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Guiding polarizable particles in multihole Gaussian beams

Tomasz Radożycki *
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The present paper discusses the application of certain special Gaussian beams that, thanks to some polynomial
prefactors, have uniquely designed holes in the irradiance. Such holes, or rather tubes, can constitute potential
valleys for negatively polarizable particles, providing the possibility of guiding several objects of that kind,
each along its own trajectory. The mechanism of creating these holes by interference of Gaussian beams which
exhibit orbital angular momentum is discussed, and then the trajectories of particles moving in such a wave are
numerically calculated. As it turns out, these particles, performing transverse oscillations, follow the designed
tunnels of low irradiance. On the contrary, for particles with positive polarizability these areas are inaccessible.
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I. INTRODUCTION

As is well known, if polarization effects do not play a
significant role, a laser beam near the propagation axis can
be effectively described by the simplified scalar Helmholtz
equation. The approximation is accomplished by substituting
into the wave equation(

�⊥ + ∂2
z − 1

c2
∂2

t

)
�(r, z, t ) = 0, (1)

where �⊥ denotes the transverse two-dimensional Laplace
operator, the solution in the form

�(r, z, t ) = eik(z−ct )ψ (r, z), (2)

where ψ (r, z) is assumed to be a slowly varying function of
the coordinate z. The electric field is then related to �(r, z, t )
in the standard way:

E(r, z, t ) = E0�(r, z, t ) (3)

with E0 representing a constant vector [upon satisfying the
condition E0 · ∇�(r, z, t ) ≈ 0]. The bold symbol r (and later
ξ) denotes the two-dimensional vector lying in the plane per-
pendicular to the direction of propagation, e.g., r = [x, y].

Upon neglecting the second-order derivative with respect
to z due to ∣∣∂2

z ψ
∣∣ � |k∂zψ |, (4)

where ∂z denotes ∂/∂z, one gets the so-called paraxial equa-
tion for the scalar envelope ψ (r, z) [1]:

(�⊥ + 2ik∂z )ψ (r, z) = 0. (5)

This approximation was worked out in detail by Lax and
collaborators [2].

The fundamental solution to this equation, called the Gaus-
sian beam (GB), has been known since 1966 (see [3]) and
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has been extensively investigated within, but also beyond,
the validity of the paraxial approximation (see, for instance,
[1,4–11]).

The principal feature of the GB, contrary to the unphysical
and idealized infinite plane waves, constitutes the inhomo-
geneity in the distribution of the wave intensity, especially
the presence of a narrowing, termed the beam waist, where
the concentration of energy is maximal. This property en-
abled the trapping of neutral polarizable particles and the
design of the so-called optical tweezers, i.e., gradient force
traps [12–15].

The structure of the GB is further enriched if it is en-
dowed with nonzero orbital angular momentum (OAM). In
this case, the beam has a vortical nature: on its axis the
irradiance drops to zero, and upon encircling it the phase
changes by 2πn, where nh̄ denotes the value of the OAM.
Such beams can be said to be “hollow” along the propagation
axis. The surfaces of the constant phase are then of helical
character.

The original optical tweezers operated due to gradient
forces pulling particles of positive polarizability into areas of
high wave intensity. In a similar way, the irradiance “holes”
can serve as traps or guidelines for objects of negative po-
larizability such as atoms in blue-detuned beams [16–18].
The identical effect is due to the ponderomotive force acting
on charged particles, such as electrons, originating from the
inhomogeneous circularly polarized wave [19,20].

As a recent experimental example of the use of so-called
dark focus tweezers one can refer to Ref. [21], which demon-
strates trapping of nanometer-sized silicon balls placed in
an external medium to achieve a relative refractive index
less than 1. A hollow beam called a “bottle beam” [22]
was obtained in this study by superposition of Gaussian and
Laguerre-Gaussian beams. Numerous references to other the-
oretical and experimental findings can be found in the works
cited above.

Dark focus tweezers or hollow beams have the advan-
tage that particles are trapped or guided in the low-radiation
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domain and are therefore less likely to be damaged. This is
particularly significant for biological objects.

