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Spatial confinement of atomic excitation by composite pulses in a doped solid
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We experimentally demonstrate spatial confinement of atomic excitation by narrow-band composite pulse
(NCP) sequences in a rare-earth ion-doped Pr3+:Y2SiO5 crystal. The experimental data confirm that NCP
sequences localize excitation far below the diameter of the driving laser pulse, with potential to proceed
below the diffraction limit. We reach significant improvement of the spatial confinement compared to previous
implementations. To this end, we derive several new classes of composite pulses that significantly outperform
previously known sequences for the objectives of this study. In particular, the new NCP sequences are applicable
also in inhomogeneously broadened ensembles, where most conventional composite pulse sequences fail. We
systematically investigate the performance of the different classes of sequences and compare the results with
numerical simulations, which agree very well with our experimental data. The findings serve as a step towards
novel applications of composite pulse sequences to precisely prepare and manipulate excitation patterns in space,
e.g., in quantum technology to address qubits with large spatial resolution.
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I. INTRODUCTION

The spatial resolution of optical interactions is typically
limited by the diameter of the driving laser beams in the
interaction region, which in turn is limited by diffraction to
about half the wavelength. Overcoming this diffraction limit
is of relevance for a large range of applications, e.g., in
high-resolution microscopy [1–6], nanolithography [7–11], or
quantum technology, where confined atomic excitation en-
ables, e.g., single-site addressing of tightly spaced qubits in an
ion trap or optical lattice to increase the qubit interaction for
quantum computations [12–17], selective addressing of single
emitters from a large ensemble as isolated qubits [18–20],
increasing the storage capacity of a quantum memory [21,22],
the generation of narrow waveguide-like excitation structures
in crystals to enhance light-matter interaction for quantum
information processing [23], or patterning of Bose-Einstein
condensates [11,24]. Finally, also investigations of funda-
mental quantum physics, e.g., the measurement of the wave
function of individual or ensembles of atoms, at resolutions
below the diffraction limit become possible [25–28].

This large potential for applications led to the develop-
ment of a variety of approaches to overcome the diffraction
limit. The best known is probably stimulated emission deple-
tion (STED) microscopy [2]. However, STED (and related
techniques) rely purely on incoherent interactions. This is
an obstacle for applications which require maintenance of
coherence as, e.g., in quantum information technology. Thus,
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in the recent three decades techniques based on coherent
light-matter interactions were considered for “subwavelength
localization.” Early examples of these schemes made use of
spatially varying potentials, but most proposals and imple-
mentations utilize spatially selective interaction with two or
more laser fields (see [29] and references therein, or recent
work on localization by stimulated Raman adiabatic passage
[11,22] and references therein).

Recently, also composite pulse (CP) sequences were in-
vestigated to overcome the diffraction limit. CP sequences
[30–32] are well known in NMR spectroscopy [30,31] and
applied optics [33,34], but in the last decade also attracted
attention for quantum information processing [32,35,36]. CPs
are a series of pulses with their phases as control parameters,
which drive a two-level quantum system on specific pathways
through Hilbert space, such that the excitation probability is
very robust with regard to fluctuations of experimental pa-
rameters (which is the aim of a broad-band CPs), or such that
excitation occurs only for very specific experimental param-
eters (which is the aim of narrow-band CPs). Thus, the latter
narrow-band CP (NCP) sequences show a strong dependence
on experimental parameters, e.g., the driving laser intensity.
This steep nonlinear dependence of the coherent excitation
probability upon the intensity allows for spatially highly local-
ized excitation, tightly confined in the center of a spatial laser
beam profile, far below the beam diameter and even below
the diffraction limit. We note that CPs can be considered as a
special and experimentally rather easy to implement case of
optimal control theory (for an overview of such techniques,
see, e.g., [37,38]), with the phases of identical pulses in a
sequence as discrete control parameters. In principle, it should
be also possible to investigate the potential of other optimal
control strategies to overcome the diffraction limit.
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In comparison to previous techniques for coherent sub-
wavelength localization, NCP sequences feature a number
of important advantages: They do not require the qubit to
be in a specific initial state [30,39,40] and use only a sin-
gle optical transition (driven by a single laser beam) in a
two-level system. This makes them easier to implement ex-
perimentally. If the aim is excitation of metastable states via
multilevel schemes, NCPs can be extended to such systems
as well [41–43]. Moreover, beyond spatial confinement of
atomic excitations, NCPs also permit implementation of arbi-
trary narrow-band qubit rotations, i.e., localized single-qubit
[17,39,44] and multiqubit gates [45].

Literature contains a wide variety of NCP sequences
[15,16,39,46–49] which were initially meant to, e.g., increase
the resolution in NMR spectroscopy [47,48,50]. In previous
theory work [15] we suggested their application also for
high-resolution addressing of qubits. In a first experimental
demonstration, Merrill et al. implemented NCPs to reduce the
ion spacing of a surface trap by about 40% [17]. Since then,
we developed other classes of NCP sequences, which promise
better confinement [46]. However, there were so far no ex-
perimental implementations of these sequences, in particular,
not in solid-state systems nor media with inhomogeneous
broadenings.

In this paper, we present a thorough, systematic experi-
mental study of several classes of NCP sequences, applied
to localize atomic excitation in a rare-earth ion-doped crys-
tal. We develop and implement new classes of sequences,
one of which is optimized specifically for inhomogeneously
broadened media. We experimentally compare the perfor-
mance of all new sequences, also to previously known
sequences [15,16,39,46–49], as well as numerical simula-
tions. The proof-of-principle experiment still operates above
the diffraction limit, but fully confirms the theoretical predic-
tions, thus paving the way for further investigations towards
high-resolution applications.

II. BASIC THEORY

We now briefly review the basic theory of NCP sequences
and introduce the new sequences, which we developed for the
experiments presented below. We assume a two-level system
with population initially in the ground state |1〉 resonantly
coupled to the excited state |2〉 by a laser beam with Rabi
frequency �(t ) [see Fig. 1(a)]. We get the excitation proba-
bility to state |2〉 as P2 = sin2(A/2), with the pulse area A =∫

�(t )dt . For pulsed excitation with peak Rabi frequency �0

and duration τ we have A ∝ �0τ . As a simple and well-known
example, the excitation probability reaches 100%, if the pulse
area equals π . This defines the well-known π pulse, which
inverts the quantum system.

Obviously, the excitation probability depends upon the
experimental parameters, e.g., spatiotemporal variations or
fluctuations of the Rabi frequency (which depends upon the
laser intensity). Let us call this variation of P2(x) upon a
specific experimental parameter x (e.g., laser frequency, in-
tensity, pulse area, or position across the laser beam profile)
an “excitation profile.” We can modify the shape of the ex-
citation profile by replacing the single driving pulse with a
sequence of pulses with different phases. The phases act as
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FIG. 1. (a) Coupling scheme for the NCP experiments in
Pr3+:Y2SiO5. Straight lines depict transitions coupled by a laser,
wavy lines show spontaneous decay. Yellow circles show the initial
population. (b) Numerical simulation of the excitation probability by
NCP sequences from [16] as an example. The plot shows the varia-
tion of the final population P2 vs spatial position across a Gaussian
pump laser profile for different numbers of pulses N (color code).
The gray, dashed line shows the Gaussian profile of the pump laser
Rabi frequency. The pulse area in the center of the beam is set to
A = π .

control parameters that allow us to shape the profile. This is
the general concept of CP sequences [30–32]. We note that it
would also be possible to use other pulse parameters like the
detuning or pulse area as control parameters [30,31,51–53].
Depending on the application, we can derive CP sequences
for any desired manipulation of a two-level quantum system,
i.e., any target rotation of the state vector on the Bloch sphere.
We can either derive sequences which are more robust or
more susceptible to variations of the experimental parameters
compared to a single driving pulse. This results either in
broad-band or narrow-band CP sequences.

