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Optical solitons and optical patterns controlled by a moiré lattice potential in a Rydberg atomic gas

Zeyun Shi ,1 Lu Qin,2 Yuan Zhou ,1 Yu Zhong ,1 Guanghui Wang ,3 and Haibo Huang1

1School of Electrical and Information Engineering, Hubei Key Laboratory of Energy Storage and Power Battery, Shiyan Key Laboratory of
Electromagnetic Induction and Energy Saving Technology, Shiyan Key Laboratory of Quantum Information and Precision Optics,

Hubei University of Automotive Technology, Shiyan 442002, China
2Department of Physics, Henan Normal University, Xinxiang 453007, China

3School of Automobile Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

(Received 26 May 2024; accepted 29 July 2024; published 12 August 2024)

We investigate the optical soliton and patterns within a system exhibiting a ladder-type Rydberg electromag-
netically induced transparency configuration, controlled by a moiré lattice potential. By designing theoretically
the optical moiré lattice, we study its localization-delocalization transition and numerically demonstrate the
conditions for stable high-dimensional solitons in a commensurate and an incommensurate moiré lattice,
respectively. Through modulation instability analysis and numerical simulations, on the one hand, we find
that the solitons and vortices exhibit exceptional stability in the self-focusing Kerr nonlinear system. On the
other hand, our simulations further reveal the emergence of various extended structures, including polygonal,
hexagonal, square, annular, and droplet patterns in self-defocusing Kerr nonlinear system. We also demonstrate
various structural phase transitions of the optical patterns by actively manipulating the moiré lattice constant and
the strength of nonlinear interactions, resulting in a diverse range of ground-state patterns. Our paper provides
a versatile platform for manipulating and controlling light-matter interactions in Rydberg atomic ensembles,
opening avenues for future research in designing and controlling complex light structures using Rydberg atomic
systems.
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I. INTRODUCTION

Rydberg electromagnetically induced transparency (EIT)
has emerged as a fascinating area of research in quan-
tum optics, combining the phenomenon of EIT with the
strong, long-range interactions between highly excited Ry-
dberg atoms [1–7]. This combination allows for precise
manipulation of optical properties in atomic gases, paving the
way for various applications in fields such as nonlinear optics,
quantum information processing, quantum storage, quantum
many-body simulation, precision measurement and sensing,
and quantum metrology [2–13].

In EIT, the control and the probe laser fields interact with
a three-level atomic system, resulting in quantum interference
that allows for the transparent propagation of the probe laser
under certain conditions [1]. In the presence of Rydberg in-
teractions, which can be attractive or repulsive depending on
the states involved, this transparency can be influenced by
the interaction between Rydberg atoms [2,14]. This leads to
nonlinear optical effects that can modify the propagation of
light in complex ways [7,15,16].

The use of moiré optical lattices [17–21] in combination
with Rydberg EIT opens new avenues for exploring the in-
terplay between periodic potential structures and nonlinear
optical effects. Moiré lattices arise from the superposition of
two periodic lattices with different rotation angles, leading
to a variety of lattice patterns and symmetries. The modu-
lation of light in such lattices can lead to unique behaviors
such as localization-delocalization transitions (LDTs) [20,21],
insulating states [22], unconventional superconductivity [23],

quantum Hall effect [24], slow light, nonlinear effects, chiral
plasma, superfluid to Mott insulator phase transition of Bose-
Einstein condensate, and light solitons [19,21,25–32].

Symmetry breaking and formation of localized structures
(solitons) or extended ordered structures (patterns) via some
instability mechanisms are very interesting and important
phenomena [33–35]. One of the crucial aspects of this field
is the study of modulation instability (MI), a phenomenon
characterized by the exponential growth of perturbations on a
continuous wave due to nonlinear modulational interaction of
the plane wave [36–40]. In Rydberg systems, MI can manifest
as long-wavelength or short-wavelength instability, depending
on whether the underlying nonlinearity is self-focusing or
self-defocusing [15,41–43]. With the onset of the MI, various
self-organized patterns were found in Rydberg-dressed atomic
gases [44–51]. However, investigation of spontaneous pattern
formation under moiré potential in the Rydberg atomic gases
is still lacking. This motivated us to study the novel pattern
formation in such a system.

