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Optimized mechanical quadrature squeezing beyond the 3-dB limit via a gradient-descent algorithm
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The preparation of mechanical quadrature-squeezed states holds significant importance in cavity optomechan-
ics because the squeezed states have extensive applications in understanding fundamental quantum mechanics
and exploiting modern quantum technology. Here, we propose a reliable scheme for generating mechanical
quadrature squeezing in a typical cavity optomechanical system via seeking optimal cavity-field driving pulses
using the gradient-descent algorithm. We realize strong quadrature squeezing in a mechanical resonator that
exceeds the 3-dB steady-state limit, even with a thermal phonon occupancy of 100. Furthermore, the mechanical
squeezing can be ultrarapidly created within one mechanical oscillation period. We also obtain the optimal
pulsed drivings associated with the created mechanical squeezings and analyze the mechanism for mechanical
squeezing generation. This paper will promote the application of optimal quantum control in quantum optics and
quantum information science.
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I. INTRODUCTION

Cavity optomechanics [1] is a frontier research field fo-
cusing on the radiation-pressure interaction between cavity
fields and moving mirrors at macroscopic scales. Owing to
the nonlinear properties of the optomechanical interaction
and the development of laser cooling techniques [2–5], op-
tomechanical systems provide new paths and opportunities
for generation and manipulation of macroscopic nonclassical
states, such as entangled states [6–11], quantum superposed
states [12–15], and squeezed states of fields [16–21] and me-
chanical resonators [22–44].

Quantum squeezing, as an essential quantum resource,
plays an increasingly significant role in modern quantum
technology ranging from quantum precision measurement to
quantum information processing [45,46]. Quantum squeezing
of mechanical modes holds significance as it has the poten-
tial to enhance the accuracy of quantum measurements [47].
There exist many theoretical and experimental schemes for
generating mechanical squeezing based on various methods,
such as parametric squeezing [25–32], quantum measure-
ment [33–37], quantum state transfer [38–40], mechanical
nonlinearities [25,41,42], and reservoir engineering [43,44].
In particular, some methods [26,29,30,34,38,41–43] can be
used to generate the quadrature squeezing, which exceeds
the 3-dB squeezing limit [27,48]. The strong squeezing has
wide applications in quantum technology, and its generation
is a significant task in quantum optics. In addition, from the

*Contact author: jqliao@hunnu.edu.cn

viewpoint of realistic application, an ultrafast generation of
strong mechanical squeezing remains a challenge.

In cavity optomechanical systems, the external optical
driving provides an effective way to control the quantum
properties and dynamical behaviors of the system [26,28,49–
51]. The design of an optimal optical driving to achieve a
supposed goal is an interesting topic in this system. Currently,
quantum control techniques have been successfully applied
to various schemes in cavity optomechanical systems [52],
such as robust state transfer [53], optimized cooling [54–56],
entanglement enhancement [57,58], and strong squeezing
[59,60]. Furthermore, optimal control technology based on
the gradient-descent algorithm [61] has been recognized as a
powerful method to accomplish complex control tasks, and
hence it is expected to provide new ways to optimize the
control of cavity optomechanical systems.

In this paper, we apply the gradient-descent algorithm
to prepare mechanical quadrature squeezing in a typical
cavity optomechanical system. Our scheme can break the 3-
dB steady-state squeezing limit even when the environment
thermal phonon occupation associated with the mechanical
resonator reaches the order of 100. The mechanical quadrature
squeezing is achieved by designing a proper pulsed driving
to the cavity field. Concretely, we use the gradient-descent
algorithm to iteratively optimize the pulsed driving for achiev-
ing strong mechanical squeezing. The optimal waveforms of
the pulsed driving amplitude and phase are also obtained.
In particular, mechanical squeezing can be ultrarapidly pre-
pared within one mechanical oscillation period, providing
more chance for realistic applications of the generated squeez-
ing before decoherence. Our method will encourage further
researches on optimal quantum control in cavity optomechan-
ical systems.
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The rest of this paper is organized as follows. In Sec. II,
we introduce the Hamiltonians and present the equations of
motion. In Sec. III, we show the generation of mechanical
quadrature squeezing using the gradient-descent algorithm. In
Sec. IV, we present some discussions concerning the influ-
ences of driving amplitude and phase noises on the squeezing
generation, the physical mechanism of the present squeezing-
generation method, the experimental implementation of this
squeezing-generation scheme, and the applications of the
optimization methods in cavity optomechanics. Finally, we
conclude this paper in Sec. V. The Appendix shows the
derivation of the variation δ[�X 2

b (θ, T )]/δQm used in the
gradient-descent algorithm.