In this work, we focus our attention on sequences that
show narrow-band behavior regarding the pulse area when it
changes from its target value π , e.g., to provide excitation
probability 100% in the center of a laser beam profile. The
NCP sequences shall suppress excitation for A �= π outside
the center of the laser beam profile. In the NCP we assume
now a sequence of π pulses with different phases as control
parameters. The pulse frequencies are all tuned exactly on res-
onance of the transition between ground and excited state and,
hence, the detuning � = 0. We denote such a NCP sequence
consisting of N pulses with phases φk as (φ1, φ2, . . . , φN ).

We depict the effect of NCPs upon the spatial distribution
of atomic excitation across a driving laser profile in Fig. 1(b).
The figure plots the simulated population transfer in a two-
level system, driven by NCP sequences with varying number
of pulses N (with phases of the specific sequences as derived
in previous work [16]) across a Gaussian laser beam profile in
space with A = π in the center. For a single pulse, the excita-
tion profile has the same width [full width at half-maximum
(FWHM)] as the exciting beam (compare turquoise and gray,
dashed lines) since for half of the peak Rabi frequency, i.e.,
A = π/2, we get P2 = 1

2 from the resonance formula. Note
that we consider here the Rabi frequency profile, not the inten-
sity profile. When we replace the single pulse by a sequence
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with N = 3 pulses at appropriate phases, the NCP sequence
suppresses excitation in the wings of the beam profile (where
A < π ) while the transfer probability in the center (where
A = π ) remains at 100%. Increasing the number of pulses in
the NCP sequence (and choosing appropriate phases) further
improves the spatial confinement of atomic excitation. This is
due to the increasing number of control parameters (phases
of N pulses) that are available to optimize the sequence, i.e.,
reduce residual deviations from full suppression of excitation
outside the center.

After an early analytical theory approach in [16], further
work derived NCPs with improved performance [46] by nu-
merical procedures, though only for up to N = 11 pulses,
while further improvements are expected for more pulses.
Therefore, we extended this approach now to more pulses
and derived a new class of NCPs. We chose an antisymmetric
structure, i.e., sequences of the form (φ1, φ2, . . . , φl , φl+1 =
0,−φl , . . . ,−φ2,−φ1) with N = 2l + 1, based on numerical
hints and to shorten the calculation. The basic theory approach
was to calculate the propagator of the sequence to determine
the excitation probability P2(A) versus the pulse area A (which
is proportional to the Rabi frequency). Then we used nu-
merical optimization to reduce P2 below a certain excitation
threshold ε in as broad intervals on both sides of the central
peak (at A = π ) as possible. For details on the derivation, see
Appendix A. The larger the threshold ε, the stronger the spa-
tial confinement of excitation close to the central peak, i.e., the
narrower the excitation profile. We derive these antisymmetric
sequences for up to N = 45 pulses with ε = 1%, 3%, and
10%. Tables II–IV in Appendix C give the phases of these
sequences.

During systematic numerical studies we found that many
previously published NCP sequences and also our new an-
tisymmetric NCPs yield large excitation probabilities close
to unity for off-resonant excitation at rather small pulse
areas. This is irrelevant in the case of resonant excitation,
as discussed above. However, it becomes an obstacle for
inhomogeneously broadened media. In this case, there are
off-resonantly driven ensembles, which would be efficiently
excited also in the lower-intensity wings of the laser profile.
This counteracts the desired spatial confinement to the center
of the profile. We illustrate this behavior in Fig. 2(a), where
we plot the simulated transition probability of our antisym-
metric N = 13 pulse sequence with ε = 1% vs the pulse area
A ∝ �τ and the product of detuning and pulse duration �τ .
If we consider resonant excitation �τ = 0 [see solid, white
line in Fig. 2(a)], we get the desired behavior of the NCP: For
A = π , the transfer is complete (P2 = 1), while for pulse ar-
eas A < 0.85π population transfer is almost fully suppressed.
However, for off-resonant excitation �τ �= 0 (left and right of
the solid, white line) the variation of the transfer probability
with pulse area is rather complex, with several regions of high
population transfer even at small pulse areas. This is due to
an additional phase accumulated by off-resonant excitation
that disturbs the required fixed-phase relation within the NCP
sequence.

When we now consider an inhomogeneously broadened
medium, we have a manifold of frequency ensembles. Thus,
in Fig. 2(a) we must average horizontally over this distribu-
tion of detunings. The dashed lines in Fig. 2(a) indicate an

FIG. 2. Numerical simulation of the excitation probability vs the
product of detuning and pulse duration �τ and the pulse area A
for an antisymmetric (a) and an IH-optimized (b) sequence with
N = 13 pulses. The peak Rabi frequency is �0 = 2π × 1 MHz. The
white, dashed lines indicate the spectral linewidth of 2π × 100 kHz
(FWHM) for inhomogeneous broadening in our system. The dotted
lines indicate a spectral region of twice that width. (c) Variation of
the final population P2 vs spatial position across a Gaussian pump
laser profile (gray, dashed line) for both NCP sequences depicted
in (a) and (b). The pulse area in the center of the beam is set to
A = π . All parameters are the same as in (a) and (b) and we con-
sider the inhomogeneously broadened transition, i.e., for each spatial
position and pulse area, we average the excitation probability using
a Gaussian distribution of detunings matching the inhomogeneous
broadening in our system [see white, dashed lines in (a) and (b)].

inhomogeneous linewidth of 100 kHz (FWHM), as it is
typical in our experiments discussed below. The dotted
lines indicate an interval of twice the linewidth, which we
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typically apply as limits for numerical averaging. Obviously,
the detuning interval contains ensembles which experience
large population transfer. Hence, as shown in Fig. 2(c),
averaging leads to pronounced excitation “side bands” (an ad-
ditional ringlike excitation pattern across the 2D laser beam)
far in the wings of the laser beam profile at rather small pulse
areas (i.e., low intensity).

We may reduce the perturbing effect of inhomogeneous
broadening by using shorter pulses, which reduces the total
phase accumulation. In Fig. 2, a shorter pulse duration τ

essentially stretches the horizontal axis outward, moving the
regions of large population transfer further from resonance.
The shorter the pulses, the further the additional regions of
large population transfer move from resonance, and thus a
smaller fraction of these regions contributes to the averaged
transfer probability. Consequently, the amplitude of the exci-
tation side bands (rings) is reduced.

However, application of shorter pulses means increasing
the Rabi frequency to maintain a π pulse in the center of the
beam profile. As intensity (and Rabi frequency) are limited in
the experiment, there are always limits to the minimal pulse
duration. Moreover, shorter pulses also mean larger band-
width, which may lead to unwanted couplings to additional
states in the vicinity.

To overcome the problem, we developed another class of
NCP sequences optimized for inhomogeneously broadened
media (in the following termed “IH-optimized”). Towards
this goal, we extended the numerical optimization procedure
applied for the above antisymmetric NCP sequences by an
additional constraint, which demands that the excitation prob-
ability is reduced below ε = 1% for all detunings within a
given inhomogeneous manifold. Figure 2(b) shows the ex-
citation probability for such an IH-optimized sequence with
N = 13 pulses. We clearly see that the regions of large exci-
tation are shifted further from resonance than in Fig. 2(a). As
such, excitation in the wings of the beam profile is suppressed
[see Fig. 2(c)]. Table V in Appendix C gives the phases of the
IH-optimized sequences for up to N = 31 pulses.

III. EXPERIMENTAL SETUP

We implement our experiments in the rare-earth ion-
doped crystal Pr3+:Y2SiO5 (from now on simply termed
Pr:YSO) among the hyperfine states of the 3H4 ↔ 1D2 tran-
sition at a center wavelength of 605.98 nm. In particular, we
choose the hyperfine states |1〉 = 3H4 |mI = ± 3

2 〉 and |2〉 =
1D2 |mI = ± 3

2 〉 as a two-level quantum system, driven by
NCP sequences on a pump beam [see Fig. 1(a)]. The co-
herence time of the optical transition T e

2 = 111 µs sets an
upper limit for the total duration of the NCP sequences or the
maximal number of pulses N therein.

