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Super-regular breathers induced by the higher-order effects in coupled Hirota equations
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We study the intriguing dynamics of surper-regular breathers (SRBs) beyond the Manakov system. These
SRB solutions are derived within the nondegenerate context. By employing the Darboux transformation,
we obtain the exact expressions of the solutions for the vector SRBs in the coupled Hirota equations with
the third dispersion, self-steepening, and inelastic Raman scattering terms. Based on such explicit formulas, we
initially study the higher-order effects on their group velocities as well as the growth rate during the linear stage
of modulation instability (MI). Additionally, we conduct an exploration of various mode excitations emerging
during the nonlinear stage of MI. Our findings indicate that there exist significantly different wave modes from
those in the Manakov system or the scalar nonlinear Schrödinger equation (NLSE). In particular, we refine
existing formulas connecting the SRBs and MI in the nondegenerate regime, which eliminates the necessity to
neglect higher-order terms from the Taylor expansion of α. Instead, we have used four different eigenvalues for
a more comprehensive description. We also discuss the scalar SRB with two eigenvalues using wave component
analysis. We finally excite, via numerical simulation initiated with localized periodic initial conditions, the vector
SRBs and their transformed states. This study not only deepens our theoretical comprehension of SRB dynamics,
but also illuminates potential avenues for future experimental investigations in this fascinating field.
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I. INTRODUCTION

Breathers are known as the nonlinear coherent structures
oscillating on the background plane waves, which describe
the unique interactions and energy exchange with their back-
grounds [1,2]. These waves have been observed in various
experiments, including photonic crystal fibers [3], water wave
tanks [4], nonlinear fiber optics [5], nearly conservative opti-
cal fibers [6], and so forth [2,7–13]. Generally speaking, there
are two kind of breathers. One is the Akhmediev breather
(AB), notable for its transverse breathing character while
maintaining localization in other directions [14–16]. The other
one is commonly recognized as the Kuznetsov-Ma soliton
(KMS), distinguished by its periodicity in the propagation di-
rection and transversal localization [15,17,18]. Both breathers
can be converted into the Peregrine soliton in the limiting case
of their periods being infinity [19,20]. The so-called Peregrine
soliton is a special localized wave characterized by a rational
form solution and can describe an isolated event such as rogue
wave (RW), which “appears from nowhere and disappear
without a trace” [21]. Additionally, more intricate breather
structures can be produced by the nonlinear superpositions of
the fundamental breathers in various significant physical phe-
nomena such as breather wave molecules [6], chess-board-like
interference patterns [13], vector breathers resonance [22,23],
and even super-regular breathers (SRBs) [8,24,25]. The SRB
describes a unique physical behavior where an initially small
localized perturbation of the condensate gives rise to a pair
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of quasi-ABs propagating with different group velocities in
the opposite directions [8]. All of these solutions are in-
herently related to the modulation instability (MI), which
describes the instability of a constant background to long
wavelength perturbations [16,26]. The exact correspondence
between the fundamental localized waves and MI is elabo-
rated in Refs. [27–29], with Ref. [27] extending this issue to
the converted waves with higher-order effects. In addition, the
concept of baseband MI has also been proposed, which reveals
the link between MI and RWs. This also reveals that only this
specific type of MI is capable of sustaining the formation of
RWs [28–32].

In addition to the ABs and KMSs, the SRB holds
significantly physical importance and can be viewed as
the higher-order exact solutions of the scalar nonlinear
Schrödinger equation (NLSE). The SRBs develop from the
localized small perturbations at a certain moment of time
[8,24] and then evolve into a pair of symmetric fundamental
breathers propagating at a small angle to each other [8,24,25].
The explicit expression for this solution can mathematically
be derived through the application of the dressing method in
conjunction with the Jukowsky transform [8,24]. Further, the
SRBs have been observed in two different branches of wave
physics, namely, in optical and hydrodynamical experiments
[25]. These results reported an interesting annihilation dynam-
ics described by a pair of quasi-AB solutions. In fact, the AB
solution describes a growth-return cycle evolved from a weak
periodic perturbation during the nonlinear stage of elementary
MI [3,14,16,25,26,33]. However, the higher-order MI formed
by the nonlinear superposition of several elementary MI can
exhibit more complex nonlinear dynamic behaviors in the
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nonlinear stage, and the localized perturbation appears more
universally in realistic physical contexts [33]. Such phenom-
ena are usually described by the SRB solutions [8,24,25,34].
In fact, the initial stage of MI governed by the NLSE has
been studied by linearizing the equation around constant
backgrounds [14] while the characteristic of MI during the
nonlinear stage is closely associated with two such kinds
of breathers based on the analysis of discrete spectrum via
inverse scattering transformation (IST) [35–38]. Other stud-
ies on the characteristics of nonlinear state of MI involve
the continuous spectrum of IST. By studying the long-time
asymptotics of the focusing NLSE on the infinite line with ini-
tial conditions tending to constant values at infinity [35–38],
Biondini et al. shown that the x-t plane can be decomposed
into left and right far-field regions during the nonlinear stage
of MI, where the solution equals the condition at infinity to
leading order up to a phase shift, and a central region in which
the asymptotic behavior is described by slowly modulated
periodic oscillations [38].

In addition to the above results, the conceptions of SRBs
have been naturally extended to other physically important
integrable systems [39]. For example, there are some novel
characteristics during the nonlinear stage of MI as a result of
higher-order effects, including the coexistence of a quasi-AB
and a multipeak soliton, two multipeak solitons propagating
in opposite directions, as well as a beating pattern followed by
two multipeak solitons in the same direction [40]. Moreover,
SRBs have also emerged within the framework of the complex
modified Korteweg–De Vries (KdV) equation [34]. Unlike the
conventional SRB composed of quasi-AB pairs in the NLSE
[8,24,25], the SRBs within this equation can exhibit certain
intriguing nonlinear structures, including the half-transition
and full-suppression modes [34]. Recently, an exact link be-
tween the Zakharov-Gelash SRB and MI was established,
revealing that the absolute difference in group velocities of
the SRB aligns precisely with the linear MI growth rate [41].
This discovery marks a significant development in the SRB
solutions, as it unveils, for the first time, the inherent relation
between SRB and linear MI. Additionally, the SRBs, which
are characterized by other nonlinear systems, including the
self-induced transparency system [42], the derivative NLSE
[43], the nonautonomous higher-order NLSE [44], and the
Chen-Lee-Liu equation [43], can also exhibit some novel pat-
terns, and the exact links between MI and the SRBs within
these respective systems have been individually determined
[43–45]. In very recent years, this understanding has broad-
ened to include the vector fields consisting of two coupled
wave components such as the coupled Maxwell-Bloch equa-
tions [42] and the Manakov system [46]. Compared to the
scalar SRB, there are two individual eigenvalues correspond-
ing to two different wave modes consisting of the vector
SRBs. As a result, the vector SRBs formed by the nonlinear
superposition of two quasi-ABs in the Manakov system are
a kind of higher-order nondegenerate breather absent in the
standard NLSE. This methodology allows for the derivation
of exact relation between MI growth rate and the velocity
difference linked to the two eigenvalues, rather than a set of
symmetrical spectral parameters [46].

Nevertheless, the dynamics of vector SRBs in the presence
of higher-order effects remains an open issue that needs to

be further addressed. These effects, which not only produce
compression phenomena in breathers and RWs [47,48] but,
more importantly, precipitate state transitions [40], demand a
profound exploration of their impacts on vector SRBs, par-
ticularly as such phenomena are absent in scalar systems.
The coupled Hirota (CH) equations were first proposed by
Tasgal and Potasek to describe a nonrelativistic boson field
[49], which can more accurately describe localized waves in
nonlinear systems such as microstructured optical fibers and
fiber lasers [50,51]. These equations read as

iψ ( j)
t + 1

2ψ ( j)
xx + (|ψ (1)|2 + |ψ (2)|2)ψ ( j) + iεQj = 0,

j = 1, 2, (1)

where

Qj = ψ ( j)
xxx + 3(|ψ (1)|2 + |ψ (2)|2)ψ ( j)

x

+ 3
(
ψ (1)∗ψ (1)

x + ψ (2)∗ψ (2)
x

)
ψ ( j), (2)

with ψ ( j)(x, t ) ( j = 1, 2) being two nonlinearly coupled com-
ponents of the vector wave fields. The physical meaning of
the independent variables x and t depends on the particular
physical problem of interest. For example, t is commonly a
normalized distance along the fiber while x is time in a frame
moving with group velocity [52] in optics. In the realm of
Bose-Einstein condensates (BECs) or a condensate in quan-
tum liquids, t is time and x is the spatial coordinate [53]. Such
equations comprise a linear term accounting for the group ve-
locity dispersion (GVD) and two nonlinear terms pertaining to
the self-phase modulation (SPM) and cross-phase modulation
(XPM). The final two terms in Qj , accompanied by a real
coefficient ε, are responsible for the third-order dispersion
(TOD) and a time-delay correction to the cubic term, respec-
tively. The intriguing dark and composite RW dynamics [54]
in Eqs. (1) have been elucidated. Additionally, the underlying
RWs and its intricate association with MI are disclosed [55].
This insight highlights that, owing to the influence of higher-
order effects, the dynamics characterized by Eqs. (1) show
unprecedented dynamical behaviors that differ from those ob-
served in the Manakov system. Thus, this inspires us that such
a mechanism may give rise to some novel properties of vector
SRB solutions, particularly in the context of a nondegenerate
case.

In this paper, we will confirm the existence of vector
SRBs composed of two individual nondegenerate quasi-ABs
in Eqs. (1). We proceed to explore the effects of the higher-
order terms on the linear and nonlinear stages of MI described
by the vector SRBs, particularly focusing on the excitation of
diverse wave modes during the nonlinear stage. Remarkably,
the presence of higher-order effects can not only delay the
time of the linear MI stage, but also eliminate the absolute
difference in group velocities, giving rise to a coherent mode
unprecedented in previous scalar equations or the Manakov
system. The exact link between the MI growth rate and SRBs
induced by the higher-order effects will also be refined. In-
stead of ignoring the higher-order expansion of the parameter
γ , we use four different eigenvalues to reveal this correspon-
dence. This formula gives a more comprehensive explanation
of the intrinsic relationship between the growth rate of ini-
tial localized perturbation during the linear stage and vector
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nondegenerate SRBs. The case of scalar SRBs within the Hi-
rota equation framework is discussed in order to illustrate the
fact that vector SRBs are formed by two individual nondegen-
erate fundamental breathers. However, such nondegenerate
solutions are absent in the scalar systems. Our results are
confirmed by numerical simulations.

The paper is organized as follows. Exact expressions of
the nondegenerate solutions describing the vector SRBs dy-
namics will be given in Sec. II. The higher-order effects on
MI during both linear and nonlinear stages, described by the
vector SRBs, will be further explored in Sec. III. Section IV
will establish an exact link between the MI growth rate and
vector SRBs induced by the higher-order effects. The case of
scalar SRBs will be discussed in Sec. V, while Sec. VI will
present numerical simulations. Section VII will summarize
our conclusions.

II. FUNDAMENTAL SOLUTIONS
FOR THE VECTOR SRBs

In this section, we will present the fundamental and
second-order SRBs for Eqs. (1) in the nondegenerate con-
text. The exact expressions of the fundamental solutions for
SRBs in the Manakov system have been outlined in Ref. [46].
Here, we adopt an analogous technique to produce the exact
expressions for the vector SRB solutions with higher-order
terms.