II. HAMILTONIANS AND EQUATIONS OF MOTION

We consider a typical cavity optomechanical system that
consists of a mechanical resonator optomechanically coupled
to a single-mode cavity field. To control the dynamics of the
system, the cavity mode is driven by a strong pulsed field
with carrier frequency ωL, driving amplitude �(t ), and driving
phase φ(t ). In a rotating frame defined by the unitary operator
exp(−iωLta†a), the Hamiltonian of the system reads (h̄ = 1)

Hopt (t ) = �ca†a + ωmb†b − g0a†a(b† + b)

+ [�(t )e−iφ(t )a† + H.c.], (1)

where a† (a) and b† (b) are, respectively, the creation (an-
nihilation) operators of the cavity field and the mechanical
resonator, with the corresponding resonance frequencies ωc

and ωm. The �c = ωc − ωL is the detuning of the cavity-field
resonance frequency with respect to the pulsed-field carrier
frequency. The g0 term describes the radiation-pressure cou-
pling between the cavity field and the mechanical resonator,
with g0 being the single-photon optomechanical-coupling
strength.

In the open-system case, we assume that the cavity field is
coupled to a vacuum bath, while the mechanical resonator is
connected to a heat bath. Considering the Markovian dissipa-
tions, the evolution of the system is governed by the quantum
master equation

ρ̇ = i[ρ, Hopt (t )] + κD[a]ρ + γ (n̄m + 1)D[b]ρ

+ γ n̄mD[b†]ρ, (2)

where ρ is the density matrix of the optomechanical system,
D[o]ρ = oρo† − (o†oρ + ρo†o)/2 (for o = a, a†, b, and b†)
is the Lindblad superoperator [62], and Hopt (t ) is defined in
Eq. (1). The parameters κ and γ are, respectively, the damping
rates of the cavity field and the mechanical resonator, and
n̄m is the environmental thermal-excitation occupation of the
mechanical resonator.

Considering the strong-driving case of the optomechanical
cavity, then the dynamics of the system can be linearized. To
this end, we adopt the displacement-transformation method
to separate the semiclassical motion and quantum fluctuation.

Concretely, we perform the displacement transformations
Da(α) = exp(αa† − α∗a) and Db(β ) = exp(βb† − β∗b) for
the density operator ρ(t ), namely,

ρ ′(t ) = Da(α)Db(β )ρ(t )D†
b(β )D†

a(α), (3)

where ρ ′(t ) represents the density operator in the displaced
representation, and α(t ) and β(t ) are the displacement ampli-
tudes of the cavity field and the mechanical resonator, respec-
tively. By substituting ρ(t ) = D†

b(β )D†
a(α)ρ ′(t )Da(α)Db(β )

into Eq. (2) and setting the coefficients of the driving terms
to be zero, we obtain the quantum master equation in the
displaced representation as

ρ̇ ′ = i[ρ ′, Hdis(t )] + κD[a]ρ ′ + γ (n̄m + 1)D[b]ρ ′

+ γ n̄mD[b†]ρ ′, (4)

where Hdis(t ) is the Hamiltonian in the displaced representa-
tion, defined as

Hdis(t ) = �(t )a†a + ωmb†b − g0a†a(b + b†)

+ [G(t )a† + G∗(t )a](b + b†). (5)

In Eq. (5), we introduce the linearized optomechanical-
coupling strength G(t ) = g0α(t ) and the normalized driving
detuning �(t ) = �c + g0[β(t ) + β∗(t )]. The two displace-
ment amplitudes α(t ) and β(t ) are governed by the equa-
tions of motion

α̇(t ) = −
[

i�(t ) + κ

2

]
α(t ) + i�(t )e−iφ(t ), (6a)

β̇(t ) = −
(

iωm + γ

2

)
β(t ) − ig0|α(t )|2. (6b)

In the strong-driving case, |α(t )| � 1, we can safely omit
the g0 term in Eq. (5), and obtain the linearized optomechani-
cal Hamiltonian

Hlin(t ) = �(t )a†a + ωmb†b + [G(t )a† + G∗(t )a](b + b†).
(7)

Since both the linearized optomechanical-coupling strength
G(t ) and the normalized driving detuning �(t ) in Hamil-
tonian (7) depend on α(t ) and β(t ), the dynamic evolution
of the system can be controlled by adjusting the amplitude
and phase of the pulsed driving, as shown by Eqs. (6a) and
(6b). The dynamic properties of the linearized optomechan-
ical system are completely described by both the first- and
second-order moments of the system operators. Using the
relation ∂t 〈oio j〉 = Tr(ρ̇ ′oio j ) for oi, o j ∈ {a, a†, b, b†} and
Eq. (4) under the replacement of Hdis(t ) → Hlin(t ), we obtain
the equations of motion of all these second-order moments,
which can be expressed as

Ẋ(t ) = M(t )X(t ) + N(t ), (8)

where X(t ) = (〈a†a〉, 〈b†b〉, 〈a†b〉, 〈ab†〉, 〈a†a†〉, 〈a†b†〉,
〈b†b†〉, 〈aa〉, 〈ab〉, 〈bb〉)T (“T” denotes the matrix transpose),
N(t ) = (0, γ n̄m, 0, 0, 0, ig0 α∗, 0, 0, −ig0 α, 0)T, and the
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coefficient matrix is introduced as M(t ) =
(

