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Analysis of extreme-value statistics of stochastic laser pulses suggests a closed-form, quantitative criterion
of self-focusing avoidance. We present an analytical solution for the excess kurtosis of the statistics of
nonlinear-optical processes, which is shown to be a rapidly growing function of the nonlinearity order, thus
indicating a physically significant redistribution of statistical weight within the probability distribution of the
respective nonlinear readouts from its central part to its tails. Unlike deterministic self-focusing, whose criterion
is expressed in terms of a well-defined self-focusing threshold Pcr, its stochastic counterpart is a probabilistic
process whose combined probability for a sample of N laser pulses builds up as a function of N, leading to
N-dependent self-focusing avoidance criteria. Specifically, for N � 1 laser pulses with a signal-to-noise ratio a,
the criterion of self-focusing avoidance is shown to shift as a2Pcr/(2 ln N ). Instead of dealing with a question as
to how to completely avoid self-focusing, stochastic analysis has to deal with a question of how to effectively
manage the self-focusing probability over a finite sample of laser shots. The occurrence of self-focusing in
stochastic nonlinear optics is thus not a question of i f , but a question of when.
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I. INTRODUCTION

Since its discovery at the dawn of the laser era [1–3],
self-focusing has been central to optical science [4–6]. In
laser technologies, self-focusing provides a universal mode-
locking mechanism [7,8], enabling a robust generation of
ultrashort light pulses. In a broad variety of laser-matter in-
teraction scenarios, self-focusing tends to couple to other
nonlinear processes [2,4,9], launching complex spatiotempo-
ral transformations of ultrashort field waveforms [10–12] and
giving rise to a vast range of intriguing physical phenom-
ena and unusual regimes of nonlinear dynamics, including
laser filamentation [10,11,13,14], supercontinuum generation
[15,16], high-power pulse compression [17–19], and cross-
range wavelength conversion [20]. In high-power lasers,
self-focusing is manifested as a primary cause of damage
to optical components [4,6,17,21,22], which sets a limit on
the peak power of the laser output, setting a stage for the
celebrated chirped-pulse amplification technology [23–25].

In the standard framework of nonlinear optics, self-
focusing is viewed as a process that plays out for laser beams
whose peak power P exceeds a well-defined threshold, which
the canonical theory of self-focusing [4,26] sets at

Pcr ≈ (4πn0n2)−1λ2, (1)

where n0 is the field-free refractive index, n2 is the nonlinear
refractive index, and λ is the laser wavelength. This view of
self-focusing is fully adequate for a vast class of nonlinear-
optical phenomena, providing solid grounds for the design
of mode-locked laser sources and high-power laser beamlines
and helping understand some of the most intriguing and most
complex scenarios in ultrafast optical science [4–6,27].

This picture of self-focusing, however, reaches its limits
when stochasticity enters the scene. Examples of pertinent
physical settings include, but are in no way limited to,

noise-seeded stimulated Raman scattering [28–30], paramet-
ric gain [31,32] and beam instabilities [31,33], multimode
lasing [34,35], and waveform synthesis [36–38] with fluctu-
ating modes, impurity-state- and noise-assisted laser-induced
ionization [39–41], as well as random refractive-index varia-
tions in crystals and turbulent gases [42–44].

Because the field intensity and the peak power of a laser
beam in such settings are no longer sharply defined constants,
but can only be described in terms of statistical distributions,
well-resolved, constant thresholds are no longer sufficient as
self-focusing avoidance criteria. Here, in search of a more ad-
equate framework, we resort to the analysis of extreme-value
statistics of self-focusing field waveforms. Such analysis sug-
gests, as one of the central results of this study, that, in
stochastic nonlinear optics, self-focusing avoidance criteria
can no longer be expressed via constant thresholds, such as
the critical power of self-focusing Pcr [Eq. (1)], but need to be
defined as functions of the number of trials N, i.e., the number
of laser shots in a sample. As one of the most significant man-
ifestations of its stochastic nature, the combined probability
of self-focusing in a sample of N laser pulses builds up as a
function of N, leading to N-dependent self-focusing avoidance
criteria. Specifically, for N � 1 stochastic laser pulses with a
signal-to-noise ratio a, the criterion of self-focusing avoidance
is shown to shift as a2Pcr/(2 ln N ).