By using the Darboux transformation (DT) [56], the ex-
plicit expressions of the fundamental breather solutions for
Eqs. (1) can be given as

ψ
( j)
GB[1] = ψ

( j)
0

[
1 − (1 − H )ψ ( j)

gb

]
, j = 1, 2, (3)

where

ψ
( j)
0 = exp

{
iβ jx + i

[
a2

1 + a2
2 − β2

j

2
+ ε

(
β3

j − 3
(
a2

1 + a2
2

)
β j

− 3a2
j (β1 + β2)

)]
t

}
are the background vector plane waves of Eqs. (1) with a j

and β j being the plane wave amplitudes and wave numbers,
respectively (see Appendix A: Vector breather solutions via
DT). Moreover, H in Eqs. (3) is expressed as

H =
2∑

j=1

a2
j

(χ + β j )(χ∗ + β j )
, (4)

where χ is the eigenvalue that obeys the relation

1 +
2∑

j=1

a2
j

(χ + β j )(χ′ + β j )
= 0, (5)

and χ′ = χ + ω + iα with α,ω being two real parameters.
The pivotal parts of the breather solutions (3) are represented
as

ψ
( j)
gb = 2iχi

B( j)(χ)(e� + e−i�) + B( j)(χ′)(e−� + ei�)

ε(χ)e� + ε(χ′)e−� + Dei� + D∗e−i�
, (6)

where

B( j)(·) = 1

· + β j
,

ε(·) = 1 +
2∑

j=1

a2
j

(· + β j )(·∗ + β j )
,

D = 1 +
2∑

j=1

a2
j

(χ′ + β j )(χ∗ + β j )
. (7)

Other parameters are

� = α[x − Vg(χ,χ′)t], � = ω[x − Vp(χ,χ′)t], (8)

where x = x − x01 and t = t − t01 with x01 and t01 being re-
sponsible for the spatial and temporal position of the general
nondegenerate breather. Here, Vg(χ,χ′) and Vp(χ,χ′) respec-
tively describe the group and phase velocities

Vg(χ,χ′) = 1

α

{
ε

[
3

2
ω(χ + χ′)r (χ + χ′)i + 3

4
α(χ + χ′)2

r

− 3

4
α(χ + χ′)2

i − α

(
9

4
ω2 + 1

4
α2 + 2a2

)]
+ α

2
(χ + χ′)r + ω

2
(χ + χ′)i

}
(9)

and

Vp(χ,χ′) = 1

ω

{
ε

[
3

4
ω(χ + χ′)2

r − 3

4
ω(χ + χ′)2

i −
3

2
(χ + χ′)r

× (χ + χ′)i + ω

(
ω2

4
− 3α2

4
− 2a2

)
− a2

]
+ ω

2
(χ + χ′)r − α

2
(χ + χ′)i

}
, (10)

with a2 = a2
1 + a2

2.
When the value of the parameter α is very small but

nonzero, Eqs. (3) describe the vector quasi-ABs with finite
envelope width 1/α. The vector SRBs can be formed by the
nonlinear superposition of a pair of quasi-ABs, and each of
them has a finite period 2π/ω and the width 1/α, and the exact
expressions of ψ

( j)
SRB(x, t ) ( j = 1, 2) are presented in Ap-

pendix B: Higher-order breather solutions via DT. However,
the vector SRBs cannot be formed by two arbitrary funda-
mental quasi-ABs since they must be in the nondegenerate
context. From Eqs. (6), (9), and (10), the physical properties
of quasi-ABs are mainly determined by their eigenvalues. The
expressions of possible eigenvalues are obtained from Eq. (5):

χ1 = −ω

2
− iα

2
−
√

μ − √
ν,

χ2 = −ω

2
− iα

2
+
√

μ − √
ν,

(11)

χ3 = −ω

2
− iα

2
−
√

μ + √
ν,

χ4 = −ω

2
− iα

2
+
√

μ + √
ν,
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with

μ = β2 − a2 + (ω + iα)2

4
, ν = a4 − 4a2β2+(ω + iα)2β2.

(12)

Therefore, the formation of vector SRBs is subject to the
existence of specific nondegenerate quasi-ABs that are associ-
ated with two distinct eigenvalues. Further analysis shows that
the eigenvalues χk (k = 1, 2, 3, 4) satisfy certain symmetric
properties

χ1r + χ2r = χ′
1r + χ′

2r = −ω,

χ1i + χ2i = χ′
1i + χ′

2i = −α,
(13)

χ3r + χ4r = χ′
3r + χ′

4r = −ω,

χ3i + χ4i = χ′
3i + χ′

4i = −α,

and

χ1r + χ′
1r = −(χ2r + χ′

2r ),

χ1i + χ′
1i = −(χ2i + χ′

2i ),
(14)

χ3r + χ′
3r = −(χ4r + χ′

4r ),

χ3i + χ′
3i = −(χ4i + χ′

4i ),

where the subscripts r and i denote the real and imaginary
parts, respectively. As a result, the group and phase velocities
corresponding to four different eigenvalues satisfy the follow-
ing relations:

Vg(χ1,χ
′
1) − Vg(χ2,χ

′
2) = α(χ1 + χ′

1)r + ω(χ1 + χ′
1)i,

Vp(χ1,χ
′
1) − Vp(χ2,χ

′
2) = ω(χ1 + χ′

1)r − α(χ1 + χ′
1)i,

Vg(χ3,χ
′
3) − Vg(χ4,χ

′
4) = α(χ1 + χ′

1)r + ω(χ1 + χ′
1)i,

Vp(χ3,χ
′
3) − Vp(χ4,χ

′
4) = ω(χ1 + χ′

1)r − α(χ1 + χ′
1)i.

(15)

From the above results, one can easily observe that the
group velocities of ψ

( j)
GB[1](χ1,χ

′
1) [or ψ

( j)
GB[1](χ3,χ

′
3)] are

symmetric with ψ
( j)
GB[1](χ2,χ

′
2) [or ψ

( j)
GB[1](χ4,χ

′
4)] along a

certain direction in the CH equations (1). Although the
direction of such symmetric axis can be affected by the
higher-order effects, the absolute difference of two group
velocities does not depend on the higher-order coefficient
ε. Besides, the nonlinear superposition of two fundamental
breathers ψ

( j)
GB[1](χ1,χ

′
1) and ψ

( j)
GB[1](χ2,χ

′
2) [or, alternatively,

ψ
( j)
GB[1](χ3,χ

′
3) and ψ

( j)
GB[1](χ4,χ

′
4)] cannot form the vector

SRBs. In other words, the formation of SRBs fully depends
on two individual quasi-ABs with two different pairs of
eigenvalues χ1,χ

′
1 and χ3,χ

′
3 (or, alternatively, χ2,χ

′
2 and

χ4,χ
′
4). The above properties are very different from those

in the Manakov system. Specifically speaking, when ε = 0,
the symmetric axis of two group velocities corresponding to
χ1,χ

′
1 and χ2,χ

′
2 (or, alternatively, χ3,χ

′
3 and χ4,χ

′
4) is the

t axis. It means that the above two quasi-ABs have opposite
group velocities. Such symmetric properties will disappear in
the CH equations (1) due to the higher-order effects. However,
the symmetric axis about ψ

( j)
GB[1](χ1,χ

′
1), ψ ( j)

GB[1](χ2,χ
′
2) and

the symmetric axis about ψ
( j)
GB[1](χ3,χ

′
3), ψ ( j)

GB[1](χ4,χ
′
4) have

opposite directions in the CH equations (1).

(a) (b)

FIG. 1. Amplitude profiles for the first wave component of the
second-order vector SRBs in (a) the Manakov system (ε = 0) and
(b) the CH equations (ε = 0.1). The dark and red dashes in each
panel indicate the fundamental quasi-ABs involved in the SRBs. The
dark solid lines are symmetric axes of ψ

(1)
QAB(χ1, χ

′
1), ψ (1)

QAB(χ2,χ
′
2)

and ψ
(1)
QAB(χ3, χ

′
3), ψ (1)

QAB(χ4,χ
′
4), respectively. The parameters are

a = 1, α = 0.2, ω = 1.2, β = 1.

Figure 1 shows the amplitude profiles of the first wave
component of second-order SRBs ψ

(1)
SRB[2] formed by four

individual quasi-ABs in the Manakov system and the CH
equations As shown in Fig. 1, there is merely one symmetric
axis for four fundamental breathers in the Manakov system,
while there are two different axes in the presence of the
higher-order effects. It is also worthwhile to notice that two
such axes in Eqs. (1) are symmetric with the t axis. Figure 2
displays the amplitude profiles of vector SRBs formed by

(a) (b)

(c) (d)

FIG. 2. Amplitude profiles of two components
ψ

( j)
SRB[1](χ[1], χ

′
[1], χ[2],χ

′
[2] ) ( j = 1, 2). The real parameters are

a = 1, α = 0.2, ω = 1.2, β = 1, ε = ±0.1. (a) The amplitude of the
first component with χ[1] = χ1, χ[2] = χ3. (b) The amplitude of the
second component with χ[1] = χ1,χ[2] = χ3. (c) The amplitude of
the first component with χ[1] = χ2,χ[2] = χ4. (d) The amplitude of
the second component with χ[1] = χ2, χ[2] = χ4. The small inset in
each panel shows the amplitude of SRBs at t = 0 and t > 0 and two
dark dashes indicate the velocities of two quasi-ABs composing the
SRBs. The small inset in each panel shows the amplitude profiles of
SRBs at t = 0 and t = 10, respectively.
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two different quasi-ABs corresponding to two individual pairs
of eigenvalues χ1,χ

′
1 (or χ2,χ

′
2) and χ3,χ

′
3 (or χ4,χ

′
4). It

indicates that the SRBs are formed by two quasi-ABs sharing
identical structural characteristics but different group veloci-
ties. Further, the insets in Fig. 2 show an initial small localized
perturbation, which subsequently propagates along two dis-
tinct directions, undergoing a transformation into oscillatory
structures characterized by the amplified amplitudes.

In scalar NLSE, the SRB exemplifies a breather solution,
offering a theoretical framework for describing the nonlinear
evolution of MI developing from a small localized perturba-
tion [8]. The solution is obtained via the dressing method
and the Jukowsky transformation [24], characterized by two
symmetric spectral parameters. However, in the coupled non-
linear systems, the vector SRBs exhibit a distinct signature,
comprising four individual eigenvalues that correspond to four
independent wave modes. Therefore, the vector SRBs are
classified as nondegenerate breathers, a phenomenon absent in
the scalar systems. Although such solutions have been studied
in Ref. [46], those encountered in Eqs. (1), incorporating
higher-order terms, may exhibit novel dynamic behaviors.
These unique attributes cannot be observed in the vector SRBs
of the Manakov system. We will delve into a detailed discus-
sion in the next section.

III. MI INDUCED BY HIGHER-ORDER EFFECTS

In this section, we will explore the higher-order effects on
the MI described by the vector SRBs in Eqs. (1). Since the
evolution of MI described by the fundamental vector SRBs
involves two distinct processes, namely linear and nonlinear
stages, we proceed to investigate the effects on each of these
stages.

A. Linear stage

In this subsection, we will elaborate on the influence of
higher-order effects on the velocity difference of two non-
degenerate quasi-ABs that constitute the vector SRBs for
Eqs. (1). Moreover, we will also provide the higher-order
effects on the MI growth rate in the linear stage.