H I
J K

)
, with

H =

⎛
⎜⎜⎜⎝

−κ 0 −ig0α ig0α
∗

0 −γ ig0α −ig0α
∗

−ig0α
∗ ig0α

∗ K1 0

ig0α −ig0α 0 K∗
1

⎞
⎟⎟⎟⎠, (9a)

I =

⎛
⎜⎜⎜⎝

0 −ig0α 0 0 ig0α
∗ 0

0 −ig0α 0 0 ig0α
∗ 0

−ig0α 0 0 0 0 ig0α
∗

0 0 −ig0α ig0α
∗ 0 0

⎞
⎟⎟⎟⎠,

(9b)

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2ig0α
∗ 0

ig0α
∗ ig0α

∗ 0 0

0 0 0 2ig0α
∗

0 0 0 −2ig0α

−ig0α −ig0α 0 0

0 0 −2ig0α 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9c)

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K2 2ig0α
∗ 0 0 0 0

ig0α K3 ig0α
∗ 0 0 0

0 2ig0α K4 0 0 0

0 0 0 K∗
2 −2ig0α 0

0 0 0 −ig0α
∗ K∗

3 0

0 0 0 0 −2ig0α
∗ K∗

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9d)

In Eq. (9), we introduce

K1 = i�(t ) − iωm − 1
2 (κ + γ ), (10a)

K2 = 2i�(t ) − κ, (10b)

K3 = i�(t ) + iωm − 1
2 (κ + γ ), (10c)

K4 = 2iωm − γ . (10d)

We point out that both the coefficient matrix M(t ) and the
inhomogeneous term N(t ) are functions of the displacement
amplitudes α(t ) and β(t ), thus the dynamic evolution of the
second-order moments can be controlled via adjusting the
pulsed driving.

III. GENERATION OF MECHANICAL
QUADRATURE SQUEEZING

To quantify the created mechanical squeezing, we in-
troduce the quadrature operators Xo=a,b = (o† + o)/

√
2 and

Yo=a,b = i(o† − o)/
√

2 for the optical and mechanical modes.
Then the transient correlation matrix can be introduced as

Vi j (t ) = 1
2 [〈ui(t )u j (t )〉 + 〈u j (t )ui(t )〉] + 〈ui(t )〉〈u j (t )〉,

(11)

where u(t ) = (Xa(t ),Ya(t ), Xb(t ),Yb(t ))T. In the present
case, the expectation values 〈ui(t )〉 and 〈u j (t )〉 are
zero and 〈ui(t )u j (t )〉 is a linear function of these
second-order moments. To describe the quadrature squeez-
ing, we further introduce the rotating-quadrature operator

Algorithm 1. Mechanical squeezing generation.

Input: A randomly smooth and continuous initial pulsed driving
with amplitude � and phase φ.
Define: The loss function �X 2

b (θ, T ).
While �X 2

b (θ, T ) > ε (ε is the expected value) do:
1. Perform the gradient-descent algorithm Qm+1 =Qm − χQ

{δ[�X 2
b (θ, T )]/δQm} (Q represents either � or φ, χQ is the

learning rate, and m indicates the iteration number) to iteratively
minimize �X 2

b (θ, T ).
2. Optimize and update � and φ.

End While
Return: Variance �X 2

b (θ, t ), driving amplitude �, and phase φ.

Xb(θ, t ) ≡ Xb(t ) cos θ + Yb(t ) sin θ (θ is the squeezing angle).
The variance of the rotating-quadrature operator is given by

�X 2
b (θ, t ) = V33(t ) cos2 θ + V44(t ) sin2 θ

+ 1
2 [V34(t ) + V43(t )] sin(2θ ). (12)

Based on [Xb(θ, t ), Xb(θ + π, t )]= i, we have �X 2
b (θ, t )

�X 2
b (θ + π, t ) � 1/4, then the quadrature squeezing of the

mechanical mode occurs when �X 2
b (θ, t ) < 1/2. For the

squeezing-generation task, our goal is to reduce the variance
�X 2

b (θ, t ) such that it is smaller than 1/2. The control strat-
egy of squeezing generation is summarized in Algorithm 1.
Note that a variable learning rate method is adopted here to
reduce the iteration number and to improve the efficiency.
The detailed calculation of δ[�X 2

b (θ, T )]/δQm is shown in
the Appendix.

The mechanical quadrature squeezing can be well quan-
tized by the squeezing degree [39]:

Sb = −10 log10
�X 2

b (θ, t )

�X 2
b (θ )|ZPF

. (13)

