation. Specifically, the connection
between Brewster’s angle and exceptional points is not firmly
established, as our model cannot approach Brewster’s angle
arbitrarily closely. Consequently, a comprehensive theoretical
model could be developed in the future to integrate the intrigu-
ing physics of exceptional points into the relatively simple
platforms of optical beam shifts.

Besides resolving the above-mentioned fundamental is-
sue of non-Hermitan optical beam shifts, the present study
yields some important consequences, as mentioned below.
The IF shift matrix and the differential matrix of inho-
mogeneous polarization elements are both modeled through
similar imaginary combinations of Pauli matrices that in-
corporate non-Hermitian physics and exhibit PT transition.
In the context of the former, the momentum-domain polar-
ization modulation, described by Ĵc(ky), is generally related
to the geometric phase evolution and spin-orbit interaction

of light already demonstrated in a wide variety of optical
systems and metamaterials [5,6,36–38]. However, in deal-
ing with such spin-orbit effects, the polarization-dependent
losses are usually ignored. Yet in practice, such losses are
inherent, which make the system non-Hermitian [5,6,36–38].
Our study provides a framework for designing controllable
non-Hermitian spin-orbit optical materials by including and,
moreover, tailoring such polarization-dependent losses. The
latter indicates that PT -symmetric non-Hermitian systems
can be constructed using regular polarization optical elements
(anisotropic materials) by suitably mixing the diattenuation
(polarization-dependent losses) and retardance (polarization-
dependent phase modifications) effects [17,39]. Hence, this
work presents substantial fundamental advancement in under-
standing optical beam shift, opens up new directions in the
study of non-Hermitian systems, and provides simple plat-
forms of optical beam shifts to realize and investigate inherent
physics.

VII. MATERIALS AND METHODS

Experimental detection of momentum-domain eigenshifts

We experimentally detect the momentum-domain eigen-
shifts corresponding to the imaginary eigenvalue of APR

y . We
put a Glan-Thompson polarizer P (GTH10M-A, ThorLabs,
USA), half wave plate HWP (WPH10M-633, Thorlabs, USA)
combination [Fig. 2(a)] fixed at a motorized precision rotation
mount (KPRM1E/M, Thorlabs, USA) to generate the desired
eigenstates in the incident light. The glass prism is mounted
on a precision rotation base (HDR50/M, ThorLabs, USA)
to precisely control the angle of incidence. Since Ây is a
non-Hermitian matrix, one can distinguish between its right
and left eigenstates. The right and the left eigenstates are

(
√

rp

±i
√

rs
) and (

√
rs

±i
√

rp
), respectively. To get the right eigenstate

as input polarization, we have to prepare the left eigenstate
using P and HWP combinations [7,11]. For 250 mm focal
length (LB1056, Thorlabs, USA), we get a bigger beam waist
at focus; for 75 mm focal length (LB1901, Thorlabs, USA),
we get a smaller spot size [5]. It is evident from the previous
literature [40] that the bigger the beam waist of the incident
beam, the smaller the momentum-domain (angular) shift. It
is also evident from our experimental results [Fig. 2(e)] that
the eigenshifts increase significantly with reducing the focal
length of L1.
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APPENDIX A: NON-HERMITIAN LONGITUDINAL
GOOS-HÄNCHEN OPTICAL BEAM SHIFT OPERATOR

The longitudinal optical beam shift operator

(
−i

∂ ln rp
∂θi

0

0 −i ∂ ln rs
∂θi

) is Hermitian for total internal reflection

(TIR) and non-Hermitian for partial reflection (PR). Similar
to Imbert-Fedorov (IF) shift matrix, this non-Hermitian
nature can also be understood through the corresponding
momentum-domain polarization transformation of the
reflected beam [10,11]. While partially reflecting from
an interface, different longitudinal wave vectors (kx) of the
incident beam experience different angles of incidence,
and therefore, different Fresnel reflection coefficient [5].

Due to this dispersion of longitudinal wave vectors,
the beam experiences a momentum-domain polarization
transformation [5,10,11]. In the case of TIR, the Fresnel
coefficients appear essentially as phase factors [41],
and therefore, the polarization modulation becomes a
momentum-domain linear retarder. Hence, the corresponding
shift matrix is Hermitian with real eigenvalues. On the
other hand, for PR, Fresnel coefficients are real and
the corresponding polarization modulation becomes a
momentum-domain linear diattenuator. The shift matrix,
in this case, becomes non-Hermitian with imaginary
eigenvalues. The eigenstates of the shift matrix, for TIR
[12] and PR, remain orthogonal horizontal and vertical linear
polarizations.