In this paper, we propose a scheme to investigate the
nonlocal high-dimensional optical solitons and stationary op-
tical pattern formations in a cold ladder-type Rydberg-EIT
configuration subjected to a moiré lattice potential. We first
design theoretically an electromagnetically induced moiré
lattice and investigate in detail localization-delocalization
transition. Based on MI analysis and numerical simula-
tions, we numerically demonstrate the condition for the
stable soliton in commensurate and incommensurate moiré
lattices. We further observe that Hermite-Gaussian (HG) soli-
tons, Laguerre-Gaussian (LG) solitons, and vortices show
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FIG. 1. (a) Level diagram and excitation scheme of the Ryd-
berg EIT. Weak probe (blue) and strong control (red) laser fields
with central angular frequencies ωp and ωc as well as half-Rabi
frequencies �p and �c drive the transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉,
respectively. The Rydberg atoms interact with each other according
to the van der Waals potential h̄VvdW(r′ − r) ≡ −h̄C6/|r′ − r|6. �2

and �3 are respectively the one- and two-photon detunings. �αβ

is the spontaneous emission decay rate from the |β〉 to |α〉 (α =
1, 2; β = 3). (b) Possible experimental geometry, where small solid
circles denote atoms and large dashed circles denote Rydberg block-
ade spheres. Inset: The control field consisting of two groups of
orthogonalized paired standing waves paraxially propagating along
the −z axis, twisted by a small angle θ .

remarkable stability for self-focusing Kerr nonlinearity. Our
simulations also reveal the formation of various extended
structures such as polygonal, hexagonal, square, annular, and
droplet patterns under self-defocusing Kerr nonlinearity. Fur-
thermore, we witness different structural phase transitions in
optical patterns when adjusting the moiré lattice constant and
the strength of nonlinear interaction, leading to a variety of
ground-state patterns. Our paper provides a versatile platform
for manipulating and controlling light-matter interactions in
Rydberg atomic ensembles, and emphasizes the potential for
exploring novel optical phenomena and solitonic behavior in
systems with strong nonlocal nonlinearities.

The remainder of the paper is arranged as follows. In
Sec. II, we present the physical model of the Rydberg EIT
under study and derive a three-dimensional [(2 + 1)D] non-
local nonlinear Schrödinger (NNLS) equation describing the
evolution of the probe field beyond mean-field approximation.
In Sec. III, we design theoretically an electromagnetically in-
duced moiré lattice and investigate localization-delocalization
transition. In Sec. IV, we respectively consider the MI of a
plane-wave state, explore the condition for the stable soliton
in commensurate and incommensurate moiré lattices, and in-
vestigate the nonlocal optical soliton and vortices. In Sec. V,
we present various optical pattern formations and their struc-
tural phase transition in the system. Finally, Sec. VI gives a
summary of the main results obtained in our paper.

II. PHYSICAL MODEL

We consider an ensemble of lifetime-broadened three-level
atomic gas exhibiting a ladder-type level configuration,
depicted schematically in Fig. 1(a). In this setup, a weak
probe laser field, characterized by its central angular
frequency ωp and wave vector kp, drives the transition
|1〉 ↔ |2〉. Concurrently, a strong control laser field with
central angular frequency ωc and wave vector kc stimulates

the transitions |2〉 ↔ |3〉. Therefore, the total electric fields
acting within the atomic ensemble can be expressed as
E(r, t ) = epEp exp{i(kp · r − ωpt )} + Ec(r, t ) + H.c., with
ep and Ep the unit vector of the polarization direction
and the envelope of the probe field, respectively. For
the control field, we consider two sets of orthogonalized
paired standing waves propagating paraxially along the −z
axis, each twisted by a small angle θ , as illustrated in the
inset of Fig. 1(b). Consequently, the entire control field
can be represented in the form Ec(r, t ) = ∑4

j=1 Ec j (r, t ),
where Ec1 = E1 cos(k0x)[eiφ x̂ + ei(φ−π/2)ŷ], Ec2 = E1 cos
(k0y)[ei(φ+π/2)x̂ + eiφ ŷ], Ec3 = E2 cos(k0x′)[eiφ x̂′ + ei(φ−π/2)

ŷ′], and Ec4 = E2 cos(k0y′)[eiφ x̂′ + ei(φ−π/2)ŷ′], with k0 =
kc sin(θ ), E1 and E2 representing the amplitude of the two
groups of standing waves, φ = kc cos(θ )z − ωct , x̂ and ŷ being
the unit vectors along the x and y axis, and x̂′ and ŷ′ being
the unit vector related to x̂ and ŷ via the two-dimensional
(2D) rotation by angle θ . Therefore, by varying the twisted
angle θ and amplitude ratio E2/E1, the interference of control
fields will produce different spatial distributions and induce
an effective 2D moiré lattice in the xy plane.