A positive squeezing degree, Sb > 0, implies that the quadra-
ture operator of the mechanical mode is squeezed along the
angle θ . For studying the rotating-quadrature squeezing, we
need to investigate the dependence of the squeezing on the
angle θ . Concretely, we use the gradient-descent algorithm
to obtain the waveforms of the driving amplitude and phase
corresponding to Sb = 1 at different values of θ . The results
shown in Fig. 1(a) indicate that the smallest (largest) driving
amplitude appears at the squeezing angle 90◦ (0◦) related to
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FIG. 1. Maximal absolute values of (a) the driving amplitude
and (b) phase as functions of squeezing angle θ when the squeez-
ing degree Sb = 1. Here, the parameters used are g0/ωm = 4 ×
10−5, κ/ωm = 0.2, γ /ωm = 2 × 10−6, T = 120ω−1

m , n̄m = 100, and
�c/ωm = 1.
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FIG. 2. (a) The loss function �X 2
b (θ = π/2, T ) as a function of the iteration number. The squeezing degree Sb vs the scaled evolution

time ωmt under different target squeezing degrees: (b) Sb = 1 and (c) Sb = 3.2. (d), (e) The Wigner functions of the generated states for the
mechanical mode corresponding to the maximal squeezing in panels (b) and (c). (f), (g) The scaled driving amplitude �(t )/ωm, (h), (i) phase
φ(t )/2π , and (j), (k) mean phonon number 〈b†b〉 as functions of the scaled evolution time ωmt corresponding to panels (b) and (c). Other
parameters used are the same as those given in Fig. 1.

Sb = 1. Similarly, the minimal and maximal driving phases
appear at 65◦ and 165◦, respectively, and the angle has little
effect on the phase [as shown in Fig. 1(b)]. Therefore, we
take the squeezing angle θ = 90◦ (corresponding to minimal
driving amplitude) in our following discussions.

We display in Fig. 2(a) the loss function �X 2
b (π/2, T )

as a function of the iteration number to verify the efficiency
of the gradient-descent algorithm. Here, we can see that the
loss function �X 2

b (π/2, T ) decreases gradually as the iter-
ation number increases. The transient mechanical squeezing
degrees 1 and 3.2 dB are obtained at the iteration numbers
1185 and 4000, respectively. The corresponding dynamic evo-
lutions of the squeezing degree Sb are shown in Figs. 2(b) and
2(c). It shows that there is no mechanical squeezing for a long
duration of time, first, and then oscillation increases to the tar-
get value in a short period of time. In particular, the squeezing
degree Sb = 3.2 breaks the 3-dB steady-state limit [Fig. 2(c)],
and stronger squeezings can be realized as the iteration num-
ber increases. Note that we consider the transient squeezing
here rather than steady-state squeezing. Therefore, our results
are not conflicting with the 3-dB steady-state squeezing limit,
which is determined by the dynamic stability.

To confirm the mechanical squeezing in phase space, we
introduce the Wigner function of the mechanical mode, de-
fined as [63]

W (D) = 1

2π
√

Det[Vb]
exp

{
−1

2
DTVbD

}
, (14)

where D = (DR, DI )T represents the two-dimensional vector,
and Vb is the covariance matrix for the mechanical mode. The
Wigner functions corresponding to 1- and 3.2-dB squeezing
are shown in Figs. 2(d) and 2(e). We can see that the squeezing
appears along the π/2 axis (corresponding to the squeez-
ing angle θ = π/2), and the larger the squeezing degree the
stronger the quadrature squeezing.

In Figs. 2(f) and 2(g), we show the time-dependent driving
amplitudes, which are required to achieve the squeezing de-
grees Sb = 1 and 3.2 dB, respectively [64]. We can see that
a larger driving amplitude is required to realize a stronger
squeezing. In addition, for a larger mechanical squeezing de-
gree, the driving phase oscillation becomes more intense, as
shown in Figs. 2(h) and 2(i). We also investigate the depen-
dence of the mean phonon number 〈b†b〉 (in the displaced
representation, associated with the quantum fluctuation) as
a function of the scaled time ωmt in Figs. 2(j) and 2(k).
We observe that 〈b†b〉 decreases from 100 to less than 1 for
both Sb = 1 and 3.2 dB. Note that in our simulations, the
mechanical resonator is assumed initially in a thermal state at
the same temperature with the heat bath. The density matrix
for the thermal state is given by ρth = ∑∞

n=0 Pn|n〉〈n|, where
Pn = n̄n

th/(n̄th + 1)n+1 represents the probability distribution,
with the mean thermal phonon number n̄th = Tr(ρthb†b) =
1/(eh̄ωm/kBT − 1).

To explore the influence of the deviations in �(t ) and
φ(t ) on mechanical quadrature squeezing, we introduce the
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FIG. 3. (a) The influence of the driving amplitude and phase
deviations on the squeezing generation at T = 120ω−1

m related to
Sb = 3.2. (b) The dynamic evolution of the squeezing degree Sb after
removing the pulsed driving in Fig. 2(c). Other parameters used are
consistent with those given in Fig. 1.

relative deviation η, defined as η = (Qr − Qt )/Qt . Here Q
represents either � or φ, and Qr and Qt stand for the realisti-
cally used parameters and the learned theoretical parameters,
respectively. In Fig. 3(a), we plot the squeezing degree Sb as
a function of η. Here, we see that for the relative deviation
η ∈ [−0.1, 0.1], the Sb is an increasing function of η for both
the driving amplitude and phase. In addition, the squeezing
is more sensitive to amplitude deviation than phase deviation.
In Fig. 3(b), we further investigate the influence of the envi-
ronment on the squeezing generation once the pulsed driving
is removed at T = 120ω−1

m . The Sb will experience a slight
decrease from 3.2 to 2.51 during the period from ωmt = 120
to 300, indicating that the squeezing has a good robustness.
Notably, after the external drive is removed, the photons in
the cavity will dissipate completely within a certain period,
and the optomechanical interaction will no longer work. Con-
sequently, the mechanical resonator will be thermalized by the
heat bath, leading to a reduction of the mechanical quadrature
squeezing.