We study the SRBs ψ
( j)
SRB[1](χ1,χ

′
1,χ3,χ

′
3) ( j = 1, 2) and

ψ
( j)
SRB[1](χ2,χ

′
2,χ4,χ

′
4) ( j = 1, 2). Two different eigenvalues

in the vector SRBs correspond to two individual quasi-ABs,
and their velocity difference can be expressed as

�Vg(χ[1],χ
′
[1],χ[2],χ

′
[2] ) = �V1(χ[1],χ

′
[1],χ[2],χ

′
[2] )

+ ε�V2(χ[1],χ
′
[1],χ[2],χ

′
[2] ),

(16)

with

�V1(χ[1],χ
′
[1],χ[2],χ

′
[2] )

= α

2
[(χ[1] + χ′

[1] )r − (χ[2] + χ′
[2] )r]

+ ω

2
[(χ[1] + χ′

[1] )i − (χ[2] + χ′
[2] )i], (17)

�V2(χ[1],χ
′
[1],χ[2],χ

′
[2] )

= 3ω

2
[(χ[1] + χ′

[1] )r (χ[1] + χ′
[1] )i

− (χ[2] + χ′
[2] )r (χ[2] + χ′

[2] )i]

(a) (b)

(c) (d)

FIG. 3. The velocity difference of two different quasi-ABs corre-
sponding to two pairs of individual eigenvalues (a) χ1, χ

′
1 and χ3,χ

′
3

with ε = 0, (b) χ1, χ
′
1 and χ3, χ

′
3 with ε = 0.1, (c) χ2, χ

′
2 and χ4, χ

′
4

with ε = 0, (d) χ2, χ
′
2 and χ4, χ

′
4 with ε = −0.1. Two vertical dark

lines in each panel represent the region of relative wave number βc. In
two cyan regions outside of the dark lines, the value of β corresponds
to the nondegenerate solutions and the short form “NDR” represents
“nondegenerate region.” When ε �= 0, the velocity difference will be
zero at points of β = ±β0. On the other hand, for the solutions with
eigenvalues χ1,χ

′
1 and χ3, χ

′
3, the gray area within two solid dark

lines corresponds to the region of degenerate solutions. However,
there are no solutions in the gray area when the eigenvalues are taken
to be χ2, χ

′
2 and χ4, χ

′
4. The short forms “DR” and “IR” stand for

“degenerate region” and “invalid region,” respectively.

+ 3α

4

[
(χ[1] + χ′

[1] )
2
r + (χ[2] + χ′

[2] )
2
i

− (χ[2] + χ′
[2] )

2
r − (χ[1] + χ′

[1] )
2
i

]
. (18)

Here, χ[1] = χ1 (or χ2) and χ[2] = χ3 (or χ4).
From the above expressions, the item

�V1(χ[1],χ
′
[1],χ[2],χ

′
[2] ) in the velocity difference always

exists, while �V2(χ[1],χ
′
[1],χ[2],χ

′
[2] ) will disappear when

ε = 0. This indicates that adding the higher-order effects will
produce a significant influence on the velocity difference.
Based on its relationship to MI growth rate, this effect
can further affect the growth dynamics of initial localized
perturbation during the linear stage. In the case of such
condition, the velocity difference will not be equal to zero
for an arbitrary set of parameters, as shown in Fig. 3(a).
However, when ε �= 0, the value of velocity difference of two
quasi-ABs corresponding to two pairs of eigenvalues χ[1],χ

′
[1]

and χ[2],χ
′
[2] can be zero at two certain points with β = ±β0,

which is depicted in Figs. 3(b) and 3(d). Furthermore, the
absolute value of the velocity difference decreases before
the relative wave number β reaches the point ±β0 while it
increases after reaching the two points. In order to further
study the higher-order effects on the absolute difference
of the group velocities, we describe the relation between
velocity difference and higher-order coefficient ε in Fig. 4.
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(a) (b)

FIG. 4. The absolute difference of the group velocities with the
higher-order coefficient ε. The relative wave number is β = 1 and
other parameters are similar to those in Fig. 2.

One can obviously find that there exists a special point ε0 in
each panel of the figure. At such point, the absolute velocity
difference becomes zero. In this way, only if ε = ε0, the
SRBs propagate along a certain direction just as shown in
Fig. 6(a). The exact link between MI and the absolute
difference of two group velocities of the scalar SRB has
been discovered in several integrable systems, including
the NLSE [41], the complex modified KdV equation [34],
the NLS-MB equation [45], and the Manakov system [46],
to name a few. However, the nondegenerate solutions are
generally absent in scalar systems. In addition, due to the
influence of the higher-order effects, the perspectives of
vector SRBs are much different from those in the Manakov
system. Specifically speaking, two group velocities of SRBs
can never be equal without higher-order effects. On the other
hand, the group velocity difference is closely associated with
the MI growth rate in the linear stage (further analysis will be
presented in next section). As a result, the higher-order terms
will have significant impacts on MI described by the vector
SRBs during the linear stage.

From our analysis in the above context, it can be concluded
that the change of absolute value for the velocity difference
can affect the propagation characteristics of the vector SRBs.
Despite the expression of velocity difference being decided
by the relative wave number β, the higher-order coefficient ε

(a) (b)

FIG. 5. Amplitude profiles of the first wave component for the
fundamental SRBs ψ

(1)
SRB[1](χ1,χ

′
1,χ3,χ

′
3) with higher-order coef-

ficient being different values (a) ε = 0 and (b) ε = 0.1. Other
parameters are similar to those in Fig. 2. Red dashes in each panel
serve to delineate the linear and nonlinear stages in the evolution
while dark solid lines represent the propagation directions of two
quasi-ABs contained in the SRBs. The small inset in each panel
shows the amplitude profiles of the SRBs at t = 0 and t �= 0,
respectively.

(a) (b)

FIG. 6. Amplitude profiles of two wave components
for the fundamental SRBs (a) ψ

(1)
SRB[1](χ1, χ

′
1, χ3, χ

′
3) and

(b) ψ
(2)
SRB[1](χ1, χ

′
1, χ3, χ

′
3). The higher-order coefficient is ε = ε0,

at which point two group velocities in SRBs are equal. Other
parameters are similar to those in Fig. 5. Three insets in each panel
are the profile maps at t = 0, t = 100, and t = 200.

as well as the real parameters α and ω, we mainly consider
the effects of higher-order terms on the SRBs owing to their
physical significance. By choosing different values of the pa-
rameters ε, we show such effects on the solutions during the
linear stage. We here take the first wave component of vector
SRB solution ψ

(1)
SRB[1](χ1,χ

′
1,χ3,χ

′
3) as an example.

Figure 5 shows the amplitude profile of the first wave
component with different values of the higher-order coeffi-
cient. One can clearly observe that the evolution of localized
perturbation in the initial stage is prolonged with the increase
of the values of ε before reaching ε0. This finding once again
validates the relation between velocity difference and the MI
growth rate proposed in the complex modified KdV equa-
tion [34]. In contrast to Ref. [34], where the change in velocity
difference are not attributed to the changes in higher-order
terms, our results originate precisely from such adjustments.
Thus, we can regulate the evolution dynamics of localized
small perturbations during the initial stage by adjusting the
values of higher-order terms.

When ε = ε0, the small multipeak localized perturbation
neither evolves into two quasi-ABs nor is completely sup-
pressed. In the previous study within the NLSE hierarchy
framework [34], a small-amplitude perturbation evolves along
a certain direction with small oscillations, while the amplifi-
cation of the perturbation is suppressed completely. This SRB
pattern physically represents a nonamplifying propagation of
wave dynamics, which corresponds to a zero growth rate of
MI [34]. However, as discussed above, such mode does not
exist in the Manakov system. But incorporating higher-order
terms (the CH equations) into such equations may result in
different outcomes. As we expected, a novel bound state of
SRBs is shown in Fig. 6 clearly. This beating pattern can be
attributed to the equivalence of the two group velocities in
the vector SRB waves, which is induced by the higher-order
effects. In this scenario, two quasi-ABs residing within the
SRBs show coherent interaction. Within an oscillatory cycle,
three distinct stages can be identified, corresponding to the
three dotted box regions exhibited in Fig. 6. In the first stage,
the small localized perturbation experiences negligible ampli-
tude growth, undergoing a prolonged period of nongrowing
evolution until it transitions into the second stage. During this
second stage, the amplitude is rapidly amplified, followed by
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(a) (b)

FIG. 7. MI growth rate G (19) of the fundamental SRBs
(a) ψ

(1)
SRB[1](χ1, χ

′
1, χ3, χ

′
3) and (b) ψ

(1)
SRB[1](χ2,χ

′
2, χ4, χ

′
4) under

higher-order effects. Other parameters are a = 1, ω = 1.2, α =
0.2, β = 1.

a subsequent attenuation. In the third stage, the amplitude of
this bound state returns to the level comparable to the initial
small localized perturbation. It is very worthwhile to note
that the amplitude profiles shown in Fig. 6 are fundamentally
different from the NLSE described in Ref. [34]. The small
localized perturbation in Fig. 6 will grow and then decay after
a long period of time. The physical explanation behind this
phenomenon remains unclear and may be related to the non-
degenerate characteristic of the solutions. This result can be
used for the study of SRB bound states in specially designed
optical systems described by the higher-order NLSEs with
fixed structural parameters.

Then we further study the mechanism of MI growth rate
varying with the higher-order terms. More details on the exact
expression of MI growth rate will be given in Sec. IV. Here
we merely use the results of MI growth rate for Eqs. (1) [57],

G = Im[18εa2 − 6εβ2 − 2εQ2 ± 6ε
√

a4 − 4a2β2 + β2Q2

±
√

4β2 − 4a2 + Q2 ∓ 4
√

a4 − 4a2β2 + β2Q2]. (19)

Figure 7 shows the MI growth rate with the change of
higher-order coefficient ε. One can find that the MI growth
rate becomes zero at a certain point ε0 of each panel. The
aforementioned result can be mutually corroborated with the
finding presented in Fig. 4 regarding the relationship between
the velocity difference and higher-order term ε. Later, we will
explore the precise relationship between the vector SRB and
MI growth rate based on this formula.

B. Nonlinear stage

In this subsection, we will investigate the characteristics
of nonlinear stage of MI developed from the localized multi-
peak weak perturbations, namely the nonlinear excitations of
different types of nondegenerate wave modes for the vector
SRBs.

In fact, previous studies have already delved into this issue,
primarily focusing on the SRB mechanism in scalar systems,
or the SRB dynamics in vector systems without higher-order
effects. The Lakshmanan-Porsezian-Daniel equation with the
fourth dispersive and nonlinear terms has emerged as a pri-
mary focus of concern [40]. It is found that a fascinating
dynamic where a small localized perturbation can evolve into

three different types of states during the nonlinear stages of
MI, including the coexistence of a quasi-AB and a multipeak
soliton, the formation of two stable multipeak solitons mov-
ing in opposite directions, and a pulsating structure formed
by two stable multipeak solitons moving in the same di-
rection. Importantly, these patterns are not observed in the
standard NLSE, indicating that they are unique characteris-
tics induced by higher-order effects. Further findings into the
complex modified KdV equation [34] have revealed some
novel intriguing dynamics. In particular, the half-transition
mode exhibits a unique mixed pattern with a quasi-AB and
quasiperiodic waves, while the full-suppression mode shows
a distinct nonamplifying behavior characterized by localized
small perturbations linked to the diminishing growth rate of
MI. Remarkably, both analytical and numerical analyses con-
firm that these distinct SRBs can originate from an identical
small localized perturbation, highlighting a profound rela-
tion between SR modes and the outcomes of linear stability
analysis. Moreover, Liu et al. discovered a novel type of
interference patterns emerging from the focusing NLSE with
localized periodic initial conditions. These patterns exhibit
distinctive chess-board-like spatiotemporal structures, observ-
able as a direct outcome of the collision between two breathers
[13]. A significant advancement has been achieved in the
analysis of vector systems. Liu et al. successfully formulated
an exact theory describing the behavior of vector SRBs within
the framework of the Manakov equations [46]. Notably, in
the context of nondegenerate solutions, the existence of these
vector SRBs has been verified in both the focusing and de-
focusing Manakov systems. This comprehensive theory relies
heavily on a detailed eigenvalue analysis, further revealing the
exact relation between SRBs and MI. A noteworthy finding
is that, under focusing conditions, a localized periodic initial
modulation of the plane wave has the potential to trigger not
just a single SRB, but also more intricate second-order SRBs.
The aforementioned research work has further developed the
study of the nonlinear stage of MI. However, within the frame-
work of vector SRBs, the characteristics of the nonlinear stage
of MI considering higher-order effects have yet to be explored.