The ground state |1〉, the ordinary excited state |2〉, and the
highly excited Rydberg state |3〉 consist of the Rydberg EIT.
With the electric dipole and rotating-wave approximations,
and incorporating the atom-atom interactions, the Hamilto-
nian of the system in the interaction picture is expressed as

HI =
3∑

α=2

�α Ŝαα (r, t ) − h̄(�pŜ12 + �cŜ23 + H.c.)

+ 1

2
Na

∫
d3r′Ŝ33(r, t )h̄VvdW(r′ − r)Ŝ33(r′, t ), (1)

where Na denotes the atomic density. The half Rabi
frequencies of the probe and control fields are de-
noted as �p = ep · p21Ep/h̄ and �c = ec · p32Ec/h̄, re-
spectively. Here pαβ represents the electric dipole ma-
trix element associated with the transition from |β〉 to
|α〉. The transition operator Ŝαβ = |β〉〈α| exp{i[(kβ − kα ) ·
r − (ωβ − ωα + �β − �α )t]} satisfies the commutation re-
lation [Ŝαβ (r, t ), Ŝα′β ′ (r′, t )] = N−1

a δ(r − r′)[δαβ ′ Ŝα′β (r, t ) −
δα′β Ŝαβ ′ (r′, t )], with the one- and two-detunings given by
�2 = ωp − (ω2 − ω1) and �3 = ωc + ωp − (ω3 − ω1), re-
spectively. The last term on the right-hand side of Eq. (1)
is the contribution of the Rydberg-Rydberg interaction with
h̄VvdW(r′ − r) ≡ −h̄C6/|r′ − r|6 the long-range interaction
potential (i.e., the interaction at position r is influenced by
the vicinity position r′) and C6 the dispersive parameter.

According to the Hamiltonian given by Eq. (1), the dynam-
ics of atoms in the system is governed by the optical Bloch
equation, given by

∂ρ

∂t
= − i

h̄
[HI , ρ] − �[ρ], (2)

where ρ is a 3 × 3 density matrix (DM, with density-matrix
elements ραβ ; α, β = 1, 2, 3) describing the atomic popu-
lation and coherence, and � is a 3 × 3 relaxation matrix
describing the spontaneous emission and dephasing. Explicit
expressions of ραβ (r, t ) are presented in the Appendix.
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Additionally, under the condition of slow-varying enve-
lope approximation, the probe field described by the Maxwell
equation takes the form

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + c

2ωp
∇2

⊥�p + ωp

2c
χp�p = 0, (3)

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 , χp = Na(ep · p12)2ρ21/(ε0h̄�p) is the
probe-field susceptibility with c and ε0 the vacuum speed
of the light and dielectric coefficient of vacuum, respec-
tively. Without loss of generality, we assume the probe
field propagates along the z direction, i.e., kp = (0, 0, ωp/c).
Meanwhile, we orient the strong control laser field along with
kc = (0, 0,−kc ) to minimize the first-order Doppler effect.
Additionally, since we consider a stationary state of the sys-
tem, the time derivatives in the Maxwell-Bloch equations (2)
and (3) can be neglected (i.e., ∂/∂t = 0). This assumption
holds valid if the probe and control fields have sufficiently
long durations, i.e., they are continuous-wave fields.

Since the probe field is weaker than the control field, the
standard asymptotic perturbation expansion [52] can be ap-
plied to solve the Bloch equation (2) by considering �p as
a small parameter. The solution of Eq. (2) up to third order
is provided in the Appendix. Using this solution, we derive
the expression for the total optical susceptibility of the probe
field:

χp = χ (1)
p + χ

(3)
p,loc|�p|2 +

∫
d3r′χ (3)

p,nloc(r′ − r)|�p(r′)|2,
(4)

where χ (1)
p = Na|ep · p12|2a(1)

21 /(ε0 h̄) is the linear

susceptibility, χ
(3)
p,loc = Na|ep · p12|2a(3)

21,1/(ε0h̄) is the
third-order nonlinear susceptibility contributed from
local interaction between atoms, and χ

(3)
p,nloc = N2

a |ep ·
p12|2a(3)