Figure 3(a) shows our experimental setup centered around
the Pr:YSO crystal (10 mm long, 0.05% dopant concentration)
which we cool to temperatures below 4 K in a continuous
flow cryostat (ST-100, Janis Research Co.). We derive all laser
beams in the experiment from an amplified diode laser system
with frequency doubling unit (DLC PR STORAGE, Toptica
Photonics). The system yields 800 mW of optical power at
the experiment and is frequency stabilized to well below
100 kHz (FWHM). We apply beam lines with acousto-optical

pump

probe preparation

L1 BS L2 L3 shutter
CCD

L4

repump

CL

time (arb. units)

(i) (ii) (iii) (iv) )v( )iv(

(a)

(b)

FIG. 3. (a) Experimental setup with pump (blue), preparation
(red), repump (green), and probe (orange) beam lines, Pr:YSO crys-
tal (green), beam splitter (BS), lenses (L), cylindrical lens (CL), and
CCD camera. (b) Time sequence of optical pulses in the experimental
sequence (see main text for details). Colors correspond to the beam
lines in (a).

modulators to provide preparation, repump, pump, and probe
laser pulses for the experiment with control of intensity,
frequency, and phase. We employ direct digital synthesis
drivers to generate the pulse shapes for preparation, repump,
and probe beam, as well as an arbitrary waveform generator
(AWG5014, Tektronix) for the NCP sequences on the pump
beam. The latter setup permits a phase accuracy better than
π/200, while NCP sequences with a few 10 pulses require
an accuracy of only about π/100 (as determined by numeri-
cal simulations). The pump beam passes a spatial filter [not
shown in Fig. 3(a)] to ensure a clean Gaussian beam pro-
file before we mildly focus it into the crystal with lens L1
(focal length 200 mm), yielding a beam diameter of 210 µm
(FWHM).

After the NCP sequence, the localized population in state
|2〉 decays with the lifetime T e

1 = 164 µs mostly into states
|1〉 and |3〉 = 3H4 |mI = ± 1

2 〉. We note that it would be eas-
ily possible to provide very long-lived excitation patterns in
Pr:YSO by mapping the excited-state population with an ad-
ditional optical π pulse to a hyperfine state in the lower state
3H4, which exhibits long population lifetimes T g

1 ≈ 100 s. For
our present demonstration of localization by NCP sequences
we did not apply this option. Nevertheless, assuming that
decay during the NCP sequence is negligible, the population
distribution in state |3〉 after the decay is proportional to
the population initially localized in |2〉. Hence, to determine
the spatially varying population distribution after the NCP
sequence, we measure the transmission across a probe laser
beam profile resonant to the |3〉 ↔ |4〉 = 1D2 |mI = ± 1

2 〉 tran-
sition and compare it to a reference measurement from a fully
transparent crystal. The probe beam copropagates with the
pump beam, but is temporally well separated from the NCPs
by roughly 7 ms. This delay is much longer than the lifetime
of the excited state T e

1 = 164 µs, such that the population
localized in state |2〉 has fully decayed when we probe it.
The probe beam has a diameter of 550 µm (FWHM) in the
crystal, i.e., much larger than the pump profile, to cover the
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full interaction region. We image the probe beam profile onto
a CCD camera (Prosilica GC1290, Allied Vision) using a
simple imaging system consisting of lenses L2 (focal length
60 mm) and L3 (focal length 300 mm).

We determined the magnification and resolution of the
imaging system using a USAF-1951 target mask placed in-
stead of the crystal in the beam lines. The measured resolution
of 3 µm is only slightly larger than the diffraction limit given
by the numerical aperture NA ≈ 0.23 of the system. The mag-
nification of 4.93 fits with the ratio of the focal lengths of
lenses L2 and L3. A mechanical shutter [54] prevents satu-
ration of the camera caused by the pump beam.

The optical transition in Pr:YSO is inhomogeneously
broadened to several GHz, while the hyperfine splitting is only
on the order of 10 MHz. Hence, a single-frequency laser cou-
ples all nine transitions between the six hyperfine states of the
3H4 ↔ 1D2 transition in Pr:YSO [see Fig. 1(a)] in ions from
different frequency ensembles within the inhomogeneous line.
Thus, we use an optical pumping sequence to prepare the
required level scheme and population distribution. The prepa-
ration sequence starts by burning a spectral pit (i.e., a broad
spectral hole of vanishing absorption) that contains both the
pump and probe transitions, followed by a repump pulse to
create an antihole on the pump transition with a residual in-
homogeneous linewidth of approximately 100 kHz (FWHM).
Finally, a cleaning pulse removes unwanted population from
state |3〉 to create the desired population distribution. For more
details on the preparation sequence see [55,56].

The preparation beam (used to prepare the spectral pit
and for the cleaning pulse) counterpropagates the pump (and
probe) beam with a small angle of about 2◦ in-between. We
collimate this beam with lenses L4 (focal length 75 mm)
and L2 to a diameter of 600 µm (FWHM), ensuring good
overlap with the pump beam along the entire crystal. The
repump beam, on the other hand, propagates perpendicular
to the other beams [see Fig. 3(a)], and we mildly focus it
with a cylindrical lens (focal length 150 mm) to a size of
440 µm × 2700 µm (FWHM, width × height) in the crystal.
The perpendicular arrangement of the repump beam permits
us to prepare a spectral antihole (i.e., population in state
|1〉) in a thin slice of the rather long Pr:YSO crystal only,
while outside this slice the medium remains fully transparent
for pump and probe beams. Thus, there are no attenuation
or averaging effects of the latter beams in propagation di-
rection. Due to residual saturation during the preparation
sequence, the thickness of the slice and, hence, the effec-
tive interaction length with the pump and probe beam is
roughly 1 mm. If required (though not relevant here), we
could further reduce this value by reducing the width of the
repump beam, e.g., with a cylindrical lens of shorter focal
length.

Figure 3(b) summarizes the time sequence of our ex-
periments: (i) Preparation pulse sequence to provide full
transparency at the pump and probe transitions. (ii) Trans-
mission measurement of a probe pulse as reference. (iii)
Preparation of a spectral antihole on the pump transition. (iv)
Removal of population from state |3〉 with a cleaning pulse.
(v) NCP sequence on the pump beam. (vi) Transmission mea-
surement of a probe pulse to determine the spatially varying
excitation efficiency. In the experiment we repeat steps (i)–(vi)

50 times and average the obtained images of the probe beam
to reduce noise.

IV. EXPERIMENTAL RESULTS

We will present and discuss now our experimental re-
sults on localization of atomic excitation driven by different
classes of NCP sequences in Pr:YSO. For the time sequence
depicted in Fig. 3(b), we choose pump pulses with a peak
Rabi frequency in space and time of �0 = 2π × 1 MHz.
For a Gaussian intensity profile in time with a duration of
τ = 332 ns (FWHM), this corresponds to a pulse area of
A = π in the center of the pump beam profile. We truncate
the pulses to a total pulse duration of tP = 1.2 µs. The trun-
cated pulses are separated by �t = 40 ns. Theoretically, it
would be possible to arrange the pulses in the NCP sequence
with zero delay. However, we found that in the experiment
shorter pulse separations below �t = 40 ns lead to phase er-
rors, presumably due to the finite rise time in the acousto-optic
modulators.

With these parameters, the total duration of a composite
sequence with N = 31 pulses (i.e., the longest sequences we
investigate) is tC � 40 µs, which is still sufficiently shorter
than the coherence time T e

2 = 111 µs of the optical transition.
At the same time, the Rabi frequency is well below the hyper-
fine splitting of the excited states (≈4.5 MHz) so that we can
neglect coupling to additional states, which would modify the
population transfer process.

For systematic measurements and comparison of different
NCP sequences, we keep the above pulse parameters fixed and
vary only the number of pulses and their phases. For each NCP
sequence, we measure the population P3 with a probe pulse
of Gaussian intensity profile in time with a duration of 10 µs
(FWHM) and a peak Rabi frequency of roughly 2π × 15 kHz,
which leads to only negligible variation of the population dis-
tribution. We expose the CCD camera to radiation for 40 µs,
which ensures detection of the entire probe pulse.