II. STOCHASTIC LASER PULSES AND THEIR
SELF-FOCUSING STATISTICS

We consider a nonlinear process in which a laser driver
with a field envelope ρ(r, t ) gives rise to a nonlinear readout
ψ (ρ) = αρn. Such polynomial nonlinear response is typi-
cal of many of the key processes in perturbative nonlinear
optics [4,26], including nth-order harmonic generation, wave
mixing, and self-phase modulation. In a specific case of
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self-focusing, a laser beam propagating in a medium with a
nonlinear refractive index n2 induces an intensity-dependent
change in the refractive index, thus giving rise to a nonlinear
lens. The nonlinear readout ψ in this setting can be identified
with an on-axis nonlinear phase shift ψ = ϕnl = (2π/λ)n2Ild
that the laser beam with a field intensity I and beam radius r
acquires within the diffraction length ld ≈ (2π/λ)n0r2. Defin-
ing the laser peak power as P = πr2I = SI, where S is the beam
area, and setting

ψ = (4π/λ2)n0n2P = 1 (2)

as a criterion of a Kerr lens that is strong enough to compen-
sate the diffraction beam divergence, we find that the peak
power P needed to induce such a phase shift and found from
Eq. (2) is precisely the critical power of self-focusing Pcr

as defined by Eq. (1). The α multiplier for the self-focusing
nonlinearity is thus

α = αs f = S/(2Pcr ). (3)

Given the probability density function for the driver enve-
lope, wρ (ρ), the probability density function of the nonlinear
readout ψ is

wψ (ψ ) = |∂ρ/∂ψ |wρ (ρ = ρ(ψ )), (4)

where ρ = ρ(ψ ) means that ρ is expressed in terms of ψ

via the inverse of ψ (ρ). For the self-focusing nonlinearity,
ψ (ρ) = αρ2, inverting ρ(ψ ) yields ρ(ψ ) = (ψ/α)1/2.

We now examine a generic stochastic field waveform rep-
resented as a superposition

η(t ) = s(t ) + ξ (t ) = ρ(t )cos[ω0t + θ (t )] (5)

of a deterministic waveform s(t ) = ρs(t )cos[ω0t + ϕs(t )] and
a narrow-band noise ξ (t ) = ρξ (t )cos[ω0t + ϕξ (t )] with a

slowly varying envelope ρ(t ) = {[ρ1(t )]2 + [ρ2(t )]2}1/2
and

phase θ (t ) = atan[ρ2(t )/ρ1(t )], ρ1(t ) = ρs(t )cos[ϕs(t )] +
ρ+(t ), ρ2(t ) = ρs(t )sin[ϕs(t )] + ρ−(t ), ρ+(t ) =
ρξ (t )cos[ϕξ (t )], and ρ−(t ) = ρξ (t )sin[ϕξ (t )].

The normalized envelope v = ρ/σ of the waveform (5) has
a Rice distribution [45,46],

wv (v) = Q(v, a) = v exp[−(a2 + v2)/2]I0(av), (6)

where a = ρs/σ is the signal-to-noise ratio and I0(x) is the
modified Bessel function of the first kind.

When a = 0, i.e., the deterministic part of the field is zero,
ρs = 0, Eq. (6) recovers the Rayleigh distribution,

wρ (ρ) = (ρ/σ 2) exp[−ρ2/(2σ 2)]. (7)

With ψ (ρ) = αρn, ρ(ψ ) = (ψ/α)1/n and Eqs. (4) and (7)
give

wψ (ψ ) = (αn)−1σ−2(ψ/α)(2/n)−1 exp[−(ψ/α)2/n/(2σ 2)],
(8)

or, for x = ψ/ψ0 and ψ0 = 2n/2ασ n,

wx(x) = (2/n)x(2/n)−1 exp(−x2/n). (9)

For the Kerr-effect self-focusing nonlinearity, ψ (ρ) =
αρ2,

wψ (ψ ) = (2α)−1σ−2 exp[−ψ/(2ασ 2)], (10)

wx(x) = exp (−x), (11)

with x = ψ/ψ0 and ψ0 = 2ασ 2.

In a special case of α = 1/2, we find ψ = ρ2/2 and ψ0 =
σ 2. Equations (10) and (11) then lead to the distribution of
the field intensity I = ρ2/2, wI (I ) = 〈I〉−1 exp(−I/〈I〉), with
〈I〉 = 〈ρ2〉/2 = σ 2 = ψ0.