The ultrafast generation of mechanical quadrature squeez-
ing within one mechanical oscillation period is a desired
task from the viewpoint of transient evolution [65,66]. Be-
low, we investigate the generation of mechanical squeezing
within this short timescale. Figure 4(a) shows the loss func-
tion �X 2

b (π/2, T = 6ω−1
m ) versus the iteration number related

to Sb = 1. Here we can see that the �X 2
b (π/2, T = 6ω−1

m )
gradually decreases from the initial value 319 to 0.397 as
the iteration number increases, verifying the validity of the
gradient-descent algorithm. The dynamic evolution of the
squeezing degree Sb after the last iteration (m = 6180) is
shown in Fig. 4(b). We see that the squeezing occurs in the
last extremely short duration due to the harsh time condition,
but it is still continuous, as shown in the inset of Fig. 4(b).
The results in Figs. 4(c) and 4(d) indicate that a large driving
amplitude is required to achieve Sb = 1 within one mechani-

FIG. 4. (a) The loss function �X 2
b (π/2, T ) as a function of

the iteration number under T = 6ω−1
m . The inset shows the lo-

cal magnification of the loss function over the iteration interval
[600,6180]. (b) Evolution of the squeezing degree Sb in one me-
chanical oscillation period. The inset shows the evolution of Sb over
time duration [5.9895,6]. (c) The driving amplitude �(t )/ωm and
(d) phase φ(t )/2π vs the scaled evolution time ωmt after the last
iteration (m = 6180) under T = 6ω−1

m . (e) The mean phonon number
〈b†b〉 as a function of the scaled evolution time ωmt corresponding to
panel (b). Other parameters used are the same as those given in Fig. 1.

cal oscillation period and the phase has no distinct signature.
We also exhibit in Fig. 4(e) the mean phonon number 〈b†b〉
versus the scaled evolution time at this time. Here we see that
〈b†b〉 will be larger than the initial value due to the larger
driving amplitude, and then goes to a cooled state with dozens
of mean phonons. This indicates that the creation of mechan-
ical squeezing does not necessarily require the ground-state
cooling of the mechanical resonator.

We also investigate the influence of the sideband-resolution
parameter on the squeezing generation. In Figs. 5(a)–5(c),
we plot the squeezing degree Sb versus the scaled evolu-
tion time ωmt corresponding to different sideband-resolution
parameters κ/ωm = 0.5, 1.0, and 1.5. We show the driv-
ing amplitude and phase as functions of ωmt for different
sideband-resolution parameters in Figs. 5(d)–5(f) and 5(g)–
5(i). To maintain Sb = 1, a larger driving amplitude is needed
for a larger value of κ/ωm, and the phase oscillation becomes
more severe for a larger κ/ωm. The corresponding dynamic
evolution of the mean phonon number 〈b†b〉 is shown in
Fig. 5(j). Here we can see that the mechanical resonator is
cooled from the initial 100 phonons to a few phonons. The
better the sideband-resolution parameter that is is selected,
the deeper the cooling of the mechanical resonator. Note that
a large κ/ωm will result in a fast dissipation of the cav-
ity photons, thereby affecting the optomechanical interaction
and leading to the failure of squeezing generation. We men-
tion that the thermal excitations are usually harmful to the
generation and maintenance of quantum signatures. For the
generation of strong quadrature squeezing, optimal parame-
ters should be chosen such that the thermal excitations can be
decreased to a near-ground-state cooling level.
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FIG. 5. (a)–(c) The squeezing degree Sb vs the scaled evolution
time ωmt under different sideband parameters κ/ωm = 0.5, 1.0, and
1.5. The inset in panel (b) exhibits the evolution of Sb for the time
durations from 115.6 to 120. (d)–(f) Evolution of driving amplitude
and (g)–(i) phase corresponding to panels (a)–(c). (j) The dynamic
evolution of the mean phonon number under different sideband-
resolution parameters in panels (a)–(c). The two insets show the
enlarged view at the peak of 3.2 dB. Other parameters are consistent
with those given in Fig. 1.

IV. DISCUSSIONS

In this section, we present some discussions concerning the
influences of the driving amplitude and phase noises on the
squeezing generation, the physical mechanism of the present
squeezing-generation method, the experimental implementa-
tion of this scheme, and the applications of the optimization
methods in cavity optomechanics.