21,2a(3)
33,31(r′ − r)VvdW(r′ − r)/(ε0 h̄) is a nonlocal

nonlinear susceptibility appearing in Rydberg EIT. Explicit
expressions of a(1)

21 , a(3)
21,1, a(3)

21,2, and a(3)
33,31(r′ − r) are,

respectively, given in the Appendix [see Eqs. (A2), (A7),
and (A12)]. We see from the above expression that the
nonlocal third-order nonlinear susceptibility χ

(3)
p,nloc(r) is

space dependent.
A local approximation along the z direction can be made

under the condition of which the spatial length of the probe
pulse in the z direction is much larger than the range of atom-
atom interactions. Consequently, the last term on the right side
of Eq. (4) can be reduced as

∫
d3r′χ (3)

p,nloc(r′ − r)|�p(r′)|2 ≈∫∫
dr′

⊥χ̃
(3)
p,nloc(r′

⊥ − r⊥)|�p(r′
⊥, z)|2 with χ̃

(3)
p,nloc(r′

⊥ − r⊥, z)

= ∫
dz′χ (3)

p,nloc(r′ − r). Finally, we obtain

i
∂�p

∂z
+ c

2ωp
∇2

⊥�p + ωp

2c
χ (1)

p �p + ωp

2c

[
χ

(3)
p,loc|�p|2

+
∫∫

r′
⊥χ̃

(3)
p,nloc(r′

⊥ − r⊥)|�p(r′
⊥, z)|2

]
�p = 0, (5)

where r⊥ = (x, y) and r′
⊥ = (x′, y′).

Taking cold 88Sr as the atomic gas as an example, we
assign atomic levels as |1〉 = |5s2 1S0〉, |2〉 = |5s5p 1P1〉, and
|3〉 = |5sns1S0〉 with n the principal quantum number. For
n = 60, C6 = −81.6 × 2π GHz µm6 [53–55]. Typical system

parameters are chosen as follows: �2 = 3.87 × 108 s−1, �3 =
1.53 × 106 s−1, �21 = 0.1 × 2π MHz, �3 = 6.1 × 2π MHz,
�c = 2.0 × 107 s−1, and the atomic density Na = 1 ×
1011 cm−3. With these parameters, we calculate and then get
χ

(3)
p,loc ≈ (2.1 + 0.01i) × 10−17 Hz−2, and the maximal value

of χ̃
(3)
p,nloc ≈ (1.1 + 0.1i) × 10−13 Hz−2.

It is noteworthy that there exists not only the local Kerr
nonlinearity contributed by the light-atom interaction but also
the nonlocal Kerr nonlinearity resulting from the atom-atom
interaction. However, the latter interaction dominates and is
orders of magnitude larger than the local one [52]. Eventually,
we obtain the NNLS equation of the probe field envelope in
dimensionless form:

i
∂u

∂s
= −∇2

⊥u + Vop(
ζ )u +
∫∫

d2ζ ′�̃(
ζ ′ − 
ζ )|u(
ζ ′, s)|2u,

(6)

where u = �p/U0 is the dimensionless Rabi frequency
with U0 the typical Rabi frequency of the weak probe
field. s = z/(2Ldiff ) is defined with Ldiff = ωpR2

⊥/c the
typical diffraction length, 
ζ ≡ (ξ, η) = (x, y)/R⊥, and [
ζ ′ =
(x′, y′)/R⊥] are dimensionless spatial coordinates
with R⊥ the typical radius of the probe beam. The
optical potential is given by Vop = −ω2

pR2
⊥χ (1)

p /c2 =
ω2

pR2
⊥Na|p13|2�c/[c2ε0 h̄(|�c|2 − d21d31)], and �̃(
ζ ) = Ldiff

|U0|2R2
⊥ωpχ̃

(3)
p2 /c ≡ σa(3)

44,41(
ζR⊥)VvdW(
ζR⊥) with σ = |ep ·
p13|2a(3)

31,2R4
⊥ω2

pU
2
0N2

a /(ε0 h̄c2). Here we omit the local Kerr
nonlinearity since it is much smaller than the nonlocal one.

The equation describes the general situation of the probe
field propagating in Rydberg atomic gas with optical poten-
tial. The left-hand side of the equation represents propagation
term, spatial diffraction term, optical potential term, and
nonlocal nonlinearity term, respectively. The property of the
nonlocal response function can be adjusted by dispersive pa-
rameter C6, where C6 < 0 corresponds to self-defocusing and
C6 > 0 corresponds to self-focusing nonlinearity.