In addition to the fundamental nondegenerate SRB waves,
one can expect that there are other kinds of wave modes
during the nonlinear stage for Eqs. (1) due to the presence of
higher-order effects. These effects will significantly reshape
the vector SRB waves, introducing complexities and varia-
tions that deviate from the fundamental modes. This suggests
that a small localized perturbation can evolve into a richer
variety of modes distinct from the fundamental mode during
the nonlinear stage of MI. The related studies have primar-
ily been conducted in the context of scalar SRBs [40,41];
however, the mechanism remains an unresolved issue for
the vector ones. From Eqs. (9) and (10), one can observe
that the group and phase velocities are closely related to
the excitations of wave mode of the vector SRB solutions
ψ

( j)
SRB[1](χ[1],χ

′
[1],χ[2],χ

′
[2] ). Under a specific condition, the

coincidence of group and phase velocities of the quasi-ABs
embedded within the vector SRBs will trigger a multipeak
soliton state. We provide a detailed analytical examination in
the following part.
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There are two characteristic lines in the quasi-AB, which
are expressed as follows:

Lp : αx +
{
ε

[
6ωχi

(
χr + ω

2

)
+ 3α(χr + ω)2

− α
(
3χ2

i + 3αχi + α2
)]

+ αχr + ωχi + ωα − 2εα
(
a2

1 + a2
2

)}
t = c1, (20)

Ls : ωx +
{
εω

[(
3χ2

r + 3ωχr + ω2
)− 3

(
2αχr

(
χi + α

2

)
+ ω(χi + α)2

)]
+ ω

(
χr + ω

2

)
− α

(
χi + α

2

)
− 2εω

(
a2

1 + a2
2

)− ε
(
a2

1 + a2
2

)}
t = c2. (21)

Their directions are denoted as Dp and Dg, characterizing
the properties of solitary-wave component and periodic-wave
component respectively. When these two directions are mu-
tually parallel, the quasi-ABs can undergo a transformation
into the multipeak solitons. This condition is mathematically
formulated as the relation

V g = V p. (22)

The solutions of the quasi-ABs can be rewritten as the non-
linear combination of the trigonometric function cos � and
hyperbolic function cosh �:

ψ
( j)
QAB = ρ jψ

( j)
0 ψ

( j)
qab, j = 1, 2, (23)

where

ρ j = χ′∗ + β j

χ′ + β j

√
(χ∗ + β j )(χ′∗ + β j )

(χ + β j )(χ′ + β j )
(24)

and

ψ
( j)
qab = κ cosh(� + iδ j ) + � cos(� + iγ j )

κ cosh � + � cos �
. (25)

The above results mean the quasi-ABs can be regarded as the
nonlinear superposition of the periodic wave and a solitary
wave. When the group velocity is equal to the phase velocity
[i.e., satisfying Eq. (22)], both wave components have the
same characteristic direction. As a result, the quasi-AB will
be transformed into a soliton.

Although there are two sets of group and phase
velocities Vg(χ[1],χ

′
[1] ),Vp(χ[1],χ

′
[1] ) and Vg(χ[2],χ

′
[2] ),

Vp(χ[2],χ
′
[2] ) being contained in the SRB solutions

ψ
( j)
SRB[1](χ[1],χ

′
[1],χ[2],χ

′
[2] ) ( j = 1, 2), they cannot satisfy the

relation (22) simultaneously (see Fig. 8). Thus, only one of the
quasi-ABs can be converted into a soliton, as shown in Fig. 9,
which presents the transformed SRBs ψ

( j)
SRB[1](χ1,χ

′
1,χ3,χ

′
3)

and ψ
( j)
SRB[1](χ2,χ

′
2,χ4,χ

′
4), respectively. We can clearly

observe that, as time evolves, a small localized perturbation
develops into a quasi-AB and a multipeak soliton during
the nonlinear stage of MI. In the Manakov system, there is
no such analog. As the vector SRBs are composed of two
quasi-ABs, the solitary and periodic wave components are
inherent and neither of them will disappear alone. As a result,

(a) (b)

(c) (d)

FIG. 8. The group and phase velocities of two quasi-ABs con-
tained in the SRBs ψ

( j)
SRB[1](χ[1], χ

′
[1],χ[2], χ

′
[2] ), j = 1, 2. (a) χ[1] =

χ1,χ[2] = χ3 and ε = 0, (b) χ[1] = χ1,χ[2] = χ3 and ε �= 0,
(c) χ[1] = χ2, χ[2] = χ4 and ε = 0, (d) χ[1] = χ2,χ[2] = χ4 and ε �=
0. The value of β is valid only if it is in the region of the cyan area
(nondegenerate regime) of each panel. Other parameters are similar
to those in Fig. 2.

they can only be transformed into multipeak solitons rather
than evolving into alternative wave patterns, such as periodic,
W-shaped, or M-shaped waves. Based on the preceding
analysis, one can conclude that the linear and nonlinear stages
of MI, as described by the vector SRBs within the framework
of Eqs. (1) incorporating higher-order effects, are very
different from those in the Manakov system. More precisely,
the higher-order effects can extend the evolution duration
of the small localized perturbation during the linear stage
when the difference between two group velocities is not equal
to zero. Moreover, when the difference vanishes, the evolution
time is significantly increased, leading to sustained coherent
interactions between two quasi-ABs in their initial perturbed
state. On the other hand, the difference between the group and
phase velocities is affected by the higher-order effects. When
it equals zero, a phase transition occurs in the evolution state
of the localized perturbation during the nonlinear stage of
MI. As a result, the small localized perturbation in the initial
condition may be excited to other types of wave modes. Such
results illustrate that one may control the MI characteristics
of initial perturbations in both linear and nonlinear stages
by adjusting the higher-order coefficient ε in such model.
Our results offer valuable insights for further exploration of
chaotic wave fields and integrable turbulence.

IV. IMPROVED EXACT LINK

In this section, we will further investigate the linear MI
described by the vector SRBs in Eqs. (1). The exact links
between MI and the absolute difference of two group veloci-
ties for the SRBs in the infinite NLSE hierarchy [41] and the
Manakov system [46] have been established. By performing
Taylor expansion and approximation on the parameter α, the
latter involved the utilization of the eigenvalues χ[1] (and χ′

[1])
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 9. Amplitude profiles of two components for the SRBs:
(a), (c) ψ

( j)
SRB[1](χ1, χ

′
1, χ3, χ

′
3) and (e),(g) ψ

( j)
SRB[1](χ2, χ

′
2,χ4, χ

′
4);

and their sectional views (b),(d) ψ
( j)
SRB[1](χ1, χ

′
1, χ3, χ

′
3) and (f), (h)

ψ
( j)
SRB[1](χ2, χ

′
2,χ4, χ

′
4) at different t . ψ

( j)
QAB(χk, χ

′
k ) ( j = 1, 2, k =

1, 2, 3, 4) stand for the quasi-ABs corresponding to the certain pair
of eigenvalues χk, χ

′
k (k = 1, 2, 3, 4) that can form the SRBs.

and χ[2] (and χ′
[2]) corresponding to two different spectral

parameters λ[1] and λ[2] to describe this formula. These results
illustrate that the MI growth rate in the linear stage can be
expressed by a linear combination of group velocities. In fact,
only two eigenvalues χ[1] and χ[2] were employed in Ref. [46]
to interpret this relationship, and the result is an approximate
description. Our previous results have shown that the higher-
order effects significantly affect the MI growth rate during the
linear stage. In this study, we aim to refine the existing formula
to ensure its compatibility with Eqs. (1), which incorporates
the higher-order terms, specifically within the nondegenerate
region. To achieve this, we redefine the exact link by using
four different eigenvalues, instead of utilizing approximate
expansions.

First, we recall the explicit relation between MI and ve-
locity difference for the scalar SRB in the infinite NLSE
hierarchy [41], as well as that for the vector SRBs in the Man-
akov system [46]. For the NLSE hierarchy, the SRB solution
ψSRB is constructed by employing the DT, and its spectral pa-
rameter λ is parametrized by the Jukowsky transform [8,24].
The nonlinear stage of MI is described by the scalar SRB
developing from an identical initial small perturbation δψ ,
which can be obtained explicitly through the procedure in
Refs. [8,24]. On the other hand, in the initial stage, the MI
growth rate of a small amplitude perturbation on a plane wave
background has been studied by linear stability analysis, and
the dispersion relation between the growth rate Gsr and the
perturbation frequency Q has been found [41]. Comparing the
growth rate Gsr and the velocity difference �Vgr (λ1, λ2), the
exact link between them can be presented as follows [41]:

Gsr = �Vgrηr, (26)

with ηr being a parameter depending on the spectral parameter
λ. This result is significant since it is not only an exact relation
to show the MI properties but a general link that holds for the
different order NLSEs [41].

Further, this formula has been successfully extended to the
vector SRBs in the Manakov system. Given this scenario, the
exact link is provided in the following form [46]:

Ĝsr = γ�Vg(χ[1],χ[2] ), (27)

with γ = α/2 being a parameter that determines the width of
the breather. It is very worthwhile to notice that the vector
SRBs are naturally nondegenerate solutions in the Manakov
system. Consequently, the link (27) is presented in this con-
text with two different eigenvalues χ[1] and χ[2]. Remarkably,
Eq. (27) is an approximation formula when ignoring the
higher-order term O(γ 2). In fact, there are four independent
wave modes in nondegenerate solutions, each corresponding
to a unique eigenvalue. We then speculate that the relation (27)
may be further refined. Moreover, the relation should involve
the higher-order coefficient ε in the CH equations, since they
can have impacts on the MI growth rate as well as the group
and phase velocities.