In this paper, we focus on certain hollow Gaussian beams
which represent the solutions to the paraxial equation and
which can be designed to suit specific purposes, such as
guiding several particles or atoms in a special way. For years
hollow beams have been of interest to researchers due to
their possible applications in particle trapping and also in
atomic physics or optical communication (see, for instance,
[23–27]). As mentioned above, however, typically, this term
refers to the situation in which light is concentrated outward
on a cylindrical or annular structure with a hollow space in
the center aligned along the propagation axis (certain non-
cylindrical hollow beams of elliptical or rectangular cross
section were introduced in [26]). To this category belong not
only the well-known Bessel-Gaussian and Laguerre-Gaussian
beams but also other ones (see, for instance, [1,11,17,28–
37]). In contrast, the beams dealt with in the present work are
generated as superpositions of two or more coaxial Gaussian
modes with specific OAM values, which lead to the devel-
opment of a multihole structure. Naturally, a superposition
of cylindrical waves with different angular momenta is no
longer a cylindrical beam in the sense that the distribution
of the irradiance does not exhibit axial symmetry. Depending
on the choice of the constituent modes, this multitube (i.e.,
multihole) structure can be designed as needed. This issue will
be discussed in detail in the next section.

This type of beam has been known in the literature for
about 30 years, although apparently not in the context of
guiding particles. To mention just a few results one can first
refer to Ref. [38], which, after a rather general introduction
containing theoretical foundations of the so-called arrays of
vortices, provides numerical results concerning vortex-vortex
and vortex-antivortex interactions. In turn the experimental
work in Ref. [39] demonstrated the generation of a two-hole
beam thanks to the diffraction on the computer-synthesized
grating and examined the stability of closely located vortices.
In [40] the authors focused on the numerical analysis of the
motion and interaction of vortices inserted in a Gaussian beam
in linear and nonlinear media.

This kind of structured light is expected to find potential
application in communication. For this reason, the stability of
hollow beams subjected to random phase distortions has also
been investigated [41].

In Sec. III the possible use of this structure to transport
particles in a certain way will be addressed. For example, a
multihole beam can simultaneously guide several particles,
each in its own potential tube. This paper is concerned with
a theoretical qualitative, rather than quantitative, description
of this phenomenon.

Among all the research areas mentioned above, the ma-
nipulation of particles still remains a key problem because
of its wide potential usage in physics, chemistry, biology,
and medicine (see, for instance, [15,42–47]) and consti-
tutes one of the major applications of structured light. In
particular, apart from three-dimensional traps, guiding par-
ticles by light along predesigned trajectories, as in [48–50],
continues to be an exciting topic, and both purely theoret-
ical and experimental research in this area seems to be of
importance.

II. DESCRIPTION OF MULTIHOLE GAUSSIAN BEAMS

Before proceeding, it is convenient to introduce dimension-
less coordinates according to the formulas

ξx = x

w0
, ξy = y

w0
, ζ = z

zR
, (6)

where w0 is the beam waist and zR = kw2
0

2 denotes the Rayleigh
length, i.e., the distance at which the area of the transverse
section of the beam increases twice. A different designation
is used for the transverse components ξx and ξy and for the
longitudinal component ζ , as they play a somewhat different
role in the subsequent expressions. With this notation the
paraxial equation (5) takes the following form:

(�ξ⊥ + 4i∂ζ )ψ (ξ, ζ ) = 0, (7)

where ξ = [ξx, ξy]. The solution can be looked for in the
following form:

ψ (ξ, ζ ) = 1

1 + iζ
e− ξ2

1+iζ ψ̃ (ξ, ζ ). (8)

After the substitution of (8) into (7), one can easily derive
the differential equation for the unknown function ψ̃ (ξ, ζ ):

ξ∂ξ ψ̃ (ξ, ζ ) = i(1 + iζ )∂ζ ψ̃ (ξ, ζ ), (9)

which is satisfied by any function of one combined argument
ξ

1+iζ , i.e.,

ψ̃ = ψ̃

(
ξ

1 + iζ

)
. (10)

In formulas (9) and (10) the complex coordinate ξ = ξx +
iξy is introduced and should be distinguished from |ξ| =√

ξ 2
x + ξ 2

y = |ξ |. Result (10) is well known [51]. In particular
the choice of ψ̃ (s) = const leads to the fundamental GB, and
ψ̃ (s) = const × sn corresponds to the GB of vorticity n.