APPENDIX B: THE FORM OF Ĵc(ky) IN TOTAL INTERNAL REFLECTION AND PARTIAL REFLECTION

For TIR,

ĴTIR
c (ky) =

⎛
⎝ cos

( 2ky cot θ
k cos δ/2

) (eiδ+1)√
2(1+cos δ)

sin
( 2ky cot θ

k cos δ/2
)

− (eiδ+1)√
2(1+cos δ)

sin
( 2ky cot θ

k cos δ/2
)

cos
( 2ky cot θ

k cos δ/2
)

⎞
⎠. (B1)

All the parameters in Eq. (B1) are defined in the main text. Straightforward calculation shows that the eigenvalues and eigenstates

of ĴTIR
c (ky), respectively, are 	TIR

± = e∓2i
ky cot θ

k cos (δ/2), |±〉TIR ∼ [eiδ/2 ± i]T .
For PR, at θ > θB,

ĴPR
c (ky) =

⎛
⎜⎝ cos

[ ky cot θ
k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)] √∣∣ rp

rs

∣∣ sin
[ cot kyθ

k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)]
−

√∣∣ rs
rp

∣∣ sin
[ ky cot θ

k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)] cos
[ ky cot θ

k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)]
⎞
⎟⎠. (B2)

The eigenvalues and eigenstates, in this case, are 	± = e∓iky cot θ/k(
√

|rp/rs|+
√

|rs/rp|), |±〉 ∼ [
√|rp| ± i

√|rs|]T .
For partial reflection, at θ < θB,

ĴPR
c (ky) =

⎛
⎜⎝ cosh

[ ky cot θ
k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)] −
√∣∣ rp

rs

∣∣ sinh
[ cot kyθ

k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)]√∣∣ rs
rp

∣∣ sinh
[ ky cot θ

k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)] cosh
[ ky cot θ

k

(√∣∣ rp

rs

∣∣ +
√∣∣ rs

rp

∣∣)]
⎞
⎟⎠. (B3)

The eigenvalues and eigenstates, in this case, are 	± = e±ky cot θ/k(
√

|rp/rs|+
√

|rs/rp|), |±〉 ∼ [
√|rp| ± √|rs|]T .

APPENDIX C: INHOMOGENEOUS POLARIZATION
ELEMENTS

Polarization elements are usually characterized by the
associated polarization anisotropy effects, e.g., linear and
circular diattenuation and birefringence [28]. Regular ideal
polarization elements, such as polarizers or wave plates,
possess single polarization anisotropy effect, i.e., linear di-
attenuation or retardance, respectively [28]. However, most
of the naturally evolving materials come with the simulta-
neous presence of multiple polarization anisotropy effects
[28,39,42–44]. Inhomogeneous polarization elements are
those having (a) simultaneous diattenuation and retardance
effects (diattenuator-retarder) or (b) different diattenuation
effects (diattenuator-diattenuator) with their axes not paral-
lel or perpendicular [17]. In the present study, we limit our
discussions only to the diattenuator-retarder inhomogeneous
polarization elements only. We consider all possible com-
binations of such inhomogeneous polarization elements as
follows: (1) circular retarder and ±45◦ linear diattenuator, (2)

circular retarder and horizontal-vertical linear diattenuator, (3)
horizontal-vertical linear retarder and ±45◦ linear diattenua-
tor, and (4) ±45◦ linear retarder and circular diattenuator.

Such inhomogeneous polarization elements are described
by the corresponding differential matrices [32], respectively,
listed in the first column of Fig. 4. Note that there are two
other similar inhomogeneous polarization elements, i.e., si-
multaneous ±45◦ linear retarder and horizontal-vertical linear
diattenuator, and horizontal-vertical linear retarder and circu-
lar diattenuator, which are similar to, respectively, Case 3 and
Case 4 above; therefore, their characteristics can be extrapo-
lated from Case 3 and Case 4. The magnitude of retardance is
a, and diattenuation is b for all the cases. The corresponding
exponential matrices [32,33] are the regular Jones matrices for
those inhomogeneous polarization elements.

Unlike homogeneous polarization elements, the eigen-
states of the Jones matrices of inhomogeneous polarization
elements are nonorthogonal. And, the degree of inhomogene-
ity is conventionally described by the overlap between two
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FIG. 4. Phase transition in the eigenvalue spectrum of the Jones matrix of general diattenuator-retarder inhomogeneous polarization
elements. The exponential Jones matrices have phase eigenvalues at a2 > b2, demonstrating a typical diattenuating-retarder inhomogeneous
polarization element. On the other hand, they transform to amplitude eigenvalues at a2 < b2 as the system acts as retarding diattenuator there.
The eigenstates tend to be collinear at a2 → b2.

eigenstates [17]. Maximum inhomogeneity appears when two
eigenstates become parallel (at a2 → b2), and the overlap
becomes unity. In this limit, the magnitude of diattenuation
tends to become equal to the magnitude of retardance.