Next, we consider the exact relation between the MI growth
rate and the linear combination of group velocities of the
SRBs in the framework of the CH equations. Inspired by
previous thought [41,46], the formula of MI growth rate for
the vector SRBs in Eqs. (1) in the linear stage can be derived
by considering Q = ω + iα as the small initial perturbation
frequency. In fact, for the MI described by the ABs, we
usually set Q = ω as a real perturbation frequency while
Q = iα as an imaginary frequency for the MI described by
the KMS. In this way, we set Q = ω + iα as a complex
frequency for the general breather. Based on the aforemen-
tioned findings, the physical properties of vector SRBs are
influenced by either the group velocity relationship between
two quasi-ABs (reflecting the delay mechanism of growth of
the small localized perturbation during the linear stage) or the
phase group velocity relationship of each quasi-AB (relevant
to state transitions during the nonlinear state). From the exact
expressions of the vector SRBs in Eqs. (1) (see Appendix B:
Higher-order breather solutions via DT), the MI growth rate is
closely related to the absolute difference between two group
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velocities of different quasi-ABs, as shown in Fig. 2. In fact,
it is four eigenvalues, rather than two, that govern the group
velocity of each quasi-AB, namely, χ[1]

[k],χ
[2]
[k] = χ[1]

[k] + ω + iα
(k = 1, 2, 3, 4). Therefore, one can expect that the growth rate
G in the linear stage is in direct proportion to the combina-
tion of two groups of group velocities Vg(χ[1]

[k1] ) [or Vg(χ[2]
[k1] )]

and Vg(χ[1]
[k2] ) [or Vg(χ[2]

[k2] )]. Each of them corresponds to two

eigenvalues χ[1]
[k],χ

[2]
[k] and the MI growth rate G (19) obeys the

following equation:

G = ε�Vg
(
χ[1]

[1],χ
[2]
[1],χ

[1]
[2],χ

[2]
[2]

)
= ε

[
c1Vg

(
χ[1]

[1]

)+ c2Vg
(
χ[2]

[1]

)
+ c3Vg

(
χ[1]

[2]

)+ c4Vg
(
χ[2]

[2]

)]
, (28)

with c1–c4 being four real parameters that accounting for the
contribution degree of each Vg(·). Here, �Vg(·1, ·2, ·3, ·4) =
c1Vg(·1) + c2Vg(·2) + c3Vg(·3) + c4Vg(·4) is a function of four
variables and Vg(·) is a function of one variable,

Vg(·) = ε

{
6ω Im(·)

[
Re(·) + ω

2

]
+ 3α[Re(·) + ω]2

− α[3 Im(·)2 + 3α Im(·) + α2]

}
+ α Re(·) + ω Im(·) + ωα − 2εαa2. (29)

Equation (28) describes the exact link between the linear
MI and vector SRBs in the CH equation (1). We can further
delve into Eq. (28) from several perspectives. First, the right-
hand side of Eq. (28) encapsulates group velocities described
by four different eigenvalues. This indicates that, in a nonde-
generate scenario, the evolution of the initial small localized
perturbations for the first-order SRB is influenced by four
eigenvalues simultaneously during the linear stage. While in
the nonlinear stage, the two quasi-ABs evolved from the initial
perturbation are controlled by two different sets of character-
istics. Second, the parameters c1–c4 determine the magnitude
of the contributions from these eigenvalues. In fact, we can
utilize β to depict the discontinuous variation (intensity) of
degeneracy. When the absolute value of |β| is less than or
equal to βc (a critical value that distinguishes between degen-
erate and nondegenerate solutions), the solution represents a
degenerate case (and, conversely, a nondegenerate case when
it is greater). As the absolute value of β gradually approaches
βc, and χ′ approaches −χ (χ = χk, k = 1, 2, 3, 4), then the
degeneracy property of the solution disappears, and it finally
becomes a degenerate one. We hypothesize that, during this
process, the contribution of each eigenvalue and its deter-
mined group velocity to the growth rate of initial perturbations
will change accordingly. Therefore, the values of four pa-
rameters c1–c4 should also be adjusted accordingly to reflect
the varying degrees of contribution of the aforementioned
eigenvalues to the growth of initial perturbations. This adjust-
ment will enhance the matching degree between both sides of
Eq. (28). Unfortunately, we have not yet discovered a precise
method to determine the coefficients c1–c4. Finally, it is worth
noting that each expression of group velocity incorporates
the higher-order terms ε, whose changes can significantly
affect the group velocity described by each eigenvalue.

(a) (b)

(c) (d)

FIG. 10. (a), (b) The MI growth rate G and the group veloc-
ity linear combination ε�Vg(χ[1]

[1], χ
[2]
[1], χ

[1]
[2], χ

[2]
[2] ), χ[1]

[1] = χ1 (or χ2),
χ[1]

[2] = χ3 (or χ4) with the change of β. The acronyms “LS” and
“NLS” in the two panels of the first row stand for “degenerate
linear stage” and “nondegenerate linear stage.” Other parame-
ters are a = 1, α = 0.2, ω = 1.2 and (c) ε = 0.2, (d) ε = 0.17.
(c),(d) The MI growth rate G and the combination of group velocity
ε�Vg(χ[1]

[1], χ
[2]
[1],χ

[1]
[2], χ

[2]
[2] ), χ[1]

[1] = χ1 (or χ2), χ[1]
[2] = χ3 (or χ4) with

the change of ε. At a certain point ε = ε0 of each panel in the lower
row, the MI growth rate G = 0. Other parameters are a = 1, α =
0.2, ω = 1.2, β = 1.

Consequently, any modification to this parameter has the
potential to trigger changes in the group velocity difference
between two quasi-ABs, subsequently influencing the growth
rate G. This observation aligns perfectly with our previous
conclusions. This formula (28) represents a significant ad-
vancement from previous result [46]. Not only does it explain
the relationship between the vector SRBs in the nondegenerate
region and the MI growth rate, but, crucially, it accounts for
the group velocity determined by four eigenvalues, rather than
relying on a higher-order approximation of α. In addition, the
significance of the formula also lies in its ability to facilitate
a exact understanding of linear MI and nondegenerate SRBs
subjected to the higher-order effects.

In order to further confirm our results, we provide several
numerical examples that illustrate and reinforce our results.
First, we compare the MI growth rate G via linear stability
analysis with our new formula �Vg(χ[1]

[1],χ
[2]
[1],χ

[1]
[2],χ

[2]
[2] ) in

the whole regime. When χ[1]
[1] = χ 1,χ

[1]
[2] = χ3 and the higher-

order coefficient ε is set to be ε = 0.1, the parameters are
assigned as follows: c1 : c2 : c3 : c4 → 2 : 0 : −1 : −1. Alter-
natively, when c1 : c2 :, c3 : c4 → 10 : −4 : −5 : −1, the pa-
rameters are adjusted to χ[1]

[1] = χ2, χ[1]
[2] = χ4 and ε = −0.1.

As shown in Figs. 10(a) and 10(b), one can observe that,
in the nondegenerate regime, two results exhibit an agree-
ment, whereas the formula ceases to be valid in the adjacent
degenerate regime. Besides, there are two symmetric points
in each panel of the first row, where the MI growth rate
is zero. For simplicity, we set such two points as βc and
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−βc and at such two points the SRBs can be transformed
into solitons. Next, we take the higher-order coefficient ε

as the variable and compare G with �Vg(χ[1]
[1],χ

[2]
[1],χ

[1]
[2],χ

[2]
[2] )

in the nondegenerate regime. When χ[1]
[1] = χ1, χ[1]

[2] = χ3 and
β = 1, for the first wave component, we set the parameters
as c1 = 1, c2 = 0, c3 = −0.5, c4 = −0.5 and c1 = 1, c2 =
−0.4, c3 = −0.5, c4 = −0.1 for the similar wave component
with χ[1]

[1] = χ2, χ[1]
[2] = χ4. It is obvious that two results fit

perfectly, as shown in Figs. 10(c) and 10(d). In addition, there
also exists a certain point ε0 in each panel of the lower row, in
which the MI growth rate is zero and therefore the SRBs will
be converted into other types of waves.

V. SCALAR SUPER-REGULAR BREATHERS

In this section, we will discuss the dynamic behaviours of
the SRB in scalar case. We will take the Hirota equation (C1)
as an example and show the amplitude profiles of the SRBs.
We will further analyze the impact of higher-order effects on
the solutions, as well as their influence on the relationship
between the MI growth rate and their group velocities.

In fact, when β1 = β2 = 0, the fundamental solutions (3)
reduce to the scalar one in the Hirota equation (C1) [39],

ψSGB[1] = ψ0[1 − (1 − H )ψgb], (30)

where

ψ0 = a exp(2ia2t ), (31)

ψsgb = 2iχi
B(χ)(e� + e−i�) + B(χ + ω + iα)(e−� + ei�)

ε(χ)e� + ε(χ + ω + iα)e−� + Dei� + D∗e−i�
,

(32)

with

B(χ) = 1

χ
,

ε(χ) = 1 + 2a2

χχ∗ ,

D = 1 + 2a2

χ∗(χ + ω + iα)
. (33)

Other parameters such as α,ω, ε, �,� are similar to those
in Eqs. (3). The available value of spectral parameter λ and
eigenvalue χ will be given in Appendix C: Particular case:
The scalar SRBs. When the parameter α is sufficient small
but nonzero, the breather solution (30) describes a quasi-AB.
The nonlinear superposition of two different quasi ABs can
generate the SRB in Eq. (C1).

Figure 11 shows the amplitude profiles of the scalar SRB.
When ε = 0, the solution (30) describes the fundamental
breathers in the scalar SRB for the NLSE [8]. When ε �= 0,
the higher-order effects will take influence on the group ve-
locities, as shown in Fig. 11(b). When ε �= 0 and Vg = Vp,
one of the quasi-ABs contained in the scalar SRB can be
converted into a multipeak solitary wave [see Fig. 11(c)].
Further, Fig. 11(d) shows that when ε = ε0(ε → ∞), two
group velocities in the SRB are equivalent to each other and
the growth will be suppressed. The above results have been
partially presented in Ref. [39].

(a) (b)

(c) (d)

FIG. 11. The amplitude profile of the scalar SRB ψSRB[1](χ1,χ2)
in the Hirota equation with different higher-order coefficient ε. The
parameters are a = 1, α = 0.2, ω = 1.2, β = 1.

Compared with the vector SRBs induced by the higher-
order effects in Eqs. (1), the scalar SRB is merely the
superposition of two quasi-ABs with opposite group ve-
locities. However, the vector SRBs are formed by the
nondegenerate quasi-ABs that are absent in the scalar system.
In other words, there are two individual eigenvalues corre-
sponding to two different wave modes in each fundamental
quasi-AB for the vector SRBs. On the other hand, the fun-
damental quasi-AB merely consists of one spectral parameter
for the scalar SRB. This distinct difference between the scalar
and vector SRBs can be attribute to the additional wave com-
ponents taken into account in the coupled systems. Therefore,
it is meaningful for the extension of SRBs to the vector fields.

VI. NUMERICAL SIMULATION

In this section, we will employ the approximate initial
conditions in simplified forms to excite the fundamental and
second-order solutions for the SRBs in Eqs. (1). Moreover, we
also excite the converted SRBs by the numerical simulation,
using both the exact initial condition and an approximate one.

The above vector SRBs can be excited by numerical sim-
ulation, utilizing the exact initial condition [see Eqs. (B4) in
Appendix B: Higher-order breather solutions via DT]. Addi-
tionally, we present an alternative way to excite them by using
the initial conditions in the form of periodic perturbation of
the vector plane wave localized in x, which shows similarities
to that employed in the Manakov system:

ψ ( j) = ψ
( j)
0 [1 + εLp(x/xW ) cos (ωx)], (34)

where ψ
( j)
0 are the vector background plane waves as those in

Eqs. (3), and the localized function Lp(x/xW ) is represented
either by the sech function Lp(x/xW ) = sech(x/xW ) or by a
Gaussian function Lp(x/xW ) = exp(−x2/x2

W ) with xW being
the width of the localization, which is comparable to that of
the exact solutions, namely 1/α.
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(a) (b)

(c) (d)

FIG. 12. Amplitude profiles of (a), (b) the fundamental SRBs
and (c), (d) the second-order SRBs by the numerical simulation
started with Eq. (34). Dashed lines in each panel illustrate the group
velocities of individual breathers. The parameters are a = 1, α =
0.2, ω = 1.2, β = 1, ε = 0.1.