The model of a stochastic laser driver as described by
Eq. (7) is, of course, an idealization. Yet, this model is well
established, fully justifiable as a model of a multimode laser
output, and is grounded in a broad class of existing laser
sources. Specifically, as one of its properties, this distribu-
tion assigns very low, yet finite probabilities to envelopes
that are many orders of magnitude larger than its mean,
〈ρ〉 = (π/2)1/2σ , or median, ρd = (2 ln 2)1/2σ . This prop-
erty of Eq. (7), however, does not pose any practical or
conceptual difficulty. In practical terms, although the pump
energy in laser sources of stochastic pulses is limited, for
high-energy laser systems, such as electron-beam- or electric-
discharge-pumped excimer lasers [35,47–51] and flashlamp-
or diode-pumped high-power Nd: glass lasers [52–57], the
pump energy is also many orders of magnitude higher than
the energy of laser pulses. Therefore, pulses with ρ orders of
magnitude larger than 〈ρ〉 or ρd are not prohibited.

The model of Eqs. (5) and (7) is not only grounded
in a broad class of laser sources, such as electron-beam-
or electric-discharge-pumped excimer lasers [35,47–51] and
flashlamp- or diode-pumped high-power Nd: glass lasers
[52–57], but is also fully justifiable as a model of statistics of
a generic multimode laser source whose output is a superposi-
tion of a large number N of modes with random, uniformly
distributed phases [34]. In the Appendix, we provide such
a justification, showing that, with a sufficiently large N, the
envelope distribution of such a multimode laser output will be
arbitrarily close to the distribution of Eq. (7). As a meaningful
practical estimate, for a high-power excimer laser [35,47–51],
a typical correlation time τc ≈ 1 ps and pulse width τp ≈ 1
ns give N ≈ τp/τc ≈ 1000. For such N , 〈y4〉 for a multimode
laser deviates from 〈y4〉 for a Gaussian statistics by less than
(2N )−1 = 0.0005 (see the details in the Appendix). Energy
conservation is never a question in this setting, as envelope
fluctuations at the output of such a laser do not involve any
extra pump energy, but are totally due to the phase fluctuations
of the laser modes, leading to random—sometimes extreme—
variations in the envelope of the laser output.

III. EXCESS KURTOSIS AND THE TAIL PROPERTIES
OF NONLINEAR READOUT STATISTICS

As pointed out in extensive earlier literature (see Ref.
[34] for a review), a polynomial transform of the statistics
as described by Eq. (4) with ψ (ρ) = αρn, n > 1, gives rise
to a probability distribution wψ (ψ ) in Eq. (4), whose rate
of convergence to zero in the ψ → ∞ limit is lower than
the wρ (ρ) → 0 convergence rate of the original distribution
wρ (ρ). In this section, we seek to quantify this property of
nonlinear statistics transform as described by Eq. (4) by ex-
amining the excess kurtosis of wψ (ψ ),

K = μ4/μ
2
2 − 3, (12)

where μi is the ith central moment of wψ (ψ ).
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FIG. 1. The excess kurtosis K of the distribution wψ (ψ ) as a
function of the nonlinearity order n with ψ (ρ ) = αρn, n = 2k, k is
an integer, and with wρ (ρ ) as defined by Eq. (7).

The excess kurtosis K as defined by Eq. (12) provides a
meaningful measure of how heavy the tail of the distribution
wψ (ψ ) is relative to the tail of the normal distribution, whose
kurtosis K0 = 3 sets a baseline for K.

With wρ (ρ) as defined by Eq. (7) taken as the origi-
nal distribution in Eq. (4), Eq. (12) allows an instructive
closed-form analytical solution for the excess kurtosis K
of wψ (ψ ). Indeed, with wρ (ρ) as defined by Eq. (7) and
with ψ (ρ) = αρ2k , where k is an integer, we find 〈ψm〉 =
2kmα2km�(1 + km)σ 2km = 2kmα2km(km)!σ 2km, with m = 1, 2,
3, 4, as needed for the calculation of the moments μ2 and μ4

in Eq. (12). Expressing μ2 and μ4 via 〈ψm〉, with m = 1, 2, 3,
4, and plugging the result into Eq. (12), we arrive at

K = [(4k)! − 4k!(3k)! + 6(2k)!(k!)2

− 3(k!)4]/[(2k)! − (k!)2]
2 − 3. (13)

For the Kerr-effect self-focusing nonlinearity, ψ (ρ) =
αρ2, k = 1, n = 2, Eq. (13) gives K = 6, thus recovering the
excess kurtosis of an exponential distribution. This result is in
full agreement with expectations since, for ρ distributed in ac-
cordance with Eq. (6), ρ2 is distributed exponentially. As can
be seen from Eq. (13), the excess kurtosis of the statistics of
nonlinear readouts rapidly grows with the nonlinearity order
(Fig. 1), thus indicating a physically significant redistribution
of statistical weight within the distribution wψ (ψ ) from its
central part to its tails.