Let us now concentrate on the zeros of the envelope ψ .
From formula (8) it is obvious that it does not have any zeros
other than those of the function ψ̃ . Let p = pr + ipi = p0eiφ0

be any of them. As ζ increases, i.e., when moving upward
along the beam, the radial distance of this zero from the beam
axis grows, which is consistent with the diffraction of the
beam itself, but its position also gets twisted around it by
an angle asymptotically tending to π/2, as indicated in the
formulas

|ξ| = p0

β

√
1 + ζ 2,

φ(ζ ) = φ0 + arctan ζ , (11)

where β is a certain constant playing the role of the scaling
factor defined below in (12). Since all possible zeros follow
synchronized identical paths, they never merge, their number
remains constant along the beam, and each develops its own
nodal line as the value of ζ increases (naturally in the opposite
direction, i.e., for ζ < 0 as well). This effect was observed in
[38].

The simplest function that can be picked is a polynomial,
which corresponds to the interference of a couple of coax-
ial Gaussian beams with differing OAM values. Of course,
ψ̃ is at our disposal, and any analytic function could play

023515-2



GUIDING POLARIZABLE PARTICLES IN MULTIHOLE … PHYSICAL REVIEW A 110, 023515 (2024)

this role, although a nonpolynomial function would require
a superposition of infinitely many modes (from the practical
point of view, however, low-intensity high-order beams might
be ignored). For the purposes of this paper, the function ψ̃ is
chosen in the form of a particularly simple polynomial:

ψ̃ (s) = (βs)n − 1. (12)

The scaling role of the parameter β has already been men-
tioned and is clear in (12). This form indicates that the
interference of exactly two Gaussian beams is dealt with: one
of order 0,

ψ0(ξ, ζ ) = 1

1 + iζ
e− ξ2

1+iζ , (13)

and one of order n:

ψn(ξ, ζ ) = βnξ n

(1 + iζ )n+1
e− ξ2

1+iζ . (14)

In our analysis the overall normalization constants are omit-
ted, as only relative beam intensities are essential (in a sense
represented by the value of the parameter β).

Beam (12) bears the vortex topological charge n, and when
encircling the axis ζ the value of the phase increases by 2πn,
which means that it assumes n times the same values (if re-
duced to the interval [0, 2π [). Thus, on a circle (for ζ = const)
of radius

√
1 + ζ 2/β (in units of w0) a completely destructive

interference with ψ̃0 occurs exactly n times. The nth degree
vortex “spreads” into n individual vortices (in the case of
Bessel beams the same phenomenon was demonstrated in
[52]), uniformly distributed, as is obvious from the distribu-
tion of the nth complex roots of the unity. Consequently, n
holes in the wave intensity appear in the perpendicular plane,
as shown in Fig. 1 for n = 3. In Figs. 1(a)–1(h), which have
increasing values of ζ , the diffraction of the wave and the
twisting of the whole pattern can be seen, in agreement with
(11).

In Fig. 2 the irradiance of the same beam in four axial
planes is drawn. The first plane is simply the ξxζ plane, and the
subsequent ones are rotated around the ζ axis by successive
multiples of π/10. The formation of the zero-intensity tubes
is marked with arrows.

Figures 3 and 4 demonstrate the same effects for n = 5.
The existence of five distinct roots of unity yields five “tubes”
of vanishing irradiance that can eventually be exploited. A
slightly reduced value for the parameter β has been chosen
in this case in order to avoid merging areas of low energy
density.

Naturally, in the role of ψ̃ other polynomials that would
not have zeros distributed in such a regular fashion come into
play as well.

In order to visualize the splitting of one vortex of higher
topological charge into several single ones it is convenient to
analyze the phase of the beam in the perpendicular planes.
Fully destructive interference requires (apart from the equality
of the wave amplitudes) the phases of the two interfering
waves at a given point to differ by an odd multiple of π . It is
known that at such places, the overall phase φ of the combined
wave becomes indeterminate.

FIG. 1. The irradiance, in the perpendicular plane, of the beam
created as the plain superposition of (13) and (14) for n = 3 accord-
ing to (12). The following values of ζ are used: (a) 0, (b) 0.25, (c) 0.5,
(d) 0.75, (e) 1, (f) 1.25, (g) 1.5, and (h) 1.75. The parameter β = 1.4.
Bright areas represent high irradiance, and dark ones represent low
irradiance.