III. REALIZATION OF ELECTROMAGNETICALLY
INDUCED MOIRÉ LATTICES

A. Realization of an electromagnetically induced moiré lattice

Our primary goal is to investigate the optical soliton and
optical pattern formations within the system featuring a moiré
potential. To achieve this, our initial focus lies in examining
the physical realization of various optical moiré potentials.
For the convenience of discussion, we adopt the optical po-
tential expressed as

Vop,T(
ζ ) = |p1V (S
ζ ) + p2V (
ζ )|2, (7)

which is referred to as the moiré lattice potential. This
potential arises from the superposition of two periodic lat-
tices V (
ζ ) = cos(aξ ) + cos(aη) mutually rotated by angle
θ . Unless otherwise stated, we use a = 2. Here S(θ ) repre-
sents the operator of two-dimensional rotation in the (ξ , η)
plane with depths p1 and p2. For Pythagorean angles θ =
arctan[2mn/(m2 − n2)], where m, n ∈ N are associated with
the Pythagorean triple (m2 − n2, 2mn, m2 + n2), the moiré
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(a) (b) (e) (f)

(c) (d) (g)

FIG. 2. Various moiré lattices with p1 = 0.5 and p2 = 0.3 for different twisted angles θ : (a) θ = arctan(3/4), (b) θ = arctan(
√

3/3),
(c) θ = arctan(5/12), and (d) θ = arctan(1/3). (e) Form factor F as a function of θ and p2 with fixed p1 = 0.5. (f, g) The localized and
delocalized eigenmodes with the largest propagation constant supported by a moiré lattice with p1 = 0.5 and θ = arctan(

√
3/3) for p2 = 0.3

and 0.7, respectively.

lattice is exactly periodic, or commensurate, but for all other
angles the moiré lattice is aperiodic, or incommensurate [21].

To realize such a potential within the Rydberg EIT
framework, we follow the standard method outlined in
Refs. [56–58]. Initially, we consider the half Rabi frequency of
the control field as space dependent, denoted as �c = �c(
ζ ).
Consequently, the optical potential becomes a function of �c.
Then, by Taylor expanding Vop around �c = �c0(
ζ = 0) to
the first order, we derive the expression of the control field
with the form

�c(
ζ ) = �c0 +
(

∂Vop

∂�c

)−1∣∣∣∣
�c=�c0

[Vop,T − V (�c0)] + O(ε2),

(8)

where we set �c0 = 2.0 × 107. This expression reveals that
the distribution of �c is proportional to that of the target moiré
potential Vop,T. Notably, the periodic spatial modulation of
the control field is experimentally achievable using a high-
resolution spatial light modulator with a pixel size smaller
than the probe-beam radius.

B. Localization-delocalization transition

In the subsequent analysis, for the sake of convenience
and generality, we set p1 = 0.5 and p2 = 0.3, while varying
the twisted angle θ to demonstrate different configurations of
the moiré lattice. For instance, we depict the corresponding
moiré lattices in Fig. 2 with diverse parameters. Figures 2(a)
and 2(c) represent the distribution of the periodic lattice
with θ = tan−1(3/4) (satisfying 32 + 42 = 52, known as a
Pythagorean triple) and θ = tan−1(5/12), respectively. Ad-
ditionally, Figs. 2(b) and 2(d) exhibit the aperiodic moiré
lattices corresponding to θ = tan−1(

√
3/3) and tan−1(1/3),

respectively.
It is evident that when θ satisfies Pythagorean angles,

the lattice distribution becomes periodic, and vice versa.

Moreover, the characteristics of spatial modes supported by
moiré lattices may qualitatively alter with an increase in the
depth of one of the sublattices constituting the structure. For
convenience, we omit the nonlinear effect in Eq. (6) and as-
sume the linear eigenmodes of the moiré lattice take the form
u = v(
ζ ) exp(iμs), where μ denotes the propagation constant.
Meanwhile, we define the form factor F as