A. Spatially confined excitations
by IH-optimized NCP sequences

We consider now IH-optimized NCP sequences, which are
expected from theory to provide the best performance (see
Sec. II above). The top row of Fig. 4 shows the experimentally
measured spatial population distribution after IH-optimized
NCP sequences with different numbers of pulses N � 11.
Note that the plots show the population P3 in state |3〉, as
measured by the probe pulse after the NCP. The bottom row
shows cuts (indicated by blue lines) through the central peaks.

Already the comparison of population transfer by a single
π pulse and the shortest NCP with N = 3 pulses clearly shows
spatial confinement of excitation, i.e., the diameter of the re-
gion where quantum systems are excited shrinks significantly.
Population transfer that would be expected in the wings of a
simple 3π pulse is essentially fully suppressed by the NCP.
The central peak of large population narrows further when we
increase the number of pulses in the composite sequence. For
an IH-optimized NCP with N = 11 pulses, the population is
confined to a width of roughly 40% compared to the excitation
pattern after a single pulse.
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FIG. 4. NCP-driven localization in Pr:YSO using IH-optimized sequences. Variation of the population P3(x, y) vs coordinates x and y
across the pump beam profile. (Upper row) Experimental data for different numbers of pulses N . The white, dashed line indicates the diameter
(FWHM) of the pump beam. (Middle row) Numerical simulations. (Lower row) Cuts through the experimental data (blue line) and simulation
(orange line) at coordinate y = 0.

We compare the results of our measurement to a straight-
forward numerical simulation based on a density matrix
calculation of a three-level system of states |1〉, |2〉, and |3〉,
coherently driven by sequences of resonant radiation pulses.
The calculation takes decay of the excited state |2〉 as well
as the decoherence and the inhomogeneous broadening of the
optical transition |1〉 ↔ |2〉 into account. In the calculation,
we employ a Gaussian Rabi frequency distribution in space
with its width matched to the experimental data, and set all
other pulse parameters as in the experiment. The middle row
of Fig. 4 shows the results of the simulation. The orange lines
in the bottom row indicate cuts through the central peaks in
the two-dimensional plots of the simulations. We see excel-
lent agreement between experiment and simulation, with only
some small deviation in the exact shape and the far wings
of the excitation patterns. Compared to the simulation, the
experimental data show a slightly sharper spatial confinement
and a slight decrease in the peak amplitude with increasing
number of pulses N . This indicates that the central pulse area
in the experiment is probably slightly smaller than exactly π .
From the simulation we estimate this tiny deviation to be at
most 1%. We note that pass-band CP sequences [15,44,46]
are insensitive to such pulse area errors and could be another
option for spatially confined atomic excitations.

Furthermore, we see some faint rings in the wings of the
simulated data, especially for N = 11. As already discussed in
Sec. II, the rings are caused by inhomogeneous broadening of
the optical transition [compare Figs. 2(b) and 2(c)]. However,
in the experimental data, the weak rings are mostly hidden
below a broad low-level background, which the simulation
does not reproduce. We suspect that this residual background
is due to some additional, incoherent population transfer from
state |1〉 to state |3〉, e.g., by off-resonant excitation to state |4〉

or Raman scattering. In any case, neither the weak incoherent
background in our particular medium and excitation scheme
nor the additional rings of weak excitation in the wings of the
laser profile are of any relevance to the main conclusion on
the high performance of NCP sequences.

We analyze the data now in some more detail by ex-
tracting the width �r (FWHM) of the excitation peak for
IH-optimized sequences with up to N = 31 pulses. Figure 5
shows the (normalized) widths of the experimental data (blue
circles) and the simulation (blue line) vs the number of pulses
N for up to N = 31. Clearly, the peak width decreases with the
number of pulses, as expected. We find excellent agreement
up to about N = 11 pulses. For larger numbers of pulses,
the experimentally determined profiles are slightly broader

FIG. 5. Width �r (FWHM) of the population distribution
P3(x, y) after localization by four classes of NCP sequences vs
number of pulses N . Comparison of experimental data (symbols)
and numerical simulations (lines of the same color). The analytic
sequence with N = 3 is equivalent to the TASK1 sequence from [17].
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FIG. 6. NCP-driven localization in Pr:YSO using different classes of NCP sequences with N = 13 pulses. Variation of the population
P3(x, y) vs coordinates x and y across the pump beam profile. (Upper row) Experimental data. The white, dashed line indicates the diameter
(FWHM) of the pump beam. (Middle row) Numerical simulations. (Lower row) Cuts through the experimental data (blue line) and simulation
(orange line) at coordinate y = 0.

than the simulated profiles. This is most likely caused by a
small deviation of the experimental beam profile from an ideal
Gaussian shape assumed in the simulation. The narrowest
measured population peak with N = 29 pulses has a width
of only about 28% of the spatial excitation pattern after a
single π pulse. This again confirms the performance of NCP
sequences. With our IH-optimized NCPs we reach a spatial
confinement that is far below previous demonstrations with
conventional sequences [17]. We note that in the latter work
Merrill et al. characterized the improved localization with
composite sequences by the separation of trapped ions at
which the infidelity of a neighboring qubit reaches �10−4,
while we use the spatial width (FWHM) of the excitation
profile as a direct measure. When we apply the latter definition
to their data, we find a confinement of ≈72% compared to
a single pulse. In our experiment we outperform this result
almost by a factor of 3.

We further analyze now the variation of the spatial confine-
ment with the number of pulses N in the NCP sequence. To
quantify this dependence, we describe the measured width �r
of the excitation by the power function

�r(N ) = N−α (1)

derived in Appendix B. The larger the convergence rate α,
the faster the progress towards large spatial confinement with
longer NCPs. From fits to the data, we obtain exponents α =
0.38 for the experimental data and α = 0.42 for the numeri-
cal simulation. As discussed above, some residual deviations
from ideal Gaussian-shaped π pulses lead to slightly worse
performance in the experiment compared to the simulation.
As also expected for NCPs, the power function shows that
the gain in confinement is largest for small numbers of pulses
(e.g., when we replace a single pulse by the shortest NCP
sequence with three pulses), while there is slower progress
for a larger number of pulses.

B. Comparison with other NCP sequences

We compare now the performance of IH-optimized NCP
sequences with other classes of NCPs [15,16,39,46–49].
Except for the pulse phases of the specific sequences, all
experimental parameters are the same as described in the
previous section. We focus on four classes of NCP sequences,
i.e., the antisymmetric and IH-optimized NCPs as derived for
this work (see Sec. II above), as well as two additional classes,
which we term “analytic” [16] and “symmetric” [15]. The
latter are already well known from literature and are expected
to exhibit the strongest suppression of excitation in the wings
of a laser beam profile (under ideal conditions and without
inhomogeneous broadening). Thus, we intended to compare
the performance of our new sequences with the so far best
alternatives. There are also some other known classes of NCP
sequences, which we briefly comment on at the end of this
section.

As an example for our large sets of experimental data,
the top row of Fig. 6 shows the excitation profiles obtained
for analytic, symmetric, antisymmetric, and IH-optimized
NCP sequences with N = 13 pulses each. The bottom row
shows cuts (indicated by blue lines) through the central peaks.
Clearly, the excitation is spatially confined in all sequences,
but the quality of the confinement and the excitation profiles
are quite different. We find the narrowest central peak for
the antisymmetric sequence, though the central peak for the
IH-optimized sequence is only slightly broader. Furthermore,
the analytic and antisymmetric sequences show pronounced
rings around the central peak. As already discussed before,
the rings are caused by inhomogeneous broadening of the op-
tical transition (compare Fig. 2). Obviously, the IH-optimized
NCP sequence combines strong confinement in a central ex-
citation peak with a strong suppression of perturbations by
inhomogeneous broadening. The numerical simulation (see
middle row of Fig. 6 and orange lines in the cuts in the
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TABLE I. Comparison of the convergence rate α from Eq. (1)
fitted to experimental data and numerical simulations for different
classes of NCP sequences.

Excitation Convergence rate α

Sequence threshold ε Expt. Sim.