The change in phase along a certain closed curve C is
defined by the formula


Cφ =
∮
C

∇φ dl = − i

2

∮
C

�∗ ↔∇ �

�∗�
dl, (15)
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TOMASZ RADOŻYCKI PHYSICAL REVIEW A 110, 023515 (2024)

FIG. 2. Same as Fig. 1, but in the axial plane. Graphs present the
view of the same beam from different angles between the x axis and
the line of sight: (a) 0, (b) 0.1π , (c) 0.2π , and (d) 0.3π . The two
types of white arrows mark two twisting tubes with low irradiance.

where ∗ denotes the complex conjugation. In the case dealt
with here the integration contour can be deformed to a flat
one lying in the plane ζ = const, such as those shown by
white circles in Fig. 5. Then the nabla operator reduces to two
dimensions (vector dl does not have the ζ component), and

Cφ can be represented in the form of the complex contour
integral with respect to dξ = dξx + idξy:


Cφ = − i

2

∮
C

(∇ψ

ψ
− ∇ψ∗

ψ∗

)
dl

= − i

2

∮
C

[
1

ψ
(dξx ∂ξx ψ + dξy ∂ξyψ )

− 1

ψ∗ (dξx ∂ξx ψ
∗ + dξy ∂ξyψ

∗)

]
. (16)

FIG. 3. Same as Fig. 1, but for n = 5 and β = 1.

The function ψ formally depends on two complex vari-
ables, ξ and ξ ∗, so

∂ξx ψ = (∂ξ + ∂ξ∗ )ψ,

∂ξyψ = i(∂ξ − ∂ξ∗ )ψ, (17)
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FIG. 4. Same as Fig. 2, but for n = 5 and β = 1.

with identical notation for ψ∗. Expression (16) may then be
rewritten as


Cφ = − i

2

∮
C

[
∂ξψ

ψ
dξ + ∂ξ∗ψ

ψ
dξ ∗

− ∂ξψ
∗

ψ∗ dξ − ∂ξ∗ψ∗

ψ∗ dξ ∗
]
. (18)

The value of this integral can be obtained either by direct
substitution or via the Cauchy argument principle. Formally,
ψ is not holomorphic in any domain because it depends on ξ ∗.
However, for functions ψ of the form f (ξ )e−aξξ∗

, the terms
in which the exponential is subject to differentiation do not
contribute since ∮

C
(ξ ∗dξ + ξdξ ∗) = 0. (19)

In all other terms (i.e., those in which the exponential is
not differentiated) the exponentials in the numerator and de-
nominator cancel out, and the trace of ξ ∗ disappears from

FIG. 5. The phases of the wave function of Fig. 1 depicted in
four planes: (a) ζ = 0, (b) 0.4, (c) 0.8, and (d) 1.5. The value of
the phase, modulo 2π , is represented continuously by means of
the gray scale from −π (black) to π (white). The rotation of the
entire picture with increasing ζ is due to the factor 1 + iζ in (13)
and(14) and the additional factor eikz = eiζ from (2). The small white
circle represents the curve C circulating around one of the individual
vortices produced by the breakdown of the vortex with topological
charge n = 3. The large dashed white circle encircles all the resultant
vortices.

the expression. Therefore, from a practical point of view the
function ψ may be treated as holomorphic, and that is how
it is handled below. In general, this argumentation does not
necessarily apply for beams for which the function f also
depends on ξ ∗, such as the Hermite-Gaussian beam [1,3] or
that of [53].

Consequently, keeping in mind (19), we can write


Cφ = − i

2

[∮
C

∂ξψ

ψ
dξ −

(∮
C

∂ξψ

ψ
dξ

)∗]
. (20)

The Cauchy argument principle leads to∮
C

ψ ′

ψ
dξ = 2π i(Z − P), (21)

where Z denotes the number of zeros and P is the number of
poles in the area encompassed by the curve C. However, ψ has
no poles, and the only zeros come from the polynomial (12);
hence, we come to ∮

C
∇φ dl = 2πZ. (22)

Since this polynomial has n single zeros, for the integral over
the small white circles in Fig. 5 one always gets a value of
2π , and for the large circles one gets 2πn (here n = 3), which
means that the total vorticity is unchanged and the vortex
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FIG. 6. Same as Fig. 5, but for n = 5 and β = 1.

merely gets split into n single vortices. Naturally, the same
can be observed in Fig. 6.

III. GUIDING OF PARTICLES

As is well known, inhomogeneities in the intensity of the
wave, and hence in the electric field, can be exploited to trap
and guide neutral particles, for instance, atoms and dielectric
balls, which undergo polarization in external fields. This has
become the basis for the operation of the so-called optical
tweezers [12–15], as mentioned in the Introduction.