In our case of partial reflection, the shift matrix resembles
the differential matrix of an inhomogeneous polarization ele-
ment consisting of a simultaneous circular retarder and ±45◦

linear diattenuator. The corresponding momentum-domain
Jones matrix ĴPR

c (ky) also has nonorthogonal eigenstates. The
overlap of the eigenstates, in our case, is 1 − |rPR

p /rPR
s |, which

reaches unity at θ → θB, indicating the maximum degree of
inhomogeneity.

APPENDIX D: TRANSITION IN THE EIGENSPECTRUM
OF A GENERAL DIATTENUATOR-RETARDER

INHOMOGENEOUS POLARIZATION ELEMENT

As discussed in the main text, the shift matrix APR
y is a

complex combination of a circular retarder and a ±45◦ linear
diattenuator. In such an inhomogeneous polarization element,
the eigenvalues and eigenstates of the corresponding Jones
matrix exhibit a phase transition around a2 → b2 (see Fig. 4).
In a similar manner, we examine the outcomes of all such
possible complex combinations of retarder and diattenuator
matrices. The Jones matrices, eigenvalues, and eigenstates are
noted for all such combinations in Fig. 4.
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FIG. 5. PT -unbroken and broken phase for general diattenuator-retarder inhomogeneous polarization elements. The forms of the differ-
ential matrices of the polarization elements and corresponding parity (P) operators are listed in the first and second columns, respectively
[11,27,34,35]. Eigenvalues of the differential matrices real at a2 > b2 and corresponding eigenstates are the eigenstates of the PT operator.
This regime is the PT -unbroken phase. At a2 < b2, the eigenvalues become imaginary, and the eigenstates are not the eigenstates of the PT
operator, indicating the PT -broken phase. The eigenvalues coalesce to zero at a2 → b2, and corresponding eigenstates become parallel. Thus,
a2 = b2 acts as an exceptional point.

APPENDIX E: PT SYMMETRY IN Ây FOR PARTIAL
REFLECTION

As discussed in the main text, the transverse optical
shift matrix for partial reflection ÂPR

y is non-Hermitian.
This non-Hermitian matrix is parity-time (PT ) symmetric
[11,27,34,35]. The P operator, in this case, is the third Pauli
matrix σ̂z. On the other hand, the T operator is just a complex
conjugation [14,16]. At θ > θB, the eigenvalues of ÂPR

y are
real, and corresponding elliptical eigenstates are the eigen-
states of the PT operator. Therefore, θ > θB is the regime
for the PT -unbroken phase. On the contrary, at θ < θB, the
eigenvalues are imaginary, and corresponding linear eigen-
states are not the eigenstates of the PT operator, indicating
the PT -broken phase.

Note that ÂPR
y resembles the differential Jones matrix for

the circular retarder-±45◦ linear diattenuator inhomogeneous
polarization element (see Appendix C). The differential ma-
trices of all other inhomogeneous polarization elements are
also PT symmetric with the P operators listed in Fig. 5 and
the T operator to complex conjugation [15]. In all the cases,

eigenvalues of the differential matrices are real at a2 > b2

and corresponding eigenstates are the eigenstates of the PT
operator. This regime is the PT -unbroken phase. At a2 < b2,
the eigenvalues become imaginary, and the eigenstates are not
the eigenstates of the PT operator, indicating the PT -broken
phase. The eigenvalues coalesce to zero at a2 → b2, and cor-
responding eigenstates become parallel. Thus, the maximum
inhomogeneity situation a2 = b2 acts as an exceptional point
(see Appendix D).

As mentioned earlier, similar transitions also happen
around θ → θB in the case of partial reflection. The degree
of inhomogeneity in the corresponding momentum-domain
Jones matrix ĴPR

c (ky) goes maximum [see Fig. 3(b) of the
main text]. The eigenstates of ÂPR

y also tend to coalesce; how-
ever, the eigenvalues tend to diverge. This happens because
the form of ÂPR

y does not allow us to write it as an imagi-
nary combination of σ̂x and σ̂y, and moreover, the first-order
approximation to describe the beam shifts becomes invalid,
and consequently, the eigenspectrum of ÂPR

y encounters a
singularity.
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