Symmetric [15] 0.20 0.24
Analytic [16] 0.25 0.28
IH-optimized 1% 0.38 0.42
Antisymmetric 1% 0.41 0.43

3% 0.42 0.45
10% 0.44 0.48

lower row) reproduces these features very well. The slightly
different ring amplitudes of experimental data and simulation
are most likely due to some overestimation of the inhomo-
geneous broadening in the simulation. Slight differences in
the ring diameters suggest that the tails of the real beam
profiles are a bit broader than assumed in the simulation,
most likely due to an imperfect Gaussian profile in the
experiment.

We performed extended systematic measurements and nu-
merical simulations of all classes of sequences which we
summarize in Fig. 5 where we show the width �r of the
central excitation peak vs the number of pulses N . In general,
we see localization behavior, i.e., spatial confinement that im-
proves with the number of pulses for all classes of sequences.
As discussed, the small deviations at larger pulse numbers are
most probably due to a deviation of the real laser beam profile
from an exact Gaussian.

We quantify the performance of the NCP sequences for
localized excitations by fitting the experimental data and the
numerical simulations to the power function (1). Table I sum-
marizes the results. For all sequences, the simulation agrees
very well, with a slightly larger convergence rate α compared
to the experimental data, as already discussed above. There
are obvious differences between the different NCP classes
with regard to their progress towards large spatial confine-
ments, as described by the convergence rate α. In particular,
the IH-optimized sequence progresses much faster to strong
spatial confinements compared to the analytic and symmetric
sequences. In the following we will discuss the features of
the analytic, symmetric, and antisymmetric sequences in some
more detail. We skip the IH-optimized sequences here, as we
already discussed them in the previous section.

a. Analytic NCP sequences. We termed this class of NCP
sequences analytic because previous work derived an ana-
lytic equation to determine their pulse parameters [16]. This
is an advantage to quickly determine sequences with an ar-
bitrary (odd) number of pulses. These sequences perform
rather poorly compared to more recently developed NCPs.
For more than N = 5 pulses they show pronounced rings in
the excitation profile (see Fig. 6). Moreover, they progress
only very slowly, with a small convergence rate α = 0.25,
towards stronger spatial confinement. This is to be expected
since the analytic sequences are known to suppress excitation
in the wings of the profile very well, i.e., towards less than
10−N (when neglecting inhomogeneous broadening). On the

other hand, the sequences with better confinement tolerate a
larger level of residual excitation outside the center (given
by the excitation threshold ε), i.e., they trade fidelity for a
stronger confinement [46]. We note that the analytic NCP
sequence with N = 3 is (up to an irrelevant global phase of
π/3) equivalent to the TASK1 sequence derived by Merrill
et al. [17]. Our experimental data fit well with this previous
measurement.

b. Symmetric NCP sequences. We termed this NCP class
symmetric because these sequences are symmetric with re-
spect to reversal of pulses. They were developed in previous
work [15] with a similar ansatz as the analytic sequences.
Therefore, also the symmetric sequences strongly suppress
excitation in the wings of the beam profile, but do not con-
fine the excitation as well as our new antisymmetric and
IH-optimized sequences. The symmetric NCPs exhibit the
smallest convergence rate α = 0.2 of the four investigated
NCP classes, though still close to the value for the analytic
sequences, which is also confirmed by the experimental data
(see Fig. 5). We assume that the small difference compared to
the analytic sequences is due to the numerical derivation rather
than an exact analytic solution. As an advantage compared to
the analytic sequences, the symmetric sequences show (in our
experimental conditions) no rings of residual excitation in the
wings of the profile (see Fig. 6). Thus, they are applicable in
inhomogeneously broadened media, provided that the inho-
mogeneity does not become too large (about 200 kHz for our
experimental parameters).

c. Antisymmetric sequences. The third class are the anti-
symmetric sequences developed for this work (see Sec. II).
As already analyzed in detail above, in inhomogeneously
broadened media these sequences show pronounced addi-
tional side bands (rings) in the excitation profile. Nevertheless,
their performance to spatially confine excitation in a cen-
tral peak outperforms the analytic and symmetric sequences
by far, reaching a convergence rate α = 0.41. As discussed
above, this is due to the larger threshold ε = 1% for residual
excitation in the wings of the profile. With N = 31 pulses
the antisymmetric sequences yield a spatial confinement of
excitation to 25% of the width of the beam profile, which is
slightly better than the IH-optimized sequences, reaching 28%
(see Fig. 5). This is to be expected since the suppression of
excitation for detuned ensembles places additional constraints
on the IH-optimized sequences.

Furthermore, our data confirm that the localization of our
antisymmetric sequences improves for a higher excitation
threshold ε in the derivation (see Table I). However, this
reduces the fidelity as expected. Other sequences based on a
similar ansatz [46] were shown to exhibit the same behavior.

d. Other sequences. Finally, we compared our data also to
several other already known NCP sequences [39,47–49]. In
order not to overload the graphs, they are not shown in Figs. 5
and 6. Previous simulations [16] already demonstrated that
most of these sequences perform similar or worse than the
analytic sequences, with additional degradation in inhomoge-
neously broadened media. Our measurements confirmed these
features. The sequences developed by Shaka and Freeman
[47] are an exception, as they reach a spatial confinement
similar to our IH-optimized sequences. However, they show
excitation in the wings even under perfect conditions and
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their performance strongly degrades on an inhomogeneously
broadened transition.

e. Summary. The above comparison of the features of
different classes of NCP sequences shows that the choice
depends upon the medium and specific application. When the
goal is a strong confinement, the antisymmetric sequences
are best suited, unless the transition is inhomogeneously
broadened, which requires our IH-optimized sequences. Both
sequences proceed very fast towards small excitation regions.
If the aim is large fidelity (i.e., a very small level of residual
excitation), the already known analytic [16] or, in case of an
inhomogeneously broadened transition, symmetric sequences
[15] are the best choice, though at the cost of slow conver-
gence rates towards strong confinements.

V. CONCLUSION

We experimentally demonstrated strong spatial confine-
ment of optical excitation in a solid-state system by novel
NCP sequences. In particular we developed a pulse sequence,
which maintains high performance also in inhomogeneously
broadened media. We investigated NCP sequences with up to
31 pulses and confined the excitation to spatial extensions well
below the diameter of the driving Gaussian laser beam profile.
We reached a width of 25% compared to the diameter of the
driving laser beam, which is about a factor of 3 smaller than in
previous experiments [17]. We confirmed that the localization
of atomic excitation improves with the number of pulses and
quantified this behavior by the convergence rate in a power
function. We compared the performance of several classes of
NCP sequences and confirmed their very different features
with regard to convergence rates and residual excitation in the
wings of the laser beam profile. The extended and thorough
investigations on different types of NCP sequences showed a
tradeoff between strong confinement in the center of the beam
profile and fidelity (i.e., low excitation level in the wings of
beam profiles). We confirmed that inhomogeneous broadening
leads to ringlike excitation patterns for NCP sequences, which
are not matched to such media. The findings fit very well with
numerical simulations and previous predictions from theory
work [46].

We note that under our experimental conditions, we still
operated well above the diffraction limit. Nevertheless, the
NCP sequences permit to proceed also below this limit. Thus,
our results serve as a step towards a new application of CPs to
prepare precisely defined excitation patterns in space for high-
resolution classical optics (e.g., lithography or microscopy)
and quantum technology (e.g., to operate quantum gates with
large spatial resolution).
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APPENDIX A: DERIVATION OF IH-OPTIMIZED
COMPOSITE PULSES

In order to derive our new NCP sequences, we consider a
two-state quantum system interacting with an external coher-
ent field. The Schrödinger equation

ih̄∂t c(t ) = H(t )c(t ) (A1)

describes the evolution of the qubit, where c(t ) =
[c1(t ), c2(t )]T is a column vector with the probability
amplitudes of the two states |ψ1〉 and |ψ2〉. The Hamiltonian
after the rotating-wave approximation is

H(t ) = (h̄/2)�(t )e−iD(t ) |ψ1〉 〈ψ2| + H.c., (A2)

with D = ∫ t
0 �(t ′)dt ′, where � = ω0 − ω is the detuning be-

tween the field frequency ω and the Bohr transition frequency
ω0. For a constant detuning we have D = �t . The Rabi
frequency �(t ) is a measure of the field-system interaction
energy h̄�(t ). We describe the evolution of the quantum sys-
tem by means of the propagator U(t f , ti ), which connects the
probability amplitudes at the initial time ti and the final time
t f : c(t ) = U(t, ti )c(ti ). For the sake of simplicity, hereafter we
drop the temporal arguments in U.