Let us denote by α the particle polarizability, which, in
general, can depend on the driving frequency, and by d the
induced dipole moment. Then

d = αE. (23)

When speaking of atoms, from the theory of the ac Stark effect
it is known that for a red-detuned beam the atomic polarizabil-
ity α is positive, and for blue-detuned one it becomes negative,
which affects the motion of atoms in a fundamental way. Sim-
ilar conclusions can be drawn from a purely classical model of
the atom [54,55]. The analogous effect in the case of dielectric
nanospheres is due to the value of the refractive index being
higher or lower than that of the surrounding media.

The Newton equation of motion of an atom (or other parti-
cle) in these conditions takes the form

mr̈ = 1
2 α∇(E2) + Fscat, (24)

where the right-hand side of the equation is treated as being
averaged over the fast oscillations of the field in (2). The
first term represents the conservative gradient force, and Fscat

stands for the scattering force, which will be dealt with below
in some detail.

The irradiance in this kind of beams varies rapidly in
directions orthogonal to the beam axis and relatively slowly
alongside it, so the perpendicular components of Fscat can be
ignored compared to the gradient force, and only the parallel
one needs to be accounted for, which is confirmed below. In
order to estimate the magnitude of this force we will focus on
the example of dielectric nanospheres. The influence of this
force on atoms can be reduced by using a far-detuned beam,
although it should be kept in mind that the gradient force is
also weakened in this way.

It is known [56,57] for dielectric spheres that one has

Fscat z

Fgrad z
= nsk4α

3πn3
mε0

I

∂zI
, (25)

where ns is the refractive index of the sphere, nm is the re-
fractive index of the surrounding media, ε0 is the vacuum
permittivity, and I stands for the irradiance. In the dimension-
less coordinates ξx, ξy, and ζ defined in (6) this ratio can be
given the form

Fscat ζ

Fgrad ζ

= ns

n3
m

ζRκ
I

∂ζ I
, (26)

with ζR = kzR and κ = k3α
3πε0

. Let us estimate these quantities
for Rayleigh particles placed in a tightly focused light beam
with the waist radius w0 = 0.05 mm and wavelength λ =
700 nm for which ζR ≈ 105. In order to find the magnitude
of κ one has to think of a concrete sample of particles. Take,
for example, magnesium fluoride nanoballs (ns = 1.38) of
diameter D = 10 nm placed in glycerol (nm = 1.47). In these
conditions one gets κ ≈ −1.1 × 10−5, where the well-known
formula for the polarizability [57] has been used:

α = 1

2
n2

mε0D3 n2
s /n2

m − 1

n2
s /n2

m + 2
. (27)

Consequently, the whole factor in (26) equals
ns

n3
m

ζRκ ≈ −0.48. (28)

In regard to the quotient I
∂ζ I , it should be kept in mind that

inside the tube of low irradiance, I drops to zero (together with
the scattering force). Naturally, the same is true for ∂ζ I (since
the vortex core constitutes the irradiation minimum), but the
latter decline is weaker, as shown below.

For the beams dealt with in this work, defined in (12), (13),
and (14) the needed ratio can be calculated as∣∣∣∣ I

∂ζ I

∣∣∣∣ =
∣∣∣∣ |�|2
∂ζ |�|2

∣∣∣∣ =
∣∣∣∣∣ − 2(n + 1)ζ

1 + ζ 2
+ 4|ξ |2ζ

(1 + ζ 2)2

−
n−1∑
l=0

(
∂ζ ξl

ξ − ξl
+ ∂ζ ξ

∗
l

ξ ∗ − ξ ∗
l

)∣∣∣∣∣
−1

,

(29)

where

ξl = 1

β
(1 + iζ )e

2π il
n , ∂zξl = i

β
e

2π il
n . (30)

For particles guided in the ith tube |ξ − ξi| � 1/β, and the
ith term in the sum in (29) dominates over all other ones.
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Therefore,

Fscat ζ

Fgrad ζ

≈ n

n3
s

ζRκ

∣∣∣∣ξ − ξi

∂ζ ξi
+ ξ ∗ − ξ ∗

i

∂ζ ξ
∗
i

∣∣∣∣ � 1, (31)

and the scattering force should not have a relevant effect on
the motion of guided particles.