A. Influences of the driving amplitude
and phase noises on squeezing generation

In realistic situations, the driving laser inevitably possesses
amplitude and phase noises, which can be understood as ran-
dom small deviations on the amplitude and phase. To evaluate
the influences of laser amplitude and phase noises on the
squeezing-generation performance, we add Gaussian random
noises to the optimized pulse driving amplitude and phase
at each step. Figures 6(a) and 6(b) display the squeezing
degree Sb as a function of the scaled evolution time ωmt after
introducing the Gaussian random noises to the driving ampli-
tude and phase, respectively. The ten solid curves represent
the evolution of the squeezing degree Sb under ten distinct
random conditions, while the purple dotted curve represents
the average of these ten evolutions. We can see that the 11
curves almost overlap, which indicates that the optimized
driving field is stable against both the amplitude and phase
noises.

B. Physical mechanism of the present
squeezing-generation method

In our scheme, the generation of mechanical squeezing
can be understood by analyzing the variance of the

FIG. 6. The squeezing degree Sb vs the scaled evolution time
ωmt in the presence of (a) driving amplitude and (b) phase noises.
The driving amplitude is modified by adding a scaled random ampli-
tude from a normal distribution with a mean of zero and a standard
deviation of 200. Similarly, the driving phase is modified by adding
a scaled random phase from a normal distribution with a mean of
zero and a standard deviation of 0.2. Other parameters are the same
as those in Fig. 2(c).

mechanical rotating-quadrature operator �X 2
b (θ, t ) =

V33(t ) cos2 θ + V44(t ) sin2 θ + 1
2 [V34(t ) + V43(t )] sin(2θ ).

To clarify this point, we reexpress the rotating-quadrature
operator as

�X 2
b (θ, t ) = 1

2 + 〈b†b〉 + Re[〈b†b†〉] cos(2θ )

− 2Im[〈b†b†〉] sin(2θ ). (15)

Mechanical squeezing occurs when �X 2
b (θ, t ) < 1/2, which

leads to the condition

〈b†b〉 + Re[〈b†b†〉] cos(2θ ) − 2Im[〈b†b†〉] sin(2θ ) < 0.

(16)

This inequality can be satisfied because the second-order mo-
ment 〈b†b†〉 could be a complex number, while 〈b†b〉 must be
positive. Our numerical simulations indicate the mechanical
cooling is accompanied by the physics process, and the me-
chanical resonator is cooled to a relatively small mean phonon
number [Figs. 2(j), 2(k), 4(e), and 5(j)]. Therefore, the gener-
ation of the mechanical squeezing is primarily determined by
the values of Re[〈b†b†〉] and Im[〈b†b†〉].

Under the rotating-wave approximation, the second-
order moments are governed by two separate sets of
equations. The first set includes 〈a†a〉, 〈b†b〉, 〈a†b〉, and
〈ab†〉, while the second set includes 〈a†a†〉, 〈aa〉, 〈b†b†〉,
〈bb〉, 〈a†b†〉, and 〈ab〉. With the initial condition X(0) =
[0, n̄m, 0, 0, 0, 0, 0, 0, 0, 0]T, the value of 〈b†b†〉 remains con-
stantly zero, leading to a negligible mechanical squeezing
regardless of how we optimize the driving fields. The counter-
rotating terms in the coupling will mix the equations of motion
for these ten second-order moments. In this case, we can
obtain 〈b†b〉 + Re[〈b†b†〉] cos(2θ ) − 2Im[〈b†b†〉] sin(2θ ) < 0
via optimizing the pulsed driving, indicating the generation
of squeezing. These analyses indicate that the critical role
of the counter-rotating terms is the generation of mechanical
quadrature squeezing.

Meanwhile, we examined the single-mode squeezing prop-
erties of the two-mode squeezed vacuum state and the state
obtained by applying the two-mode squeezing operator to
the direct product of vacuum and thermal states. We find
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that there is no single-mode quadrature squeezing in these
two cases, indicating that the pure counter-rotating-wave
terms are insufficient for generating single-mode squeez-
ing. Based on these analyses, we deduce that the generation
of single-mode quadrature squeezing arises from the com-
bined effects of both rotating-wave and counter-rotating-wave
terms. Since both the linearized optomechanical-coupling
strength G(t ) and the normalized driving detuning �(t ) de-
pend on the evolution time, these provide the possibility to
induce the physical process for effective two-phonon interac-
tions, which is the physical origin for generating single-mode
squeezing.

C. Experimental implementation of the scheme

We now present some discussions on the experimental
feasibility of this scheme. The system under considerations
is a general optomechanical system, which has been imple-
mented in various optomechanical platforms, such as optical
microresonators [67–69], electromechanical systems [70–72],
photonic crystal nanobeams [5,73,74], and Fabry-Pérot cav-
ities [75], in which the cavities can be driven by tunable
pulsed fields. We considered the linearized optomechanical
interaction, which has been widely demonstrated in cavity op-
tomechanical systems. Moreover, we use the experimentally
accessible parameters in our numerical simulations. Con-
cretely, the used parameters are g0/ωm = 4 × 10−5, κ/ωm =
0.2, and γ /ωm = 2 × 10−6, which have been reported in ex-
periments [69]. In addition, the pulsed driving amplitude and
phase used to generate squeezing are moderate in size and
continuous and smooth in shape, which confirm the experi-
mental realization of the pulsed driving.