Because the 2 × 2 propagator is unitary, we can
parametrize it by two complex Cayley-Klein parameters a and
b as

U =
[

a b
−b∗ a∗

]
. (A3)

For resonant excitation (� = 0) with a pulse area A we have
a = cos(A/2) and b = −i sin(A/2). For an off-resonant pulse
of rectangular temporal shape we have

a = cos

(
1

2

√
�2 + �2T

)
+ i� sin

(
1
2

√
�2 + �2T

)
√

�2 + �2
,

(A4a)

b = − i� sin
(

1
2

√
�2 + �2T

)
√

�2 + �2
, (A4b)

where T is the pulse duration. There are very few other tem-
poral shapes for which (more complicated) exact expressions
for a and b are known (see, e.g., Refs. [57–60]); otherwise,
one has to compute a and b numerically.

A constant phase shift φ in the driving field �(t ) →
�(t )eiφ is mapped onto the propagator as

U(φ) =
[

a beiφ

−b∗e−iφ a∗

]
. (A5)

A sequence of N identical pulses, a CP sequence, each
with a different pulse area Ak and a different phase φk (k =
1, 2, . . . , N ),

(A1)φ1 (A2)φ2 . . . (AN )φN , (A6)

produces the overall propagator (acting from right to left)

U(N ) = U(AN , φN ) . . . U(A2, φ2)U(A1, φ1). (A7)

The transition probability is P2 = |U (N )
21 |2. Complete popula-

tion inversion means P2 = 1.
If the pulse areas Ak and the phases φk are chosen ap-

propriately one can modify the excitation profile essentially
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in any desired manner. In particular, one can nullify the first
few terms in the Taylor expansion of the transition probability
P2 against a certain parameter at a specific value. Thereby
the composite transition probability can be made much more
robust to variations in this parameter in the vicinity of the
chosen value than the single-pulse transition probability. CPs
can be made robust to variations in essentially any desired
experimental parameter as well as in several parameters si-
multaneously. Moreover, the transition probability can be
locked to 1, or 0, or any other value in-between. In this manner
one can obtain broad-band (with flat top), narrow-band (with
flat bottom), and pass-band (with both flat top and flat bottom)
excitation profiles.

In this paper, we are interested in narrow-band CPs, which
produce unit transition probability at the pulse area of π ,
which quickly drops down to negligible values as the pulse
area moves away from this value. The CPs derived by can-
cellation of the first few coefficients in the Taylor expansion
of the transition probability at the selected parameter value
(which is A = 0 for NCPs), e.g., the analytic [16] or symmet-
ric [15] sequences discussed in this paper, produce excitation
profiles with wings of extremely low value within a certain
range of A = 0 [16]. Such extremely low values are not neces-
sary in the present context. Instead, for the ultra-narrow-band
pulses [46] the wings of the excitation profile are maintained
below a certain low threshold ε. Then one can obtain CPs
with broader intervals of the pulse area wherein the error
remains below the selected threshold. The larger the threshold
ε, the broader this interval can be. This results in a fur-
ther squeezed (ultra-narrow-band) excitation profile compared
to the standard narrow-band pulses (obtained by canceling
derivatives).

The NCP sequences of Ref. [46] have been obtained by
numerically maximizing the value Aε , for which the transition
probability remains below the threshold ε within the pulse
area range A ∈ [0, Aε], while keeping its unit value at A =
π . Maximizing Aε implies squeezing the excitation profile
toward A = π and enhancing the narrow-band effect. These
sequences have been derived under the condition of exact
resonance, � = 0, while ignoring the excitation probability
for � �= 0. We use the same ansatz with the additional con-
straint that the sequences be antisymmetric (see below) to
derive our antisymmetric sequences with ε = 1%, 3%, and
10%. Tables II–IV in Appendix C give the phases of these
sequences.

However, in inhomogeneously broadened ensembles of
two-state atoms with transition frequencies within a certain
bandwidth [ω − �0, ω + �0] around the carrier frequency
ω of the driving laser pulse, plenty of artifacts in the ex-
citation probability may emerge within the detuning range
[−�0,�0] for pulse areas in the range A ∈ [0, π ], as shown
in Fig. 2(a). Because the overall signal is an integral over this
detuning range, the high-probability regions within this range
generate unwanted side bands around the central peak in the
experiment.

Therefore, we have developed ultra-narrow-band CPs,
which clean up the high-probability artifacts within the de-
tuning range [−�0,�0] and the pulse area range A ∈ [0, Aε].
We have done this by numerically maximizing the value Aε ,

for which the transition probability, integrated over the detun-
ing range [−�0,�0], remains below the value ε within the
pulse area range A ∈ [0, Aε]. In so doing we have assumed
rectangular pulse shapes.

This numerical procedure has suggested that (i) the con-
stituent pulses should be an odd number N = 2l + 1, (ii)
all pulse areas in the composite sequence should be equal,
and (iii) the composite phases should be antisymmetric. The
resulting composite sequences read as

Aφ1 Aφ2 . . . Aφl Aφl+1 A−φl . . . A−φ2 A−φ1 . (A8)

This choice ensures the transition probability P2 = 1 for A =
π . The transition probability is invariant to a constant phase
shift in all phases and we have used this leeway to set φl+1 =
0. Hence, we are left with a maximization problem for Aε with
l free parameters, the phases from φ1 to φl . For ε = 1%, this
gives us the IH-optimized sequences discussed in the main
text. We list the phases of these sequences in Table V of
Appendix C. We note that these sequences are not unique.
There are multiple solutions to the maximization problem
yielding the same excitation probability, due to the periodic
structure of the involved functions.

APPENDIX B: DERIVATION
OF THE CONVERGENCE BEHAVIOR

In order to calculate the convergence behavior of NCP
sequences, i.e., the relation between the localization width
�r and the number of pulses N , we start from the excitation
probability to state |2〉. For an analytic sequence with N pulses
it reads as [16]

P2(A, N ) = sin2N

(
A

2

)
. (B1)

Let us further assume a Gaussian Rabi frequency profile with
a central pulse area of π (as in our experiments), i.e., A(r) =
π exp(−r2). Then, we find the width (FWHM) �r of the
resulting population peak as twice the radius r0 at which

P2(A, N, r0) = sin2N
(π

2
exp

(−r2
0

)) != 1

2

⇔ sin
(π

2
exp

(−r2
0

)) =
(

1

2

) 1
2N

. (B2)

For N → ∞, we have ( 1
2 )

1
2N → 1 and thus exp(−r2

0 ) → 1 and
r2

0 → 0. Hence, we can approximate exp(−r2
0 ) ≈ 1 − r2

0 ≡
1 − x where we define x ≡ r2

0 . We get

sin
(π

2
(1 − x)

)
=

(
1

2

) 1
2N

⇔ cos
(π

2
x
)

=
(

1

2

) 1
2N

. (B3)

Since x is very small, we can approximate cos( π
2 x) ≈ 1 −

π2x2

8 and get after a few algebraic transformations

x = 2
√

2

π

√
1 −

(
1

2

) 1
2N

. (B4)
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We further define y ≡ 2
1

2N − 1 → 0 and perform the series
expansion √

1 −
(

1

2

) 1
2N

=
√

1 − 1

1 + y
≈ √

y. (B5)

Thus, we get

r0 = √
x =

√
2
√

2

π
y1/4 =

√
2
√

2

π
(2

1
2N − 1)1/4. (B6)

Finally, we define z ≡ 1/N → 0 and expand

(2z/2 − 1)1/4 ≈
(

ln 2

2

)1/4

z1/4 (B7)

to get the end result

�r = 2r0 = 2
√

2√
π

(ln 2)1/4N−1/4. (B8)

The exponent in Eq. (B8) perfectly matches the convergence
rate α = 0.25 we found experimentally for the analytic se-
quences (compare Table I).