F = (
∫ |v(
ζ )|4d2ζ )1/2∫ |v(
ζ )|2d2ζ

(9)

to represent the distribution of the mode, where a highly lo-
calized mode will yield a large F value. Here v(
ζ ) represents
the most localized eigenmode with the maximum value μ =
μmax, which varies with the twist angle θ and sublattice depth
p2. Illustrated in Fig. 2(e) is F as a function of the twist angle
θ and sublattice depth p2. Notably, for non-Pythagorean an-
gles θ , the modes of an aperiodic moiré lattice exhibit a linear
LDT and become localized when p2 exceeds a critical value.
Conversely, for Pythagorean angles θ , the eigenmodes remain
delocalized regardless of p2 because in this case the moiré pat-
tern is periodic, as delineated by the dotted white lines in the
inset of Fig. 2(e) with tan θ = 3

4 or 4
3 . This phenomenon orig-

inates from the suppressed diffraction caused by the flatness
of the allowed bands within the effective Pythagorean lattice
[19]. Additionally, both localized and delocalized modes are
displayed in Fig. 2(f) with p1 = 0.5 and p2 = 0.3 as well as
in Fig. 2(g) with p1 = 0.5 and p2 = 0.7.

IV. NUMERICAL STUDY ON THE NONLOCAL
OPTICAL SOLITON

A. Modulation instability analysis

Building upon the linear analysis, we now delve into
the nonlinear dynamics by incorporating the nonlocal Kerr
nonlinearity in Eq. (6). Before proceeding, we carry out
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FIG. 3. MI analysis for Eq. (6) under (a) self-focusing and
(b) self-defocusing Kerr nonlinearities, where the square of growth
rate λ2 as a function of wave number β by varying the strength of
nonlocal interaction. In the plots, dotted black, dashed orange, and
solid blue lines (i.e., the direction of the arrow) represent increasing
levels of interaction, and blue regions are for the appearance of MI.

the MI analysis, which is a well-known phenomenon in
physics [36,37,59]. The main effect of MI is an exponential
growth of the modulation amplitude of the constant-amplitude
continuous waves under long-wavelength perturbations. This
phenomenon occurs in numerous contexts featuring attractive
and local cubic nonlinearity, and may also arise in systems
with repulsive but nonlocal cubic nonlinearity when perturba-
tions possess both long and short wavelengths.

We first assume the slowly varying potential Vop = 0
to explore the MI. In this case Eq. (6) has the homoge-
nous solution upw = A0 exp(iμs), where A2

0 = 1/
∫∫

d2ζ and
μ = −A2

0

∫∫ �(
ζ )d2ζ . The perturbation solution can be
expressed as

up(
ζ , s) = [A0 + u′(
ζ , s)]eiμs, (10)

where u′ = a1 exp(i
β · 
ζ + λs) + a∗
2 exp(−i
β · 
ζ + λ∗s) with

a1 and a2 the small complex amplitudes of the perturbation,

β = (β1, β2), β1 and β2 are the nondimensional wave vectors,
and λ is the growth rate of the perturbation. Substituting
Eq. (10) into Eq. (6) and keeping only linear terms of a1 and
a2, we obtain

λ2 = −β2
[
β2 + 2A2

0 �̃(
β )
]
, (11)

where β = (β2
1 + β2

2 )1/2 and �̃(
β ) is the response function
of �(
ζ ) in momentum space. Combining the assumption
of small complex amplitudes for the perturbation u′ with
Eq. (11), we observe that when the real part of λ is positive
[i.e., Re(λ) > 0] the perturbation grows exponentially, lead-
ing to the occurrence of MI in the system.

To verify MI, we consider realistic examples using 88Sr
and 87Rb atomic gases, respectively. In the case of 88Sr
Rydberg atoms, which exhibit attractive interactions corre-
sponding to self-focusing Kerr nonlinearity [53–55], we select
the energy levels as follows: |1〉 = |5s21S0〉, |2〉 = |5s5p1P1〉,
and |3〉 = |5sns1S0〉. On the other hand, for 87Rb Rydberg
atoms representing repulsive interactions associated with self-
defocusing Kerr nonlinearity [60,61], we assign the atomic
levels as |1〉 = |5S1/2〉, |2〉 = |5P3/2〉, and |3〉 = |nS1/2〉. Sub-
sequently, we depict λ2 as a function of β and the strength
of interaction in Fig. 3. In these plots, dotted black, dashed
orange, and solid blue lines indicate increasing levels of
interaction, while the colored regions represent instability

under perturbation. It is suggested from Figs. 3(a) and 3(b)
that for self-focusing Kerr nonlinearity, the MI manifests as
long-wave instability, whereas for self-defocusing Kerr non-
linearity, it presents as short-wave instability. Regarding the
latter, the finite-wavelength (short-wave) instability associated
with self-defocusing nonlinearity is fundamentally analogous
to the roton instability observed in various atomic gases, as
discussed in Refs. [41,46,48].