This estimate was carried out for tightly focused beams.
They can be broadened at the price of increasing the scatter-
ing force (it grows quadratically with w0, provided the local
energy density is maintained). However, this has no significant
effect on the trajectories of guided particles (there is a quanti-
tative effect but not a qualitative one), as tested numerically.

The scattering force has a little more significant effect
for wider trajectories that depart from the core of vanishing
irradiance but becomes truly essential for particles of positive
polarizability which avoid areas of low irradiance. The motion
of this type of particle is also shown in several figures below;
therefore, Fscat ζ is taken into account in all numerical calcula-
tions.

Consequently, the smoothed (with respect to time) equa-
tions of motion can be given in the following form:

ξ̈x = γ ∂ξx |ψ (ξ, ζ )|2, (32a)

ξ̈y = γ ∂ξy |ψ (ξ, ζ )|2, (32b)

ζ̈ = γ̃

(
∂ζ |ψ (ξ, ζ )|2 + ns

n3
m

ζRκ|ψ (ξ, ζ )|2
)

, (32c)

where the coefficients γ and γ̃ are expressed through the
beam’s parameters and particle mass,

γ = αE2
0

4w2
0ω

2m
, (33a)

γ̃ = αE2
0

4z2
Rω2m

= γ

(
2

kw0

)2

= 2

ζR
γ , (33b)

and ω = kc. Depending on the sign of α, the tubes described
in the preceding section constitute either some kind of po-
tential “valley” (γ < 0) or repulsive-potential “hill” (γ > 0).
Naturally, it is impossible to derive analytical solutions to the
equations of motion in this kind of potential, but trajectories
of particles can be found numerically for certain illustrative γ

values.
Figure 7 shows, from two different perspectives, that the

trajectories of three negatively polarizable particles, having
been inserted into the beam shown in Figs. 1, 2, and 5, follow
the irradiance holes. The value of γ = 0.06 was chosen for
visualization purposes. Note the expansion of the particle’s
trajectory as it moves along the potential tube. It is related to
the lowering of the potential barrier, which is associated with
the beam’s diffraction and with some acceleration of the parti-
cle. This potential barrier decreases proportionally to 1/w(z)2

or 1/(1 + ζ 2). Over a distance of one Rayleigh length it then
decreases twice. The potential valley becomes shallower, and
the trajectory becomes proportionally wider. From a practical
point of view, such a distance seems sufficient.

The lowering of the barrier height and width may be im-
portant for the eventual hopping of particles between different
potential valleys. Especially in the quantum case, it affects the
tunneling probability of guided elementary particles between

FIG. 7. The trajectories of three particles of negative polarizabil-
ity placed in the “holes” of the beam in question for n = 3, viewed
from the side and from above. Straight lines represent zero-irradiance
tubes, which undergo diffraction. The values of beam parameters are
the same as in Fig. 1, and γ = 6 × 10−2 and γ̃ = 2 × 10−5.

various minima. Roughly speaking, if one neglects the possi-
ble acceleration of particles due to the gradient and scattering
forces along the beam, the tunneling probability p increases
with ζ as p(1+ζ 2 )−1/2

.
Figure 8 shows the exemplary effect of the escape of one of

the guided particles due to insufficient cooling and imprecise
initial conditions which entail more chaotic motion. In [58]
strong correlation between the chaoticness of classical trajec-
tories of particles and the quantum tunneling probability in a
trap constructed of a Bessel beam and constant magnetic field
was established.

Figure 9 demonstrates the same phenomenon as Fig. 7 for
five particles placed in the five-hole beam in Figs. 3, 4, and 6.
For more complex beams, with a larger number of potential
valleys, the issue becomes more challenging, owing to the
very complicated arrangement of valleys and hills, which
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FIG. 8. Escape of a particle from the potential tube. The values
of the parameters are the same as in Fig. 7.

FIG. 9. Same as in Fig. 7, but for five particles and for the beam
in Fig. 3.

FIG. 10. The trajectories of the positive-polarizability particle
placed in the beams with n = 3 and n = 5 projected onto the plane
ζ = const.

can result in jumping of particles between the tubes. The
probability of such a phenomenon occurring was established
numerically for complex knotted vortex lines [49].

As has already been mentioned, the drawings representing
the computed particle trajectories should be viewed as illus-
trative only, prepared for γ of the order of 10−2, chosen for
clear visualization. A simple scaling argument leads to the
conclusion that an identical effect will be achieved for smaller
values of γ . However, in this case, the transported particles
should be precisely placed in the potential valleys and strongly
cooled (e.g., approximately microkelvin), which implies their
slow motion and the necessity of determining the trajectories
for a very long (from the point of view of the efficiency of
numerical calculations) time.