IV. EXTREME-VALUE STATISTICS:
THE GENERAL FRAMEWORK

Because the peak power of a stochastic laser field is a
random variable, which can only be described in terms of its
statistical distribution, the standard self-focusing avoidance
criterion P < Pcr is no longer productive. Instead of dealing
with a question as to how to completely avoid self-focusing,
stochastic analysis has to deal with a question of how to
effectively manage the self-focusing probability. Moreover,
because self-focusing is the prime cause of a damage of
optical components in high-power short-pulse laser beam-
lines, this self-focusing management needs to apply not to
individual pulses, but to laser pulses en masse. Since each
new stochastic laser pulse adds to the combined probability

of self-focusing, field stability against self-focusing over a
sample of N laser shots, as another striking distinction from
deterministic self-focusing, should be viewed as a function
of N.

Central to our study is the search for an adequate frame-
work for the analysis of such problems by resorting to the
pertinent extreme-value statistics. To understand the extreme-
value statistics of the nonlinear process ψ , we consider a
random sample of N independent nonlinear-process readouts,
{ψ1, ψ2, . . . , ψN }, and define its maximum, MN = maxψ1,
ψ2, . . . , ψN }. The probability that MN � ξ is QN (ξ ) =∫ ξ

−∞ dψ1
∫ ξ

−∞ dψ2 . . .
∫ ξ

−∞ dψN pψ (yψ1, ψ2, . . . , ψN ), where
pψ (ψ1, ψ2, . . . , ψN ) is the joint distribution of ψ1,
ψ2, . . . , ψN .

Because ψ1, ψ2, . . . , ψN are independent and identically
distributed, the joint cumulative distribution QN (ξ ) is found
as

QN (ξ ) = [W (ξ )]N = [1 − P(ξ )]N , (14)

with W (ξ ) = ∫ ξ

−∞ wψ (ψ )dψ and

P(ξ ) =
∫ ∞

ξ

wψ (ψ )dψ. (15)

With wψ (ψ ) and wρ (ρ) as defined by Eqs. (4) and (7),
integration in Eq. (15) yields

P(ξ ) = exp{−[ρ(ξ )]2/
(
2σ 2)}. (16)

In accordance with the Fisher-Tippett-Gnedenko (FTG)
theorem [58–62], the limit F (ξ ) = limx→∞, N→∞QN (ξ ) can
only exist, upon linear renormalization z = (ξ − aN )/bN with
constants aN > 0 and bN , in one of three classes of functions,
F1(z), F2(z), or F3(z), identified as the Gumbel [63], Fréchet
[58], and Weibull [64] distributions. The FTG theorem guar-
antees that, if an extreme-value distribution exists, in a sense
of the limx→∞, N→∞QN (ξ ) = F [(ξ − aN )/bN ] limit for a par-
ent statistics wψ (ψ ), it is always found in one of three classes
of cumulative probability distributions as described by F1(z),
F2(z), and F3(z). This theorem, however, does not guarantee
the existence of the limx→∞, N→∞QN (ξ ) = F [(ξ − aN )/bN ]
limit for any wψ (ψ ). The general recipe of finding the aN and
bN renormalization parameters is not known either.