For all other classes of sequences, an analytic derivation
of the convergence rate α is not possible since no analytic
expression for the excitation probability P2(A, N ) is available.
However, it is reasonable to assume that the variation of the lo-
calization width follows a similar mathematical expression for
all sequences. With this assumption, the exponent in Eq. (B8)
is the sole parameter to define the convergence rate, i.e.,
how fast the width converges to strong spatial confinements.
Hence, we fit our data to the power function [Eq. (1)]

�r = N−α, (B9)

where we replace the exponent 1
4 with the variable conver-

gence rate α.

APPENDIX C: PARAMETERS OF NCP SEQUENCES

The following tables (Tables II–V) list the phases of the
antisymmetric and IH-optimized NCP pulse sequences, de-
veloped and demonstrated in this work. The parameters of the
known analytic and symmetric sequences are available from
literature [15,16].

TABLE II. Phases (in units of π ) of antisymmetric sequences with excitation threshold ε = 1%. The sequences are antisymmetric, i.e., of
the form (φ1, φ2, . . . , φl , φl+1 = 0, −φl , . . . , −φ2, −φ1) with N = 2l + 1. We list only the first l + 1 phases.

Pulse count N Phases (φ1, φ2, . . . , φl+1)

3 ( 0.5867, 0)
5 ( 0.4167, 0.6531, 0)
7 ( 0.4962, 0.3741, 0.6722, 0)
9 ( 0.2638, 0.5868, 0.9098, 0.3231, 0)
11 ( 1.0521, 0.8626, 0.1783, 0.286, 0.3356, 0)
13 ( 0.3081, 0.3103, 0.7134, 1.0449, 0.4763, 0.3045, 0)
15 ( 0.808, 0.7523, 0.8893, 0.5425, 1.8546, 0.0639, 1.9734, 0)
17 ( 0.5511, 0.5869, 0.255, 0.1629, 0.542, 0.8862, 0.4558, 0.4502, 0)
19 ( 0.772, 0.8166, 1.384, 1.5422, 1.6391, 1.3322, 1.6465, 0.0531, 1.8781, 0)
21 ( 0.7721, 0.3532, 0.3977, 0.3727, 0.2405, 0.4101, 0.8202, 0.6987, 0.6325, 0.0469, 0)
23 ( 0.2855, 0.5246, 0.0672, 0.2785, 0.6819, 0.9743, 0.7609, 0.7125, 0.5803, 0.2815, 1.9764, 0)
25 ( 0.7752, 0.7436, 0.8543, 0.9156, 0.951, 0.3405, 0.3542, 0.1142, 1.7152, 1.8812, 0.1249, 0.2441, 0)
27 ( 0.9106, 0.7793, 0.8741, 0.919, 0.6748, 0.1305, 0.4263, 0.3121, 0.1732, 0.031, 1.5934, 1.601, 1.8221, 0)
29 ( 1.592, 1.6943, 1.8226, 1.6936, 1.7099, 1.148, 1.0171, 1.2158, 1.3742, 1.1667, 1.3745, 1.755, 1.7427, 0.0888, 0)
31 ( 0.1506, 0.1473, 0.4329, 0.6354, 0.4592, 0.6133, 0.5471, 0.909, 0.8177, 0.8211, 0.8799, 0.2678, 0.0471, 0.1753, 0.1386, 0)
33 ( 0.0605, 0.3173, 0.3687, 0.3214, 0.7288, 0.691, 0.4768, 0.5922, 0.755, 1.0539, 0.9969, 0.4875, 0.5086, 0.1605, 0.0942, 1.9699,

0)
35 ( 0.7764, 0.8959, 0.4011, 0.3161, 0.2605, 0.1795, 0.3489, 0.6039, 0.5421, 0.2292, 0.3143, 0.6859, 0.6385, 0.7293, 0.4954, 0.4996,

0.1466, 0)
37 ( 1.9595, 0.0756, 0.1623, 0.3757, 0.6084, 1.002, 0.7508, 0.4055, 0.5571, 0.5575, 0.6507, 0.592, 0.8204, 0.5076, 0.553, 0.49,

0.0528, 0.0186, 0)
39 ( 0.1087, 0.2857, 0.1066, 0.5401, 0.5102, 0.5232, 0.6996, 0.7261, 0.3576, 0.5627, 0.9152, 1.0572, 0.921, 0.6668, 0.4357, 0.3466,

0.0842, 1.9795, 0.0811, 0)
41 ( 0.011, 1.9903, 0.1027, 0.1698, 0.7533, 0.6829, 0.554, 0.755, 0.6636, 0.5558, 0.3994, 0.5137, 0.7315, 0.8742, 0.634, 0.6768,

0.3095, 0.1907, 0.2657, 0.2342, 0)
43 ( 0.7016, 0.5836, 0.6095, 0.2795, 0.5116, 0.3351, 0.2791, 0.3566, 0.132, 0.0988, 0.6051, 0.6613, 0.5835, 0.5485, 0.7326, 0.85,

0.7427, 0.6024, 0.2946, 1.9385, 1.9916, 0)
45 ( 0.1309, 0.0921, 0.2904, 0.1137, 0.1668, 0.5634, 0.8871, 0.6043, 0.8313, 0.7831, 0.786, 0.7749, 0.4961, 0.4196, 0.2216, 0.3962,

0.7556, 0.6052, 0.5514, 0.4025, 0.2568, 0.0817, 0)
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TABLE III. Phases (in units of π ) of antisymmetric sequences with excitation threshold ε = 3%. The sequences are antisymmetric, i.e.,
of the form (φ1, φ2, . . . , φl , φl+1 = 0, −φl , . . . , −φ2, −φ1) with N = 2l + 1. We list only the first l + 1 phases.

Pulse count N Phases (φ1, φ2, . . . , φl+1)

3 (0.5478,0)
5 (0.4014,0.6036,0)
7 (0.4679,0.3661,0.6192,0)
9 (0.2743,0.5479,0.8215,0.2737,0)
11 (0.9405,0.7834,0.1544,0.243, 0.2838,0)
13 (0.3107,0.3125,0.6529,0.9397,0.41, 0.2559,0)
15 (0.7374,0.6918,0.8046,0.5114,1.8791,0.0525,1.9782,0)
17 (0.5133,0.5426,0.2648,0.1967,0.5245,0.8278,0.4145,0.3883,0)
19 (1.0857,1.0493,0.5481,0.3897,0.2779,0.5719,0.3104,1.9541,0.1001,0)
21 (0.6942,0.3357,0.3807,0.3709,0.2512,0.4053,0.771, 0.6325,0.5603,0.0383,0)
23 (0.2924,0.4908,0.0825,0.316, 0.6696,0.8921,0.6873,0.6276,0.4963,0.236, 1.9807,0)
25 (0.7102,0.6844,0.7749,0.8227,0.8514,0.3148,0.3486,0.1098,1.7439,1.8907,0.1027,0.2023,0)
27 (0.8224,0.7147,0.7939,0.8286,0.6261,0.1426,0.42, 0.3223,0.1844,0.0327,1.6501,1.6654,1.8534,0)
29 (1.6074,1.6911,1.7964,1.6895,1.7042,1.2068,1.0931,1.2621,1.448, 1.2699,1.4561,1.7986,1.7795,0.0726,0)
31 (0.1817,0.1791,0.4162,0.5895,0.4411,0.5726,0.5109,0.8268,0.7237,0.7531,0.7822,0.2231,0.0388,0.144, 0.1134,0)
33 (0.1076,0.3212,0.3644,0.3211,0.6773,0.6392,0.4342,0.559, 0.712, 0.9352,0.8841,0.4095,0.4257,0.131, 0.0774,1.9754,0)
35 (0.6983,0.796, 0.3625,0.3012,0.2514,0.1598,0.3449,0.5826,0.5269,0.2746,0.3443,0.6698,0.5971,0.6582,0.4339,0.4226,