Figure 12 shows the amplitude evolution of fundamental
SRBs |ψ ( j)

SRB[1](χ1,χ
′
1,χ3,χ

′
3)| and the second-order SRBs

|ψ ( j)
SRB[2](χ1,χ

′
1,χ2,χ

′
2,χ3,χ

′
3,χ4,χ

′
4)| obtained from the nu-

merical simulations developed from the approximate initial
condition (34). The plane waves are unstable and develop
into two quasi-ABs with opposite group velocities. Figure 13
shows the amplitude evolution of fundamental and second-
order SRBs excited by the exact initial conditions. Such pro-
files are nearly identical to those in Figs. 1 and 2. On the other
hand, Fig. 14 shows the amplitude evolutions of the converted
SRBs described by |ψ ( j)

SRB[1](χ1,χ
′
1,χ2,χ

′
2,χ3,χ

′
3,χ4,χ

′
4)|,

which are excited by the exact initial condition and approxi-
mate initial condition. Although the amplitude profiles of their
initial conditions are different (unfortunately, we are unable to
find an approximate representation for numerical excitation
similar to that for the analytical initial case), similar wave
patterns are observed to be excited. In contrast to the general
SRBs, the converted waves evolve along a certain direction
and exhibit the solitary-wave state with several peaks. Com-
paring the two panels in the figure, it is obvious that they
exhibit similar amplitude profiles in the initial stage while the
right panel shows unstable structures after a short time.

VII. CONCLUSION

In conclusion, we have presented the solutions of the vector
SRBs within the framework of the CH equations incorporating
the higher-order effects. These vector SRBs, which arise from
the nonlinear superposition of two individual nondegener-
ate quasi-ABs linked to two different eigenvalues, represent
a significant advancement compared to those in the scalar
models. Our investigation delved deeper into the influence of
higher-order effects on the vector SRBs, shedding light on

(a) (b)

(c) (d)

FIG. 13. Amplitude profiles of the fundamental SRBs involv-
ing two quasi-ABs corresponding to two different eigenvalues (a),
(b) χ1,χ

′
1 and χ3, χ

′
3 and (c), (d) χ2, χ

′
2 and χ4, χ

′
4 developed from

the exact initial conditions by the numerical simulation. Red dashed
lines in each panel serve to delineate the linear and nonlinear stage
of evolution. The dark dashes illustrate the group velocities of two
individual fundamental breathers. The parameters are a = 1, α =
0.2, ω = 1.2, β = 1, ε = 0.1.

their impact during both the linear and nonlinear stages of
MI. Higher-order effects can increase the growth time of the
linear stage and reshape the evolution modes of the nonlinear
stage. In particular, a significant finding is that the presence of
the higher-order term can neutralize the absolute difference in

(a) (b)

(c) (d)

FIG. 14. Amplitude profiles of the converted SRBs excited by
the (a) exact initial condition and (b) approximate initial con-
dition through the numerical simulations, respectively. The cross
sections of the (c) exact initial conditions and (d) approximate condi-
tions. The parameters are a = 1, α = 0.2, ω = 1.2, β = βc, ε = 0.1.
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group velocities inherent in SRBs. This phenomenon cannot
be observed in the Manakov system nor in a series of scalar
models such as the NLSE and the complex modified KdV
equation. Further analysis on the MI has unveiled the intricate
relationship between the vector SRBs and MI growth rate
under the influence of higher-order effects. We have refined
the existing formulas, eliminating the necessity to neglect
higher-order terms from the Taylor expansion of α. Instead,
we have utilized four distinct eigenvalues for a more compre-
hensive description. In the nondegenerate regime, our formula
exhibits a good fit. We have also reduced the results to the case
of scalar SRBs. We have finally excited both the SRBs as well
as their converted modes by the numerical simulation started
with the localized periodic initial condition. Our study not
only advances the theoretical understanding of vector SRBs
with higher-order effects, but also paves the way for practical
applications and the interpretation of related experimental
phenomena.

No new data were created or analyzed in this study.
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APPENDIX A: VECTOR BREATHER SOLUTIONS VIA DT

The fundamental solutions for the quasi ABs as well as the
vector SRBs for Eqs. (1) can be derived via the DT [56]. Here
we present more details. Equations (1) admit the following
Lax pair:

�x = U�, �t = V�, (A1)

where � = (R, S,W )T (T denotes a matrix transpose) and

U = i

⎛⎝ λ ψ (1)∗ ψ (2)∗

ψ (1) 0 0
ψ (2) 0 0

⎞⎠, (A2)

V = λ3V3 + λ2V2 + λV1 + V0, (A3)

with

V3 = i

2
(I + �),V2 = i

4
(I + �) + iεQ,

V1 = i

2
Q + ε�(Qx − iQ2) + iε�0a2,

V0 = 1

2
�(Qx − iQ2) + ε

4
(I − �)(Q2 − 2a2)x − 3iεQa2,

(A4)

and

� =
⎛⎝1 0 0

0 −1 0
0 0 −1

⎞⎠, �0 =
⎛⎝1 0 0

0 −2 0
0 0 −2

⎞⎠, (A5)

Q =
⎛⎝ 0 ψ (1)∗ ψ (2)∗

ψ (1) 0 0
ψ (2) 0 0

⎞⎠. (A6)

In the above equations, the asterisk “∗” represents the
complex conjugation, a2 = |ψ (1)|2 + |ψ (2)|2, and λ is the
spectral parameter which satisfies the following relation with
the eigenvalue χ,

λ = χ − a2
1

χ + β1
− a2

2

χ + β2
. (A7)

The compatibility condition U − V + [U ,V ] = 0 gives rise to
the CH equations (1). Taking the seed solutions as the vector
background plane waves,

ψ
( j)
0 = a j exp

{
iβ jx + i

[
a2

1 + a2
2 − β2

j

2
+ ε

(
β3

j − 3
(
a2

1 + a2
2

)
× β j − 3a2

j (β1 + β2)
)]

t

}
, j = 1, 2,

one can obtain the eigenfunctions of the linear system (A1) as

R[0]
[k] = c1ϕ

[1]
[k] + c2ϕ

[2]
[k] + c3ϕ

[3]
[k] ,

S[0]
[k] = ψ

(1)
0

(
c1

ϕ
[1]
[k]

χ[1]
[k] + β1

+ c2

ϕ
[2]
[k]

χ[2]
[k] + β1

+ c3

ϕ
[3]
[k]

χ[3]
[k] + β1

)
,

W [0]
[k] = ψ

(2)
0

(
c1

ϕ
[1]
[k]

χ[1]
[k] + β2

+ c2

ϕ
[2]
[k]

χ[2]
[k] + β2

+ c3

ϕ
[3]
[k]

χ[3]
[k] + β2

)
,

(A8)

where

ϕ
[l]
[k] = exp

[
iχ[l]

[k]x + i

(
εχ[l]3

[k] + χ[l]2
[k]

2
− 2εa2χ[l]

[k] − εa2

)
t

]
,

l = 1, 2, 3, (A9)

with k = 1, 2, . . . , N denoting the order of the obtained
breather solutions. Moreover, the parameters cl (l = 1, 2, 3)
are three arbitrary real constants, and χ[1]

[k] is the eigenvalue
obtained form Eq. (11), and denoted as

χ[2]
[k] = χ[1]

[k] + ω + iα,

χ[3]
[k] = −χ[1]

[k] − a2
1

χ[1]
[k] + β1

− a2
2

χ[1]
[k] + β2

− ω − iα.

For simplicity, we take c1 = c2 = 1, c3 = 0. Then the fun-
damental breather solutions read as

ψ
(1)
1 = ψ

(1)
0 + (λ∗

[k] − λ[k] )
R[0]∗

[k] S[0]
[k]∣∣R[0]

[k]

∣∣2 + ∣∣S[0]
[k]

∣∣2 + ∣∣W [0]
[k]

∣∣2 ,

ψ
(2)
1 = ψ

(1)
0 + (λ∗

[k] − λ[k] )
R[0]∗

[k] W [0]
[k]∣∣R[0]

[k]

∣∣2 + ∣∣S[0]
[k]

∣∣2 + ∣∣W [0]
[k]

∣∣2 ,

(A10)

which can be also written as the form of Eqs. (3).
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APPENDIX B: HIGHER-ORDER BREATHER SOLUTIONS
VIA DT

We perform the iteration of DT to obtain the exact solutions
for the fundamental SRBs,

ψ
(1)
SRB[1] = ψ

(1)
2 = ψ

(1)
1 + (λ∗

[2] − λ[2] )

× R[1]∗
[2] S[1]

[2]∣∣R[1]
[2]

∣∣2 + ∣∣S[1]
[2]

∣∣2 + ∣∣W [1]
[2]

∣∣2 ,

ψ
(2)
SRB[1] = ψ

(2)
2 = ψ

(1)
1 + (λ∗

[2] − λ[2] )

× R[1]∗
[2] W [1]

[2]∣∣R[1]
[2]

∣∣2 + ∣∣S[1]
[2]

∣∣2 + ∣∣W [1]
[2]

∣∣2 , (B1)

where

R[1]
[2] = T [1]T [0]R[0]

[2],

S[1]
[2] = T [1]T [0]S[0]

[2], (B2)

W [1]
[2] = T [1]T [0]W [0]

[2] ,

with

T [0] = I,

T [1] = I + λ∗
[1] − λ[1]

λ[2] − λ∗
[1]

�[0]
[1]�

[0]†
[1]

�[0]†
[1] �[0]

[1]

. (B3)

Such expressions can also be written in the following form:

ψ
( j)
SRB[2] = ψ

( j)
0

eX1 H ( j)
1 + eX2 H ( j)

2 + 2eX3
(
M ( j)

1 eiY1 H ( j)
31 + M ( j)

2 e−iY1 H ( j)
32 + eiY2 H ( j)

33 + e−iY2 H ( j)
34

)
eX1 H1 + eX2 H2 + 2eX3 (M1eiY1 H31 + M2e−iY1 H32 + eiY2 H33 + e−iY2 H34)

, (B4)

where

H1 = A1 + A2[cosh (�1 − γ1) + cos (�1 + δ1)],

H2 = B1 + B2[cosh (�2 − γ2) + cos (�2 + δ2)],

H31 = cosh (�31 + γ31) + cosh (�32 + γ32)

+ cos (�31 + δ31) + cos (�32 + δ32),

H32 = cosh (�31 − γ31) + cosh (�32 − γ32)

+ cos (�31 − δ31) + cos (�32 − δ32),

H33 = N1 cosh (�31 + γ33) + N2 cosh (�32 + γ34)

+ N1 cos (�31 + δ33) + N2 cos (�32 + δ34),

H34 = N1 cosh (�31 − γ33) + N2 cosh (�32 − γ34)

+ N1 cos (�31 − δ33) + N2 cos (�32 − δ34),

M1 = √
a1a2c3c4, M2 = √

a3a4c1c2, (B5)

and

H ( j)
1 = A( j)

1 + A( j)
2

[
cosh

(
�1 − γ

( j)
1

)+ cos
(
�1 + δ

( j)
1

)]
,

H ( j)
2 = B( j)

1 + B( j)
2

[
cosh

(
�2 − γ

( j)
2

)+ cos
(
�2 + δ

( j)
2

)]
,

H ( j)
31 = cosh

(
�31 + γ

( j)
31

)+ cosh
(
�32 + γ

( j)
32

)
+ cos

(
�31 + δ

( j)
31

)+ cos
(
�32 + δ

( j)
32

)
H ( j)

32 = cosh
(
�31 − γ

( j)
31

)+ cosh
(
�32 − γ

( j)
32

)
+ cos

(
�31 − δ

( j)
31

)+ cos
(
�32 − δ

( j)
32

)
H ( j)