V. LOW SIGNAL-TO-NOISE LASER DRIVER

To see whether or not the extreme-value theory
applies to stochastic self-focusing, we search for
limx→∞, N→∞[1–P(x)]N with

P(x) = exp(−x2/n), (17)

as dictated by Eqs. (9) and (16). To this end, we represent
QN (x) as

QN (x) = [1 − exp (−xε )]N = exp {N ln [1 − exp (−xε )]},
(18)

with ε = 2/n.
In the limit of large N,

QN (x) ≈ exp [− exp (−xε + ln N )]. (19)
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With x = aN + bN z and with xε expanded in the large-N
limit as xε ≈ aε

N + εaε−1
N bN z,

QN (x) ≈ exp
[− exp

(−aε
N + ln N − εaε−1

N bN z
)]

, (20)

leading to

F (x) = limx, N→∞[1 − exp (−xε )]N = FG[(x − aN )/bN ],
(21)

where

FG(z) = exp [− exp (−z)], (22)

aN = (ln N )1/ε = (ln N )n/2, (23)

and

bN = (ln N )1/ε−1/ε = n(ln N )n/2−1/2. (24)

The respective probability distribution function,

fG(z) = F ′
G(z) = exp [−z − exp (−z)], (25)

is recognized as the Gumbel distribution [61–63].
Because the Gumbel distribution is one of the universal

extreme-value distributions predicted by the Fisher-Tippett-
Gnedenko theorem, Eqs. (21)–(25) prove that the FTG does
apply to the extreme-value statistics of a nonlinear signal
ψ (ρ) = αρn. Moreover, Eqs. (23) and (24) provide explicit
analytic solutions for the location and scale parameters of the
extreme-value distribution of such a nonlinear signal.

We see from Eqs. (21)–(25) that the class of extreme-value
distribution for a polynomial nonlinearity is independent of
the nonlinearity order n. However, the location and scale
parameters aN and bN of the respective extreme-value dis-
tribution are n-dependent. As an important property of the
extreme-value distribution defined by Eqs. (22)–(25), the
location of its maximum, xm = aN , i.e., the mode of the dis-
tribution, shifts as (ln N )n/2 toward larger x with the growth
in N,

ψm = aNψ0 = 2n/2ασ n(ln N )n/2. (26)

The extreme-value distribution for the Kerr-effect self-
focusing nonlinearity is found from Eqs. (21)–(25) with
n = 2, leading to the Gumbel distribution with location and
scale parameters as dictated aN = ln N and bN = 1. The mode
of this distribution, found from Eq. (26), is

ψm = 2ασ 2 ln N = 2α〈I〉 ln N. (27)

While the maximum of this extreme-value distribution
function shifts with N as ln N, its width remains constant.
These tendencies are clearly seen in Fig. 2, where N is set at
102, 103, and 104, leading to a noticeable shift of the extreme-
value distribution.

With α as defined by Eq. (3) for the self-focusing nonlin-
earity, Eq. (27) becomes

ψm = P̄ ln N/Pcr = 〈I〉S ln N/Pcr. (28)

Searching for the critical peak power from the threshold
condition of Eq. (2) at the mode [Eq. (27)] of the extreme-
value distribution defined by Eqs. (22)–(26), we find P̄cr =
Pcr/ ln N .

At the peak of the Gumbel distribution function, as de-
fined by Eqs. (26)–(28), its cumulative distribution function

FIG. 2. Extreme-value probability density functions (solid lines)
and their respective cumulative distribution functions (dashed lines)
for the self-focusing nonlinearity ψ = αρ2, driven by a laser field
with an envelope distribution (7). The abscissa is x = ψ/ψ0, with
ψ0 = 2ασ 2. The number of nonlinear-signal readouts is N = 102,
103, and 104, as shown in the plot. The probability density function
of ψ/ψ0 for ψ = αρ2 is shown by the dashed-dotted line.

[Eq. (19)] takes a value of 1/e ≈ .037 regardless of its scale
parameter. Keeping P̄ below Pcr/ ln N , i.e.,

P̄ < Pcr/ ln N, (29)

thus provides P � 37% probability of self-focusing avoidance
for all N pulses in a sample.

VI. HIGH SIGNAL-TO-NOISE LASER DRIVER

To appreciate the significance of the criterion of Eq. (29),
we resort to a more general model of the envelope distribution
as described by Eq. (6) and examine the case of high signal-to-
noise ratios, a � 1. In this limit, the modified Bessel function
in Eq. (6) is expanded as I0(x) ≈ (2πx)−1/2 exp(−x) to yield

wρ (ρ) = (2π )−1/2σ−1 exp[−(ρ − ρs)2/(2σ 2)]. (30)

The probability density function wρ (ρ) as described by
Eq. (30) is a narrow Gaussian distribution that is centered at
ρ = ρs with a distribution width of σ .