D. Applications of the optimization methods
in cavity optomechanics

To broaden the use of our optimization method in the
field of cavity optomechanics, we investigate its applicabil-
ity across two primary research regimes: the strong driving
linearization regime and the single-photon strong-coupling
regime.

In the strong driving linearization regime, the physical
properties of the optomechanical system are governed by the
covariance matrix. For this linearized optomechanical system,
we can control the dynamics of the system by optimizing
the driving field, which is an adjustable control parameter.
For example, we can optimize the physical topics such as
optomechanical cooling, entanglement, and squeezing. More-
over, this optimization problem can be extended and applied
to multimode optomechanical systems.

In the single-photon strong-coupling regime, the optome-
chanical system can be described as a multilevel system in
the eigenrepresentation of the photon-number-dependent dis-
placed oscillator system. The driving field will induce the
transitions between the states associated with neighboring
photon numbers. Here, the transition magnitudes depend on
the external driving field, which provide the means for con-
trolling the systems. Typically, the optimization allows for
several potential applications, including the enhancement of
the photon-blockade effect and the preparation of nonclassical

states such as mechanical number states. By implementing
these optimizations, we can deepen both the understanding
and the practical applications of the cavity optomechanical
systems.

V. CONCLUSION

In conclusion, we have presented a scheme for generating
mechanical quadrature squeezing in a typical optomechanical
system via gradient-descent algorithm. The generated me-
chanical squeezing can exceed the 3-dB steady-state limit and
ultrafast squeezing preparation within one mechanical oscil-
lation period can be realized. The optimal driving amplitude
and phase corresponding to these generated squeezings have
been presented. Our scheme will pave the way for exploiting
optimal quantum control in quantum optics and quantum in-
formation science.
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APPENDIX: DERIVATION OF THE
VARIATION δ[�X 2

b (θ, T )]/δQm

For generation of mechanical quadrature squeezing, we
need to minimize the loss function �X 2

b (θ, T ). In this Ap-
pendix, we will clarify in detail how to achieve this goal using
the gradient-descent algorithm. The mathematical expression
of the gradient-descent algorithm for mechanical squeezing
generation is

Qm+1 = Qm − χQ
δ
[
�X 2

b (θ, T )
]

δQm
, (A1)

where Q could be either � or φ, m is the iteration number,
and χQ is the learning rate. To calculate Eq. (A1), we need to
calculate the variation of �X 2

b (θ, T ) with respect to the pulse
amplitude �(s) and phase φ(s). Based on Eq. (12), we can
obtain the result

δ�X 2
b (θ, T )

δQ(s)
= δV33(T )

δQ(s)
cos2 θ + δV44(T )

δQ(s)
sin2 θ

+
[
δV34(T )

δQ(s)
+ δV43(T )

δQ(s)

]
sin(2θ ). (A2)

According to Eq. (A2), we can further calculate the re-
sults of δV33(T )/δQ(s), δV44(T )/δQ(s), δV34(T )/δQ(s),
and δV43(T )/δQ(s). The variation of the covariance-matrix
elements with respect to the pulse amplitude �(s) and phase
φ(s) can be expressed as a linear combination of the vari-
ation of these second-order moments with respect to the

023519-7



YU-HONG LIU AND JIE-QIAO LIAO PHYSICAL REVIEW A 110, 023519 (2024)

driving amplitude �(s) and phase φ(s):

δV11(T )

δQ(s)
= 1

2

δ〈a†a†(T )〉
δQ(s)

+ δ〈a†a(T )〉
δQ(s)

+ 1

2

δ〈aa(T )〉
δQ(s)

, (A3a)

δV12(T )

δQ(s)
= i

2

δ〈a†a†(T )〉
δQ(s)

− i

2

δ〈aa(T )〉
δQ(s)

, (A3b)

δV13(T )

δQ(s)
= 1

2

δ〈a†b†(T )〉
δQ(s)

+ 1

2

δ〈a†b(T )〉
δQ(s)

+ 1

2

δ〈ab†(T )〉
δQ(s)

+ 1

2

δ〈ab(T )〉
δQ(s)

, (A3c)

δV14(T )

δQ(s)
= i

2

δ〈a†b†(T )〉
δQ(s)

− i

2

δ〈a†b(T )〉
δQ(s)

+ i

2

δ〈ab†(T )〉
δQ(s)

− i

2

δ〈ab(T )〉
δQ(s)

, (A3d)

δV22(T )

δQ(s)
= −1

2

δ〈a†a†(T )〉
δQ(s)

+ δ〈a†a(T )〉
δQ(s)

− 1

2

δ〈aa(T )〉
δQ(s)

, (A3e)

δV23(T )

δQ(s)
= i

2

δ〈a†b†(T )〉
δQ(s)

+ i

2

δ〈a†b(T )〉
δQ(s)

− i

2

δ〈ab†(T )〉
δQ(s)

− i

2

δ〈ab(T )〉
δQ(s)

, (A3f)

δV24(T )

δQ(s)
= −1

2

δ〈a†b†(T )〉
δQ(s)

+ 1

2

δ〈a†b(T )〉
δQ(s)