33 = N ( j)
1 cosh

(
�31 + γ

( j)
33

)+ N ( j)
2 cosh

(
�32 + γ

( j)
34

)
+ N ( j)

1 cos
(
�31 + δ

( j)
33

)+ N ( j)
2 cos

(
�32 + δ

( j)
34

)
H ( j)

34 = N ( j)
1 cosh

(
�31 − γ

( j)
33

)+ N ( j)
2 cosh

(
�32 − γ

( j)
34

)
+ N ( j)

1 cos
(
�31 − δ

( j)
33

)+ N ( j)
2 cos

(
�32 − δ

( j)
34

)
M ( j)

1 =
√

a( j)
1 a( j)

2 c( j)
3 c( j)

4 , M ( j)
2 =

√
a( j)

3 a( j)
4 c( j)

1 c( j)
2 , (B6)

with

X1 = −2χ[1]
[1]ix + 2

[
ε
(
χ[1]3

[1]i − 3χ[1]
[1]iχ

[1]2
[1]r

)
+ χ[1]

[1]iχ
[1]
[1]r − 4εa2χ[1]

[1]i

]
t,

X2 = −2χ[1]
[2]ix + 2

[
ε
(
χ[1]3

[2]i − 3χ[1]
[2]iχ

[1]2
[2]r

)
+ χ[1]

[2]iχ
[1]
[2]r − 4εa2χ[1]

[2]i

]
t,

X3 = −(χ[1]
[1]i + χ[1]

[2]i

)
x + [

ε
(
χ[1]3

[1]i − χ[1]3
[2]i + 3χ[1]

[1]iχ
[1]2
[2]r

− 3χ[1]
[1]iχ

[1]2
[1]r

)+ (
χ[1]

[1]iχ
[1]
[2]r − χ[1]

[1]iχ
[1]
[2]r

)
+ 4εa2

(
χ[1]

[2]i − χ[1]
[1]i

)]
t + �31,

Y1 = (
χ[1]

[1]r − χ[1]
[2]r

)
x + [

ε
(
χ[1]3

[1]r − χ[1]3
[2]r + 3χ[1]

[2]rχ
[1]2
[2]i

− 3χ[1]
[1]rχ

[1]2
[1]i

)+ 1
2

(
χ[1]2

[1]r − χ[1]2
[2]r + χ[1]2

[2]i − χ[1]2
[1]i

)
− 4εa2

(
χ[1]

[1]r − χ[1]
[2]r

)]
t + �32,

Y2 = (
χ[1]

[1]r + χ[1]
[2]r

)
x + [

ε
(
χ[1]3

[1]r + χ[1]3
[2]r − 3χ[1]

[2]rχ
[1]2
[2]i

− 3χ[1]
[1]rχ

[1]2
[1]i

)+ 1
2

(
χ[1]2

[1]r + χ[1]2
[2]r − χ[1]2

[2]i − χ[1]2
[1]i

)
− 4εa2(χ[1]

[1]r + χ[1]
[2]r

)]
t + �32,

N1 =
√

(a1c3 + |b1|2)(a2c4 + |b2|2),

N2 = √
(a1c4 + b1b∗

2)(a2c3 + b∗
1b2),

N ( j)
1 =

√(
a( j)

1 c( j)
3 + ∣∣b( j)

1

∣∣2)(a( j)
2 c( j)

4 + ∣∣b( j)
2

∣∣2),
N ( j)

2 =
√(

a( j)
1 c( j)

4 + b( j)
1 b( j)∗

2

)(
a( j)

2 c( j)
3 + b( j)∗

1 b( j)
2

)
, (B7)

and

A1 = |b1|2 + |b2|2, A2 = 2|b1||b2|,
B1 = |b3|2 + |b4|2, B2 = 2|b3||b4|,

A( j)
1 = ∣∣b( j)

1

∣∣2 + ∣∣b( j)
2

∣∣2, A( j)
2 = 2

∣∣b( j)
1

∣∣∣∣b( j)
2

∣∣,
B( j)

1 = ∣∣b( j)
3

∣∣2 + ∣∣b( j)
4

∣∣2, B( j)
2 = 2

∣∣b( j)
3

∣∣∣∣b( j)
4

∣∣, (B8)
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�1 = αx + Vg
(
χ[1]

[1]

)
t, γ1 = 1

2
ln

b1b∗
2

b∗
1b2

,

γ
( j)

1 = 1

2
ln

b( j)
1 b( j)∗

2

b( j)∗
1 b( j)

2

,

�2 = αx + Vg
(
χ[1]

[2]

)
t, γ2 = 1

2
ln

b3b∗
4

b∗
3b4

,

γ
( j)

2 = 1

2
ln

b( j)
3 b( j)∗

4

b( j)∗
3 b( j)

4

,

�31 = 1

2
(�1 − �2), �32 = −αx + �31,

γ31 = 1

2
ln

a1c3

a2c4
, γ32 = 1

2
ln

a1c4

a2c3
,

γ33 = 1

2
ln

a1c3 + |b1|2
a2c4 + |b2|2

, γ34 = 1

2
ln

a1c4 + b1b∗
2

a2c3 + b∗
1b2

,

γ
( j)

31 = 1

2
ln

a( j)
1 c( j)

3

a( j)
2 c( j)

4

, γ
( j)

32 = 1

2
ln

a( j)
1 c( j)

4

a( j)
2 c( j)

3

,

γ
( j)

33 = 1

2
ln

a( j)
1 c( j)

3 + ∣∣b( j)
1

∣∣2
a( j)

2 c( j)
4 + ∣∣b( j)

2

∣∣2 ,

γ
( j)

34 = 1

2
ln

a( j)
1 c( j)

4 + b( j)
1 b( j)∗

2

a( j)
2 c( j)

3 + b( j)∗
1 b( j)

2

,

�1 = ωx + Vp
(
χ[1]

[1]

)
t, δ1 = arg

b1b∗
2

b∗
1b2

,

δ
( j)
1 = arg

b( j)
1 b( j)∗

2

b( j)∗
1 b( j)

2

,

�2 = ωx + Vp
(
χ[1]

[2]

)
t, δ2 = arg

b3b∗
4

b∗
3b4

,

δ
( j)
2 = arg

b( j)
3 b( j)∗

4

b( j)∗
3 b( j)

4

,

�31 = 1

2
(�1 + �2), �32 = −ωx + �31,

δ31 = arg
a2c4

a1c3
, δ31 = arg

a1c3

a2c4
,

δ33 = arg
a1c3 + |b1|2
a2c4 + |b2|2

, δ34 = arg
a1c4 + b1b∗

2

a2c3 + b∗
1b2

δ
( j)
31 = arg

a( j)
2 c( j)

4

a( j)
1 c( j)

3

, δ
( j)
31 = arg

a( j)
1 c( j)

3

a( j)
2 c( j)

4

,

δ
( j)
33 = arg

a( j)
1 c( j)

1 + ∣∣b( j)
1

∣∣2
a( j)

2 c( j)
2 + ∣∣b( j)

2

∣∣2 , δ
( j)
34 = arg

a( j)
1 c( j)

2 + b( j)
1 b( j)∗

2

a( j)
2 c( j)

1 + b( j)∗
1 b( j)

2

.

(B9)

Other parameters are given by

a1 = 1

χ[1]∗
[1] − χ[1]

[1]

+ 1

χ[2]∗
[1] − χ[1]

[1]

,

a2 = 1

χ[2]∗
[1] − χ[2]

[1]

+ 1

χ[1]∗
[1] − χ[2]

[1]

,

a3 = 1

χ[1]∗
[1] − χ[1]

[1]

+ 1

χ[2]∗
[1] − χ[1]

[1]

,

a4 = 1

χ[2]∗
[1] − χ[1]

[1]

+ 1

χ[2]∗
[1] − χ[2]

[1]

, (B10)

b1 = 1

χ[1]∗
[2] − χ[1]

[1]

+ 1

χ[2]∗
[2] − χ[1]

[1]

,

b2 = 1

χ[2]∗
[2] − χ[2]

[1]

+ 1

χ[1]∗
[2] − χ[2]

[1]

,

b3 = 1

χ[1]∗
[2] − χ[1]

[1]

+ 1

χ[2]∗
[2] − χ[1]

[1]

,

b4 = 1

χ[2]∗
[2] − χ[1]

[1]

+ 1

χ[2]∗
[2] − χ[2]

[1]

, (B11)

c1 = 1

χ[1]∗
[2] − χ[1]

[2]

+ 1

χ[2]∗
[2] − χ[1]

[2]

,

c2 = 1

χ[2]∗
[2] − χ[2]

[2]

+ 1

χ[1]∗
[2] − χ[2]

[2]

,

c3 = 1

χ[1]∗
[2] − χ[1]

[1]

+ 1

χ[2]∗
[2] − χ[1]

[2]

,

c4 = 1

χ[2]∗
[2] − χ[1]

[2]

+ 1

χ[2]∗
[2] − χ[2]

[2]

, (B12)

and

a( j)
1 = χ[1]∗

[1] + β j

χ[1]
[1] + β j

1

χ[1]∗
[1] − χ[1]

[1]

+ χ[2]∗
[1] + β j

χ[1]
[1] + β j

1

χ[2]∗
[1] − χ[1]

[1]

,

a( j)
2 = χ[2]∗

[1] + β j

χ[2]
[1] + β j

1

χ[2]∗
[1] − χ[2]

[1]

+ χ[1]∗
[1] + β j

χ[2]
[1] + β j

1

χ[1]∗
[1] − χ[2]

[1]

,

a( j)
3 = χ[1]∗

[1] + β j

χ[1]
[1] + β j

1

χ[1]∗
[1] − χ[1]

[1]

+ χ[2]∗
[1] + β j

χ[1]
[1] + β j

1

χ[2]∗
[1] − χ[1]

[1]

,

a( j)
4 = χ[2]∗

[1] + β j

χ[1]
[1] + β j

1

χ[2]∗
[1] − χ[1]

[1]

+ χ[2]∗
[1] + β j

χ[2]
[1] + β j

1

χ[2]∗
[1] − χ[2]

[1]

,

(B13)

b( j)
1 = χ[1]∗

[2] + β j

χ[1]
[1] + β j

1

χ[1]∗
[2] − χ[1]

[1]

+ χ[2]∗
[2] + β j

χ[1]
[1] + β j

1

χ[2]∗
[2] − χ[1]

[1]

,

b( j)
2 = χ[2]∗

[2] + β j

χ[2]
[1] + β j

1

χ[2]∗
[2] − χ[2]

[1]

+ χ[1]∗
[2] + β j

χ[2]
[1] + β j

1

χ[1]∗
[2] − χ[2]

[1]

,

b( j)
3 = χ[1]∗

[2] + β j

χ[1]
[1] + β j

1

χ[1]∗
[2] − χ[1]

[1]

+ χ[2]∗
[2] + β j

χ[1]
[1] + β j

1

χ[2]∗
[2] − χ[1]

[1]

,

b( j)
4 = χ[2]∗

[2] + β j

χ[1]
[1] + β j

1

χ[2]∗
[2] − χ[1]

[1]

+ χ[2]∗
[2] + β j

χ[2]
[1] + β j

1

χ[2]∗
[2] − χ[2]

[1]

,

(B14)
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c( j)
1 = χ[1]∗

[2] + β j

χ[1]
[2] + β j

1

χ[1]∗
[2] − χ[1]

[2]

+ χ[2]∗
[2] + β j

χ[1]
[2] + β j

1

χ[2]∗
[2] − χ[1]