The extreme-value distribution of a standard Gaussian
probability distribution w(x) = (2π )−1/2σ−1 exp[−x2/(2σ 2)]
is found in the class of the Gumbel distribution functions
[61–63], as defined by Eqs. (22)–(25), with location and scale
parameters

aN = σ {(2 ln N )1/2 − ln(ln N )/[2(2 ln N )1/2]}, (31)

and

bN = σ {(2 ln N )1/2 − ln (ln N )/[2(2 ln N )1/2]}−1
. (32)

For N � 1, aN ≈ σ (2 ln N )1/2 and bN ≈ σ (2 ln N )−1/2.
The extreme-value envelope distribution of an a � 1 field

waveform (5) is thus the Gumbel distribution [Eq. (25)],
whose maximum (mode), centered at

ρmax ≈ ρs + σ (2 ln N )1/2, (33)

shifts with N as σ (2 ln N )1/2 (Fig. 2).

023516-4



CRITERIA FOR STOCHASTIC SELF-FOCUSING PHYSICAL REVIEW A 110, 023516 (2024)

FIG. 3. Extreme-value probability density functions (solid lines)
and their respective cumulative distribution functions (dashed lines)
for the envelope of the high signal-to-noise field waveform (5) with
a2 = 16 and N = 100, 105, and 108, as shown in the plot. The abscissa
is v = ρ/σ . Also shown are (solid purple line) the probability density
function for the envelope of the field waveform (5) with a2 = 16 and
(dash-dotted purple line) the cumulative probability function for the
envelope of the field waveform (5) with a → ∞.

With σ expressed as = ρs/a, Eq. (33) can be rewritten as

ρmax ≈ ρs[1 + a−1(2 ln N )1/2]. (34)

For a−1(2 ln N )1/2 � 1, or N � exp(a2/2), Eq. (34) be-
comes

ρmax ≈ (ρs/a)(2 ln N )1/2 = σ (2 ln N )1/2. (35)

In this limit, ρ2
max ≈ 2σ 2 ln N , recovering Eq. (27) for the

mode of the extreme-value distribution for the field waveform
with zero mean.

We now consider an a � 1 laser field waveform (5) with
ρs < ρcr = (2Pcr/S)1/2. In the a → ∞ limit, the second term
in Eqs. (33) and (34) is vanishingly small, indicating that
stochastic properties of the laser field are totally suppressed
and the peak power is P = Ps = Sρ2

s /2. The cumulative dis-
tribution function for the field envelope is then a step function
centered at ρ = ρs (dash-dotted purple line in Fig. 3). As
long as ρs < ρcr, self-focusing of such a beam is totally
avoided. Thus, as a → ∞, the canonical picture of determin-
istic self-focusing is recovered in its entirety. Specifically, the
beam remains stable, exhibiting no self-focusing, as long as
P0 < Pcr, in full agreement with the deterministic self-
focusing avoidance criterion.

For finite a, however, the second, stochastic term in
Eqs. (33) and (34) is nonzero, increasing with N as
a−1(2 ln N )1/2. Now, as N grows, the whole extreme-value
envelope distribution of the field (5) shifts toward larger
ρ (Fig. 3). The peak of this distribution, i.e., its mode, is
achieved at ρ = ρmax, translating into a peak power

Pmax ≈ Ps[1 + a−1(2 ln N )1/2]
2
. (36)

It is readily seen from Eq. (36) that, even with the peak
power Ps of a laser pulse chosen well below the critical power
of self-focusing Pcr, the mode of its extreme-value distribution
for sufficiently large N may fall beyond the Pcr borderline,

thus making the beam unstable with respect to self-focusing.
The requirement Pmax < Pcr as a criterion of self-focusing
avoidance can now be satisfied only with

Ps < Pcr[1 + a−1(2 ln N )1/2]
−2

. (37)

For N � exp(a2/2), the criterion of Eq. (37) becomes

Ps < a2Pcr/(2 ln N ). (38)

Calculating 〈I〉 = 〈ρ2〉/2 via a statistical averaging of ρ2

with a probability density function as defined by Eq. (6), we
find 〈I〉 = σ 2(1 + a2/2). Using this result to express Ps in the
a � 1 limit as Ps ≈ a2σ 2/2, we see that Eq. (38) reduces to
Eq. (29).

Equations (37) and (38) provide closed-form analytical
expressions for the criterion of self-focusing avoidance over
a sample of N � 1 stochastic laser pulses. Thus, when the
criterion of Eq. (37) is fulfilled, self-focusing is avoided with
a P � 37% probability for all N pulses in the sample.