+ 1

2

δ〈ab†(T )〉
δQ(s)

− 1

2

δ〈ab(T )〉
δQ(s)

, (A3g)

δV33(T )

δQ(s)
= 1

2

δ〈b†b†(T )〉
δQ(s)

+ δ〈b†b(T )〉
δQ(s)

+ 1

2

δ〈bb(T )〉
δQ(s)

, (A3h)

δV34(T )

δQ(s)
= i

2

δ〈b†b†(T )〉
δQ(s)

− i

2

δ〈bb(T )〉
δQ(s)

, (A3i)

δV44(T )

δQ(s)
= −1

2

δ〈b†b†(T )〉
δQ(s)

+ δ〈b†b(T )〉
δQ(s)

− 1

2

δ〈bb(T )〉
δQ(s)

. (A3j)

The variation for other covariance-matrix elements can be obtained based on the Hermitian conjugate relations.
It can be seen from Eq. (A3) that, to obtain the result in Eq. (A2), we need to further calculate the variations of these

second-order moments with respect to �(s) and φ(s). This can be achieved by taking the variation with respect to �(s) and φ(s)
on both sides of Eq. (8), namely,

δẊ(t )

δQ(s)
= M(t )

δX(t )

δQ(s)
+ δM(t )

δQ(s)
X(t ) + δN(t )

δQ(s)
. (A4)

Since Q(s) is a function of s, δẊ(t )/δQ(s) in Eq. (A4) can be expressed as d
dt

δX(t )
δQ(s) [76]. Under the initial condition

δX(0)/δQ(s) = [0, . . . , 0]T
10×1, the solution of Eq. (A4) at the target time T can be obtained as

δX(T )

δQ(s)
= U(T )

δX(0)

δQ(s)
+ U(T )

∫ T

0
dτU−1(τ )

[
δM(τ )

δQ(s)
X(τ ) + δN(τ )

δQ(s)

]

= U(T )
∫ T

0
dτU−1(τ )

[
δM(τ )

δQ(τ )

δQ(τ )

δQ(s)
X(τ ) + δN(τ )

δQ(τ )

δQ(τ )

δQ(s)

]

= U(T )U−1(s)

[
δM(s)

δQ(s)
X(s) + δN(s)

δQ(s)

]
, (A5)

where U(t ) satisfies U̇(t ) = M(t )U(t ) with the initial value U(0) = I .
To know the explicit expressions for δM(s)/δQ(s) and δN(s)/δQ(s) in Eq. (A5), we need to obtain the values of δα(s)/δQ(s),

δβ(s)/δQ(s), and their Hermitian conjugate. Taking the variation with respect to Q(s) on both sides of Eqs. (6a) and (6b) as well
as their Hermitian conjugate equations, we have

Ȧ(t ) = W(t )A(t ) + Q(t ), (A6)

where

A(t ) =
(

δα(t )

δQ(s)
,

δβ(t )

δQ(s)
,
δα∗(t )

δQ(s)
,
δβ∗(t )

δQ(s)

)T

, (A7)
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W(t ) =

⎛
⎜⎜⎝

−i�(t ) − κ
2 0 −ig0α −ig0α

−ig0α
∗ −ig0α −iωm − γ

2 0
0 i�(t ) − κ

2 ig0α
∗ ig0α

∗
ig0α

∗ ig0α 0 iωm − γ

2

⎞
⎟⎟⎠, (A8)

and

Q(t ) =

⎛
⎜⎜⎜⎝

i δ�(t )
δQ(s) e

−iφ(t ) + i�(t ) δ[e−iφ(t )]
δQ(s)

0
−i δ�(t )

δQ(s) e
iφ(t ) − i�(t ) δ[eiφ(t )]

δQ(s)
0

⎞
⎟⎟⎟⎠. (A9)

The solution to Eq. (A6) can be expressed as

A(t ) = �(t )A(0) + �(t )
∫ t

0
�−1(τ )Q(τ )dτ, (A10)

where A(0) = [0, 0, 0, 0]T and �(t ) satisfies the equation �̇(t ) = W(t )�(t ) with the initial value �(0) = I . Then, we have(
δα(s)

δ�(s)
,

δβ(s)

δ�(s)
,
δα∗(s)

δ�(s)
,
δβ∗(s)

δ�(s)

)T

=
(

1

2
ie−iφ(s), 0,−1

2
ieiφ(s), 0

)T

, (A11a)

(
δα(s)

δφ(s)
,
δβ(s)

δφ(s)
,
δα∗(s)

δφ(s)
,
δβ∗(s)

δφ(s)

)T

=
(

1

2
�(s)e−iφ(s), 0,

1

2
�(s)eiφ(s), 0

)T

. (A11b)

Thus, we obtain the variation of the displacement amplitudes α(s) and β(s) with respect to the driving amplitude �(s) and
phase φ(s), respectively. Based on the value of δ[�X 2

b (θ, T )]/δQ(s), we can further perform the gradient-descent algorithm
until a satisfactory value of the loss function �X 2

b (θ, T ) is obtained.
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