It should also be noted that another parameter (β) remains
at our disposal that can be used to rescale the radial size of the
beam structures if needed.

As we know, if a particle with α > 0 is inserted into a beam
of this type, regions of low irradiance should exert a repulsive
effect on it. As a result, characteristic holes ought to remain
in the chaotic trajectory of such a particle, which cannot be
penetrated. This situation is presented in Fig. 10 for n = 3 and
n = 5 in the form of a projection of the calculated trajectories
on the plane ζ = const. A three-dimensional drawing would
be unreadable for obvious reasons. In line with the previous
discussion, to weaken the effect of the scattering force on the
trajectory it was necessary to reduce the size of the spheres to
8 nm.

Figure 11 illustrates the trajectories of two particles: one
with α < 0 and the other with α > 0 placed simultaneously
in a beam with n = 3. As can be observed, the former moves
inside the hole created by the trajectory of the latter.

Figure 11 highlights the extremely chaotic nature of the
positively polarizable particle trajectories resulting from the
eminently nonlinear form of the equations of motion in a very
complex potential with many minima, maxima, and saddle
points versus fairly regular trajectories of negatively polar-
izable particles (the potential inside low-irradiance tubes is
quite smooth).

IV. CONCLUDING REMARKS

In conclusion, it should be stressed that the choice of
a suitable Gaussian beam prefactor gives the possibility of
designing beams that exhibit low-intensity tubes. In Sec. II,
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FIG. 11. The trajectories of two particles placed simultaneously
in the beam in Fig. 1. The small trajectory corresponds to the particle
of negative polarizability, and the large one corresponds to that of
positive polarizability.

the prefactor was chosen in the form of a polynomial cor-
responding to the superposition of two Gaussian beams: a
fundamental one and one that exhibits a vortex of the nth
degree on the propagation axis. Due to the interference,
this vortex gets split into n vortices located symmetrically
on the circle, resulting in the appearance of the mentioned
black wormholes. They can constitute independent lines for
guiding particles. The results of the numerically performed
calculations, presented in Sec. III, showed that particles with
negative polarizability, neglecting some transverse oscilla-
tions, do indeed move along trajectories determined by lines
of vanishing wave intensity. The influence of the scattering
force on the motion was estimated in the case of dielectric
nanospheres, and it was proved not to exert a significant effect
on them.

Trajectories calculated for positively polarizable particles
showed the opposite character: they have a very chaotic nature
but avoid the mentioned areas. In this case, the scattering force
should be accounted for since its impact on trajectories is
significant.

Finally, it can be added that by choosing other polyno-
mial prefactors, Gaussian beams can be obtained with various
irradiance holes, designed as required. Figure 12 shows a
transverse cross section of several Gaussian beams in which
the areas of zero irradiance have been designed by choosing
the appropriate polynomial prefactors.

The first two beams have hole distributions corresponding
to the letters r and v from the Braille alphabet. They are

FIG. 12. Cross sections of the beams exhibiting some special
patterns: (a) and (b) letters r and v of the Braille alphabet, (c) a cross,
and (d) a star.

generated using the superposition of five Gaussian beams with
vorticities of 0,1,2,3, and 4 (the parameter β is maintained
below, which enables the pattern to be easily resized):

ψ̃(a)(s) = [(βs + a)2 + b2][(βs)2 − b2], (34a)

ψ̃(b)(s) = [(βs + a)2 + b2](βs − a)(βs − a + ib),

(34b)

where a and b are certain real constants (fixed here to be a =
0.75 and b = 1.4).

In order to generate patterns representing a cross or a star,
more components are needed. They can be obtained corre-
spondingly with

ψ̃(c)(s) = [(βs)4 − 50][(βs)4 − 25][(βs)4 − 2], (35a)

ψ̃(d )(s) = [(βs)5 − 500][(βs)5 − 120][(βs)5 − 6]βs.

(35b)

These are high-order polynomials, which means that high-
vorticity beams are required to interfere. In the first case one
needs four beams with vorticities of 0, 4, 8, and 12 with
appropriate relative intensities, and in the second case one
needs beams with vorticities of 1, 6, 11, and 16.
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