In Fig. 3, we present the extreme-value probability density
functions and their respective cumulative distribution func-
tions for the envelope of a field waveform (5) with a2 =
16. With an increase in N, the mode of the extreme-value
distributions is seen to shift toward larger v = ρ/σ . The mag-
nitude of this shift agrees very well with Eqs. (33) and (34).
Specifically, with N = 100, (2 ln N )1/2 ≈ 3.0 provides a very
accurate estimate for the shift of the mode of the N = 100
extreme-value probability density function (blue solid curve
in Fig. 3) relative to the maximum of the envelope probability
distribution density function (violet solid curve in Fig. 3).
With N = 105, on the other hand, 1 + a−1(2 ln N )1/2 ≈ 2.2,
so that the maximum of the respective extreme-value prob-
ability density function is achieved at Pmax ≈ 2.2Ps. The
self-focusing avoidance criterion of Eq. (37) then becomes
Ps < 0.45Pcr. When this condition is satisfied, self-focusing
within a sample of N = 105 laser pulses is avoided with a
P � 37% probability, as read out from the respective cumu-
lative distribution function (red dashed curve in Fig. 3).

Should this level of self-focusing avoidance probability P
become insufficient, higher levels of P can be achieved by
tightening the upper bounds in inequalities (37) and (38) to
impose more stringent requirements on the laser peak power.
Specifically, with the upper bounds in these inequalities de-
fined from the median rather than the mode of the respective
extreme-value distribution, a P � 50% probability of self-
focusing avoidance will be provided. As an aid to a practical
implementation of this approach, the solution for the median
xd for the Gumbel distribution [Eq. (25)] is known analyt-
ically, xd = aN − bN ln(ln 2), with aN and bN as defined by
Eqs. (23) and (24). More generally, unlike the specific proba-
bility distribution of a stochastic laser field, its extreme-value
distribution is known—it is always found in the class of the
Gumbel distribution functions as long as optical nonlinearity
is ψ (ρ) = αρn. Therefore, for any given ε, a P � ε self-
focusing avoidance probability can be achieved by relating
the upper bounds in Eqs. (37) and (38) to ψ chosen close
enough to the FG(ψ ) = 1 asymptotic limit of the respective
extreme-value distribution (dashed lines in Figs. 2 and 3).

Equations (29), (37), and (38) provide a closed-form an-
alytical solution for the criterion of self-focusing avoidance
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within large samples of stochastic laser pulses. This solution
establishes conditions under which stochastic laser pulses be-
come prone to self-focusing. While it answers the question
of when stochastic laser pulses become unstable with respect
to self-focusing, this solution is not intended to address the
question of how self-focusing unfolds. To answer this latter
question, nonlinear spatiotemporal field evolution equations
need to be solved for a specific stochastic pulse envelope
and a specific stochastic beam profile [65–67]. Aimed at un-
derstanding conditions and criteria of stochastic self-focusing
rather than simulating a specific self-focusing scenario, the
present study is a critically important step in the analysis of
stochastic self-focusing.

VII. CORRELATION EFFECTS

The analysis above was performed in the approximation
of independent laser pulses. While this approximation is
fully justified for laser sources operating at relatively low
pulse repetition rates, its validity may and should be ques-
tioned for advanced high-repetition-rate laser systems, where
pulse-to-pulse correlations are possible due to gain depletion
or thermal-wake effects in a laser medium. While there is
currently no universal framework for the analysis of extreme-
value statistics of correlated random processes, some powerful
and rather general approaches have been developed for certain
practically significant special cases [68–78].

Of particular relevance for pulsed laser sources is the case
of weak correlations [68–71], in which the correlation length
Nc is much shorter than the length N of the sample of random
readouts {ψ1, ψ2, . . ., ψN }. The sample of readouts can then
be divided into M = N/Nc � 1 blocks. While the readouts
within each such block are correlated, readouts from different
blocks are not. Now, the local maxima χ j found within each
of these M blocks, j = 1, . . ., M are uncorrelated. Thus, if the
probability distribution of χi can be found, then the problem
is reduced to searching for the maximum of M uncorrelated
random variables, i.e., the problem that can be solved in terms
of extreme-value statistics [68].