B. Numerical study on optical solitons

Turning now to the nonlinear regime and basing on the
MI analysis, our investigation centers on the formation and
propagation of stable solitons through numerical simulations
of Eq. (6). To keep the attractive interaction between the
Rydberg atoms (i.e., map onto self-focusing Kerr nonlinear-
ity), we consider strontium atom (88Sr) as an example. We
look for soliton solutions of Eq. (6) in the form of u(
ζ ) =
v(
ζ ) exp(iμs), where μ the nonlinear propagation constant,
which exceeds the propagation constants of the linear eigen-
mode. Here v(
ζ ) admits the nonlinear eigenvalue equation

μv = ∇2
⊥v − Vop(
ζ )v −

∫∫
d2ζ ′�̃(
ζ ′ − 
ζ )|v(
ζ ′, s)|2v.

(12)

This equation can be solved by accelerated imaginary-time
evolution method [62]. Meanwhile both the solitary wave and
its linear stability can be determined simultaneously by these
same imaginary-time iterations.

To the end, we consider the two physical quantities, i.e.,
the power P and the amplitude vmax of the probe laser field,
which are defined by

P =
∫∫

|v(
ζ )|2d2ζ and vmax = max |v|, (13)

where v(
ζ ) is the distribution of the beam at the output. We
solve Eq. (12) numerically using Gaussian shaped inputs u0 =
exp(−ζ 2) as the initial condition, and then find the nonlinear
eigenvalue μ by varying the input power. Illustrated in Fig. 4
are the plots of power P (blue) and amplitude vmax (red) as
functions of μ at different moiré potentials. Here Fig. 4(a)
shows P and vmax as a function of μ for an incommensurate
moiré lattice with rotation angle θ = arctan(

√
3/3), p1 = 0.5,

and p2 = 0.1, where p2 is chosen below the critical value of
LDT. We see that the power curve is nonmonotonic with μ

and the amplitude decreases drastically in low power since
incommensurate moiré lattices have either delocalized or lo-
calized linear modes. Such behavior means the soliton can
exist only if the input power P exceeds a critical value (e.g.,
Pcr = 0.03), below which the beam will diffract. Furthermore,
we solve Eq. (12) and plot power P (blue) and amplitude
vmax (red) as functions of μ for an incommensurate moiré
lattice with rotation angle θ = arctan(

√
3/3), p1 = 0.5, and

p2 = 0.7, where p2 is chosen above the critical value of LDT
in Fig. 4(b). We see that the power curve is monotonic with
μ and hence the input beam is well localized at any power P
since the linear localized mode exists. Therefore, there is no
critical value for soliton power.

In addition, we further simulate and then plot power P
(blue) and amplitude vmax (red) as functions of μ for a
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(a) (b) (c)

FIG. 4. Beam power P (blue line) and amplitude vmax (red line) as functions of μ for an incommensurate moiré lattice with rotation angle
θ = arctan(

√
3/3), p1 = 0.5, and (a) p2 = 0.1 (below the critical value of LDT) and (b) p2 = 0.7 (above the critical value of LDT), and for

(c) a commensurate moiré lattice with rotation angle θ = arctan(3/4), p1 = 0.5, and p2 = 0.7.

commensurate moiré lattice with rotation angle θ =
arctan(4/3), p1 = 0.5, and p2 = 0.7 in Fig. 4(c). It shows
that the curve is similar in behavior to the incommensurate
moiré lattice for the condition of p2 below the critical value.
However, there exists a power threshold for any p2 since
the linear mode is always delocalized for an incommensurate
moiré lattice. Based on the analysis above, we further solve
Eq. (12) under different initial conditions to explore high-
order soliton solutions. We first choose the HG mode as the
initial condition:

um,n(
ζ ) = Hn(
√

2ξ )Hm(
√

2η) exp(−ζ 2). (14)

We begin by setting m = 1 and n = 0. The depths of the moiré
potential and rotation angle are chosen as p1 = 0.5, p2 = 1,
and θ = arctan(

√
3/3), which is corresponding to a localized

linear mode in Fig. 2(e). The top row of Figs. 5(a1)–5(a5)
illustrates the intensity distribution |u|2 of HG solitons as
functions of ξ and η for propagation distances s = 0, 2, 4, 6,
and 8. Notably, the intensity of the soliton remains stable dur-
ing propagation, albeit the two peaks exhibit rotation around
their center. Moreover, with extended simulation time, we ob-
serve that the soliton pair remains stable while being movable
across the entire space, although these results are not depicted
here. Subsequently, we conduct further numerical simulations
with m = n = 1 and keep other parameters fixed, resulting in
higher-order stable solitons. The intensity |u|2 as a function of

ξ and η is illustrated in the bottom row of Figs. 5(b1)–5(b5).
These solitons exhibit exceptional stability during propaga-
tion and demonstrate mobility and rotation.