[2]

,

c( j)
2 = χ[2]∗

[2] + β j

χ[1]
[1] + β j

1

χ[2]∗
[2] − χ[2]

[2]

+ χ[1]∗
[2] + β j

χ[2]
[2] + β j

1

χ[1]∗
[2] − χ[2]

[2]

,

c( j)
3 = χ[1]∗

[2] + β j

χ[1]
[1] + β j

1

χ[1]∗
[2] − χ[1]

[1]

+ χ[2]∗
[2] + β j

χ[1]
[2] + β j

1

χ[2]∗
[2] − χ[1]

[2]

,

c( j)
4 = χ[2]∗

[2] + β j

χ[1]
[2] + β j

1

χ[2]∗
[2] − χ[1]

[2]

+ χ[2]∗
[2] + β j

χ[2]
[2] + β j

1

χ[2]∗
[2] − χ[2]

[2]

,

(B15)

Based on the derivation of two-fold DT, the higher-order
solutions for the SRBs of Eqs. (1) can be given as

ψ
(1)
SRB[N] = ψ

(1)
2N = ψ

(1)
2N−1 + (λ∗

[2N] − λ[2N] )

× R[2N−1]∗
[2N] S[2N−1]

[2N]∣∣R[2N−1]
[2N]

∣∣2 + ∣∣S[2N−1]
[2N]

∣∣2 + ∣∣W [2N−1]
[2N]

∣∣2 ,

ψ
(2)
SRB[N] = ψ

(2)
2N = ψ

(2N )
2N−1 + (λ∗

[2N] − λ[2N] )

× R[2N−1]∗
[2N] W [2N−1]

[2N]∣∣R[2N−1]
[2N]

∣∣2 + ∣∣S[2N−1]
[2N]

∣∣2 + ∣∣W [2N−1]
[2N]

∣∣2 , (B16)

where

R[2N−1]
[2N] = T [2N − 1] · · · T [1]T [0]R[0]

[2N],

S[2N−1]
[2N] = T [2N − 1] · · · T [1]T [0]S[0]

[2N],

W [2N−1]
[2N] = T [2N − 1] · · · T [1]T [0]W [0]

[2N], (B17)

with

T [0] = I,

T [2N − 1] = I + λ∗
[2N−1] − λ[2N−1]

λ[2N] − λ∗
[2N−1]

�[2N−1]
[2N] �[2N−1]†

[2N]

�[2N−1]†
[2N] �[2N−1]

[2N]

.

(B18)

Such solutions can be also written as the general determinant
form of the 2N th order breather solutions,

ψ
( j)
SRB[N] = ψ

( j)
2N = ψ

( j)
0

det Aj

det B
, (B19)

where

Aj = (
a( j)

[n1][n2]

)
, 1 � [n1], [n2] � 2N, (B20)

B = (b[n1][n2] ), 1 � [n1], [n2] � 2N, (B21)

with

a( j)
[n1][n2] = χ[1]∗

[n2] + β j

χ[1]
[n1] + β j

ϕ
[1]
[n1] + ϕ

[1]∗
[n2]

χ[1]∗
[n2] − χ[1]

[n1]

+ χ[2]∗
[n2] + β j

χ[1]
[n1] + β j

ϕ
[1]
[n1] + ϕ

[2]∗
[n2]

χ[2]∗
[n2] − χ[1]

[n1]

+ χ[1]∗
[n2] + β j

χ[2]
[n1] + β j

ϕ
[2]∗
[n1] + ϕ

[1]
[n2]

χ[2]∗
[n2] − χ[1]

[n1]

+ χ[2]∗
[n2] + β j

χ[2]
[n1] + β j

ϕ
[2]
[n1] + ϕ

[2]∗
[n2]

χ[2]∗
[n2] − χ[2]

[n1]

. (B22)

b[n1][n2] = ϕ
[1]
[n1] + ϕ

[1]∗
[n2]

χ[1]∗
[n2] − χ[1]

[n1]

+ ϕ
[1]
[n1] + ϕ

[2]∗
[n2]

χ[2]∗
[n2] − χ[1]

[n1]

+ ϕ
[2]∗
[n1] + ϕ

[1]
[n2]

χ[2]∗
[n2] − χ[1]

[n1]

+ ϕ
[2]
[n1] + ϕ

[2]∗
[n2]

χ[2]∗
[n2] − χ[2]

[n1]

, (B23)

Here a( j)
[n1][n2] and a[n1][n2] represent the matrix elements

of Aj and B in the n1th row and n2th column. Moreover,
χ[2]

[n1](χ
[2]
[n2] ) = χ[1]

[n1](χ
[1]
[n2] ) + ω + iα (n1, n2 = 1, 2, . . . , N ),

with χ[1]
[n1](χ

[1]
[n2] ) being one of the complex roots of Eq. (11).

APPENDIX C: PARTICULAR CASE: THE SCALAR SRBs

We consider the scalar Hirota equation in the following
form [58]:

iψt + 1
2ψxx + |ψ |2ψ + iε(ψxxx + 6|ψ |2ψx ) = 0. (C1)

This equation admits a Lax pair in the linear form

�x = U�, �t = V�, (C2)

where � = (R, S)T and

U = i

(
λ ψ∗
ψ 0

)
,

V = λ3V3 + λ2V2 + λV1 + V0, (C3)

with

V3 = i

2
(I + �),V2 = i

4
(I + �) + iεQ,

V1 = i

2
Q + ε�(Qx − iQ2) + iε�0a2,

V0 = 1

2
�(Qx − iQ2) + ε

4
(I − �)(Q2 − 2a2)x − 3iεQa2,

(C4)

and

� =
(

1 0
0 −1

)
, �0 =

(
1 0
0 −2

)
, Q =

(
0 ψ∗
ψ 0

)
.

(C5)

For a general breather in Eq. (C1), the eigenvalue χ asso-
ciated with the Lax pair (C2) satisfies the relation

1 + a2

(χ + β )(χ + ω + iα)
= 0, (C6)

with a and β being the amplitude and wave number of the
scalar background plane wave

ψ0 = a exp

{
iβx + i

[
a2 − β2

2
+ ε(β3 − 6a2β )

]
t

}
,

and ε is the higher-order coefficient. Parameters ω and α are
two real constants which have been defined in the vector case
above. The spectral parameter λ obeys the following relation
with the eigenvalue χ:

λ = χ − a2

χ + β
. (C7)
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From Eq. (C6), one can obtain

χ1 = −ω

2
− iα

2
− β +

√
ω2 − α2

4
+ iαω

2
− a2,

χ2 = −ω

2
− iα

2
− β −

√
ω2 − α2

4
+ iαω

2
− a2. (C8)

As a result, according to Eq. (C7), the spectral parameter λ

can be given as

λ1 = −ω + iα

2
− β +

√
ω2 − α2

4
+ iαω

2
− a2

+ a2

ω+iα
2 −

√
ω2−α2

4 + iαω
2 − a2

,

λ2 = −ω + iα

2
− β −

√
ω2 − α2

4
+ iαω

2
− a2

− a2

ω+iα
2 +

√
ω2−α2

4 + iαω
2 − a2

. (C9)

Such two spectral parameters adhere to the following rela-
tions:

λ1r + λ2r = −2β, λ1i + λ2i = 0, (C10)

which bear similarities to the case of the scalar NLSE, and the
first relation has also been given in Ref. [46].

Using onefold DT, one can easily obtain the fundamental
solutions ψ1(x, t ) for Eq. (C1),

ψ1 = ψ0 + (
λ∗

[1] − λ[1]
) R[1]∗S[1]

|R[1]|2 + |S[1]|2 , (C11)

where

R[1] = ϕ
[1]
[1] + ϕ

[2]
[1] , S[1] = ψ0

(
ϕ

[1]
[1]

χ + β
+ ϕ

[2]
[1]

χ − β

)
,

(C12)

with

ϕ
[1]
[1] = a exp

{
iχ[1]

[1]x + i

[
εχ[1]3

[1] + χ[1]2
[1]

2
−2εa2χ[1]

[1]−εa2

]
t

}
,

ϕ
[2]
[1] = a exp

{
iχ[2]

[1]x + i

[
εχ[2]3

[1] + χ[2]2
[1]

2
−2εa2χ[2]

[1]−εa2

]
t

}
.

(C13)

Here, χ[1]
[1] is one of the eigenvalues in Eq. (C8) and χ[2]

[1] =
χ[1]

[1] + ω + iα. When α is nonzero but small, namely, 0 <

α 	 1, the solution is the quasi-AB corresponding the
spectral parameter λ[1] = χ[1]

[1] − a2

χ[1]
[1]+β

. The nonlinear super-

position of two quasi-ABs corresponding to two different
spectral parameters can be used to generate the fundamental
scalar SRB,

ψSRB[1] = ψ2 = ψ1 + (λ∗
[2] − λ[2] )

R[1]∗
[2] S[1]

[2]∣∣R[1]
[2]

∣∣2 + ∣∣S[1]
[2]

∣∣2 , (C14)

where

R[1]
[2] = T [1]R[0]

[2], S[1]
[2] = T [1]S[0]

[2], (C15)

with

T [1] = I + λ∗
[1] − λ[1]

λ[2] − λ∗
[1]

�[1]†�[1]

�[1]�[1]†
,

R[0]
[2] = ϕ

[1]
[2] + ϕ

[2]
[2] ,

S[0]
[2] = ψ0

(
ϕ

[1]
[2]

χ + β
+ ϕ

[2]
[2]

χ − β

)
. (C16)

The above results can also be obtained based on the
Jukowsky transform for the spectral parameter λ, which have
been provided in Ref. [46]. Here, we recall the calculation
process. For simplicity, we take a rogue wave as the starting
point. In fact, when α = ω = 0, the corresponding spectral
parameter is a special one that obeys the relation

1 + a2

(χ + β )2 = 0. (C17)

Each of such eigenvalues corresponds to the scalar rogue wave
solution in Eq. (C1) and their explicit expressions The explicit
expressions for them are detailed as follows:

χ1 = −β + ia, χ2 = −β − ia. (C18)

The corresponding spectral parameters are expressed as

λ1 = −β + 2ia, λ2 = −β − 2ia. (C19)

Since the signs of the imaginary parts of λ1, λ2 have no effects
on the nonlinear wave, without loss of generality, we choose
λ1 for the following analysis. After performing the Jukowsky
transformation, one of the spectral parameters that can be used
to generate the SRB is expressed as

λ(R, θ ) = i

2

(
ξ + 1

ξ

)
Im(λ) + Re(λ), (C20)

with

ξ = R exp (iθ ). (C21)

Parameters R and θ represent the radius and angle of the po-
lar coordinates in the sector D = {R = 1, θ ∈ (−π/2, π/2)}.
Then one has

λ(R, θ ) = ia

(
R + 1

R

)
cos θ − β − a

(
R − 1

R

)
sin θ.

(C22)

Therefore, one can easily obtain the expression of λ for the
general breathers in the similar form

λ(r, θ ) = ia

(
r + 1

r

)
cos θ − β − a

(
r − 1

r

)
sin θ, (C23)

where r = (1 + ε)R � 1. Consequently, one obtains

λ1r = Re[λ(r, θ )] = −β − a

(
r − 1

r

)
sin θ,

λ1i = Im[λ(r, θ )] = ia

(
r

1

r

)
cos θ,

λ2r = Re[λ(−r, θ )] = −β + a

(
r − 1

r

)
sin θ,

λ2i = Im[λ(r, θ )] = ia

(
r + 1

r

)
cos θ.
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