When correlations between ψi are so strong that the corre-
lation length Nc is comparable to the sample length, analysis
of extreme-value statistics is possible when the lasing pro-
cess can be described in terms of exactly solvable models.
Pertinent to pulsed laser sources are the models of Brownian
motion, random walks, and the Ornstein-Uhlenbeck process
[72–78]. Within their respective applicability realms, these
models will yield analytical solutions for the extreme-value
distribution of the driver field, which can be then used to
find the extreme value distribution of the nonlinear readouts
in accordance with the procedure described in the previous
sections.

VIII. CONCLUSION

To summarize, we have shown that analysis of extreme-
value statistics of stochastic laser pulses suggests a closed-
form, quantitative criterion of self-focusing avoidance. Unlike
deterministic self-focusing, whose criterion is expressed in
terms of a well-defined self-focusing threshold Pcr, its stochas-
tic counterpart is a probabilistic process whose combined

probability for a sample of N laser pulses builds up as a
function of N, leading to N-dependent self-focusing avoidance
criteria. Specifically, for N � 1 laser pulses with a signal-to-
noise ratio a, the criterion of self-focusing avoidance is shown
to shift as a2Pcr/(2 ln N ).
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APPENDIX

Stochastic properties of a multimode laser:
Rationale behind the model of a stochastic laser driver

Equation (29) provides a closed-form criterion of self-
focusing avoidance applicable to a vast range of stochastic
field-evolution scenarios in which the envelope of the input
field (5) has a Rayleigh distribution, as described by Eq. (7).
To justify this model of a stochastic laser driver and to pro-
vide a quantitative criterion of applicability of this model, we
consider a generic laser source, whose output is a mixture of
N modes,

y(t ) =
N∑

n=1

bn cos (ωnt + ϕn) =
N∑

n=1

bn cos �n. (A1)

The characteristic function of such a process [34],

θ (u) = 〈exp (iyu)〉, (A2)

is

θ (u) =
eucalN∏

n=1

θ (ubn), (A3)

where

θ (ubn) = 〈exp (iubn cos �n)〉

= (2π )−1
∫ π

−π

exp [iubn cos (ωnt + ϕn)]dϕn = J0(ubn)

is the characteristic function of the nth mode, and J0(ζ ) is the
zeroth-order Bessel function of ζ .

The distribution function of y is then found as

w(y) = (2π )−1
∫ ∞

−∞
θ (u) exp (−iuy)du, (A4)

leading to

w(y) = (2A)−1

⎡
⎣1 + 2

∞∑
k=1

cos (πky/A)
N∏

n=1

J0(πkan/A)

⎤
⎦,

(A5)

where A = ∑N
n=1 an.

For low N, the distribution w(y) is distinctly non-Gaussian.
It becomes Gaussian, however, as N → ∞. To see this, we
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consider a process z(t ) = N−1/2y(t ). The characteristic func-
tion of such a process with bn = b is

θz(u) = [J0(N−1/2bu)]
N

. (A6)

In the N � 1 limit,

ln [θz(u)] ≈ −(bu)2/4 + (bu)4/(64N), (A7)

leading to [33]

w(z) = (π )−1/2b−1[1 − (64N)−1H4(z/b)] exp(−z2/b2),
(A8)

where Hn(x) is the nth-order Hermite polynomial.
As N → ∞, both w(z) and w(y) become Gaussian, with

w(y) = (2π )−1/2σ−1 exp[−y2/(2σ 2)], (A9)

2σ 2 = Nb2.

We now see that, as the number of lasing modes N in-
creases, the distribution of a multimode lasing process (A1)
converges to a Gaussian distribution regardless of the spec-
trum of the lasing modes {ωn}. The lowest-order moments of
y are

〈y2〉 = Nb2/2 = σ 2 = Ī,

〈y4〉 = 3[1 − (2N)−1]Ī2,

〈y6〉 = 15[1 − 3(2N)−1 + 2(3N2)
−1

]Ī3.

With N → ∞, these moments recover the moments of
a Gaussian random process [79]. As a meaningful practical
estimate, for a high-power excimer laser [35,47–51], a typi-
cal correlation time, τc ≈ 1 ps, and pulse width, τp ≈ 1 ns,
give N ≈ τp/τc ≈ 1000. For such N, 〈y4〉 for a multimode
laser deviates from 〈y4〉 for a Gaussian statistics by less than
(2N )−1 = 0.0005.
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