0.1203,0)
37 (0.0242,0.1193,0.1903,0.3682,0.57, 0.9328,0.7434,0.4211,0.5309,0.5416,0.6052,0.5277,0.7331,0.4429,0.4777,0.4172,

0.043, 0.0152,0)
39 (0.1473,0.2929,0.1416,0.5286,0.4652,0.4965,0.6626,0.6447,0.3384,0.5618,0.8585,0.9491,0.803, 0.5649,0.3634,0.2886,

0.07, 1.9827,0.0663,0)
41 (0.0664,0.0495,0.1414,0.1955,0.7154,0.6562,0.5504,0.7447,0.6492,0.5413,0.383, 0.4808,0.6518,0.7745,0.5615,0.5837,

0.2593,0.1611,0.2231,0.1936,0)
43 (0.6363,0.5398,0.5615,0.2827,0.4953,0.3144,0.2971,0.3573,0.1462,0.1637,0.6029,0.6108,0.5325,0.5156,0.6891,0.7832,

0.6697,0.5245,0.2502,1.9499,1.9932,0)
45 (0.1645,0.1328,0.2964,0.1451,0.1981,0.5419,0.8303,0.5633,0.7738,0.7455,0.7538,0.7288,0.4698,0.3898,0.2241,0.377,

0.6715,0.5291,0.4697,0.3362,0.2116,0.0668,0)

TABLE IV. Phases (in units of π ) of antisymmetric sequences with excitation threshold ε = 10%. The sequences are antisymmetric, i.e.,
of the form (φ1, φ2, . . . , φl , φl+1 = 0, −φl , . . . , −φ2, −φ1) with N = 2l + 1. We list only the first l + 1 phases.

Pulse count N Phases (φ1, φ2, . . . , φl+1)

3 (0.4796,0)
5 (0.3645,0.5224,0)
7 (0.2602,0.637, 0.3768,0)
9 (0.2679,0.4796,0.6912,0.2117,0)
11 (0.7827,0.6637,0.122, 0.1889,0.2195,0)
13 (0.2954,0.2967,0.5593,0.7861,0.3226,0.1965,0)
15 (0.628, 0.5938,0.6786,0.4522,1.9083,0.0394,1.9837,0)
17 (0.4499,0.4718,0.2591,0.2138,0.4729,0.7195,0.346, 0.3069,0)
19 (0.1604,0.4132,0.3959,0.5442,0.5017,0.7561,0.5058,0.0744,0.0879,0)
21 (0.5854,0.3046,0.3457,0.3471,0.2463,0.3761,0.6804,0.5324,0.4586,0.0287,0)
23 (0.2819,0.4323,0.0969,0.3351,0.6166,0.7596,0.5734,0.5078,0.3885,0.1808,1.9856,0)
25 (0.6081,0.5888,0.6566,0.6908,0.7123,0.2779,0.3276,0.101, 1.789, 1.9087,0.0773,0.1536,0)
27 (0.692, 0.6112,0.6716,0.6961,0.543, 0.1473,0.3933,0.311, 0.18, 0.0325,1.7255,1.744, 1.8897,0)
29 (1.6432,1.7059,1.7847,1.7039,1.7158,1.3101,1.2191,1.3519,1.552, 1.411, 1.5643,1.849, 1.8274,0.0543,0)
31 (0.1741,0.2498,0.3431,0.493, 0.4895,0.3612,0.5769,0.6362,0.5895,0.6998,0.605, 0.1247,0.1155,0.0053,0.1562,0)
33 (0.1435,0.3053,0.3383,0.3026,0.5877,0.5517,0.3699,0.4966,0.6328,0.769, 0.7248, 0.3135,0.3248,0.0975,0.058, 1.9817,0)
35 (0.5883,0.6616,0.3128,0.2751,0.2333,0.1405,0.3266,0.5326,0.4848,0.3006,0.3435,0.605, 0.515, 0.5453,0.3476,0.327,

0.0902,0)
37 (0.08, 0.1512,0.2045,0.34, 0.5001,0.8097,0.6884,0.4069,0.4672,0.4862,0.5233,0.4322,0.6044,0.3549,0.3785,0.3252,

0.0322,0.0114,0)
39 (0.1729,0.2825,0.1659,0.4838,0.3964,0.4472,0.586, 0.5307,0.3071,0.5287,0.7521,0.7887,0.6426,0.4375,0.277, 0.2196,

0.0532,1.9868,0.0495,0)
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TABLE IV. (Continued.)

Pulse count N Phases (φ1, φ2, . . . , φl+1)

41 ( 0.1116, 0.099, 0.1677, 0.2077, 0.6355, 0.589, 0.5094, 0.688, 0.592, 0.4895, 0.3402, 0.4179, 0.5383, 0.6326, 0.4567, 0.4611,
0.1986, 0.1243, 0.1711, 0.1463, 0)

43 ( 0.5417, 0.4694, 0.486, 0.2708, 0.4489, 0.2784, 0.2983, 0.3323, 0.1512, 0.2125, 0.5571, 0.5221, 0.4528, 0.4592, 0.6113, 0.6728,
0.5575, 0.4188, 0.1941, 1.9626, 1.9949, 0)

45 ( 0.1852, 0.1616, 0.2847, 0.1668, 0.2139, 0.4869, 0.7253, 0.4896, 0.6735, 0.6646, 0.6744, 0.6353, 0.41, 0.3337, 0.2068, 0.3288,
0.5464, 0.4222, 0.365, 0.2562, 0.1592, 0.0499, 0)

TABLE V. Phases (in units of π ) of IH-optimized sequences. The sequences are antisymmetric, i.e., of the form (φ1, φ2, . . . , φl , φl+1 =
0, −φl , . . . , −φ2, −φ1) with N = 2l + 1. We list only the first l + 1 phases.

Pulse count N Phases (φ1, φ2, . . . , φl+1)

3 ( 0.5961, 0)
5 ( 0.9107, 0.2493, 0)
7 ( 0.8947, 0.5874, 1.8962, 0)
9 ( 0.8439, 1.3539, 1.8271, 1.5887, 0)
11 ( 1.4433, 0.7439, 0.6835, 0.3272, 0.2091, 0)
13 ( 1.576, 0.8705, 0.8232, 0.456, 0.3701, 0.1432, 0)
15 ( 1.8023, 1.0941, 1.0447, 0.6594, 0.5732, 0.3151, 0.1843, 0)
17 ( 0.2352, 0.8624, 1.0553, 1.2164, 1.4625, 1.6732, 1.5441, 0.0311, 0)
19 ( 1.8479, 1.2751, 0.981, 0.9493, 0.6312, 0.4917, 0.3592, 0.4262, 1.887, 0)
21 ( 1.7514, 1.3271, 1.0313, 0.8945, 0.5592, 0.5767, 0.6626, 0.4913, 1.8487, 0.0381, 0)
23 ( 1.6864, 1.4253, 1.1396, 0.767, 0.4155, 0.7338, 0.8962, 0.5376, 0.1081, 0.2852, 1.9109, 0)
25 ( 1.6293, 1.6013, 1.2881, 0.7557, 0.7333, 0.6666, 0.6003, 0.991, 0.4791, 0.1233, 0.0644, 0.1627, 0)
27 ( 0.2779, 1.7844, 1.3326, 1.4903, 1.1737, 0.941, 0.8286, 0.9406, 0.4875, 0.4249, 0.5421, 0.1645, 0.1325, 0)
29 ( 0.9509, 0.678, 0.1595, 1.9907, 0.0682, 0.031, 1.4253, 1.5511, 1.4331, 1.239, 1.1535, 0.738, 0.5688, 0.433, 0)
31 ( 1.0001, 1.4601, 1.756, 0.0908, 0.0722, 0.1049, 0.4856, 0.7993, 0.7721, 0.5517, 1.137, 1.2393, 1.4059, 1.6235, 1.698, 0)
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