The behaviors of movable and rotatable solitons may be
attributed to two fundamental factors: first, 2D bright solitons,
inherently endowed with vorticity, can attain a remarkable
degree of stability; second, the soliton’s mobility within the
lattice is contingent upon the intensity of the probe field.
Specifically, when the intensity remains below a critical
threshold, the soliton traverses the lattice unhindered. Con-
versely, exceeding this threshold leads to the soliton becoming
entrapped within the intricate moiré potential. These solitons
are prevalent across a wide range of physical phenomena,
as demonstrated in the research of Sakaguchi and Malomed
[63,64], Christodoulides et al. [65], Yang and Musslimani
[66], etc.

Additionally, stable vortex solutions of Eq. (12) can be
found through numerical simulations. For instance, one may
utilize the LG mode as the input:

u(
ζ ) = Cmp(
√

2|ζ |)|m| exp(−ζ 2)L|m|
p (2ζ 2) exp(−imφ), (15)

where Cmp = ( 2p!
π (p+|m|)! )1/2, L|m|

p (·) represents a generalized
LG polynomial with m denoting the azimuthal index and p the
radial index, a signifies the beam waist, and φ = arctan(η/ξ )
stands for the azimuthal angle.

(a1) (a3)(a2) (a4) (a5)

(b1) (b3)(b2) (b4) (b5)

FIG. 5. Intensity distribution of the HG solitons |u|2 as functions of ξ and η for different propagation distance s = 0, 2, 4, 6, and 8. Here
the initial conditions un,m(
ζ ) are respectively for (n = 0, m = 1) in the top row and for (n = 1, m = 1) in the bottom row.
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

FIG. 6. Intensity (|u|2) and phase distributions of the LG solitons as functions of ξ and η for different propagation distance s = 0, 2, 4, 6,
and 8. Here the initial conditions are given in Eq. (15) respectively for (p = 0, m = 1) in the top row and for (p = 1, m = 0) in the bottom
row.

To illustrate, we provide two examples of stable vortex
solutions. First, we solve Eq. (6) for p = 0 and m = 1. The
intensity distribution |u|2 as functions of ξ and η for prop-
agation distances s = 0, 2, 4, 6, and 8 is depicted in the top
row of Fig. 6. Additionally, we calculate the phase distribu-
tion u inset in each panel. Notably, the amplitude of vortices
remains stable during propagation, but the phase changes with
propagating. As a second example, we conduct a numerical
simulation on Eq. (6) with p = 1 and m = 0. The correspond-
ing simulation results are presented in the bottom row of
Fig. 6. Compared with the two scenarios, it shows that the
(p, m) = (0, 1) vortex featuring a single vortex circulation
around the center with a fundamental radial mode is much
more stable than the (p, m) = (1, 0) vortex, exhibiting a radial
node without vortex circulation. For the high-order LG modes,
the intensity may not keep its shape under the current con-
ditions. The physical reason for the stability of the (2 + 1)D
soliton and vortices obtained here is the strong and long-range
nonlocal Kerr nonlinearity coming from the Rydberg-Rydberg
interaction between atoms as well as the moiré lattice poten-
tial, which not only can suppress the diffraction in transverse
directions but also can arrest the spread or collapse of high-
dimensional nonlinear optical beams.

V. OPTICAL PATTERN FORMATIONS AND THEIR
STRUCTURAL TRANSITIONS

In the previous section, it was noted that short-wave
modulation instability occurs when nonlocal interaction is
repulsive, leading to the formation of extended structures.
To explore this phenomenon further, we choose to use 87Rb
Rydberg atoms, which exhibit repulsive interactions consis-
tent with self-defocusing Kerr nonlinearity. We also notice
that there exist various interactions including the diffraction
interaction, the linear interaction from the moiré potential [by
the depth of potential (p1 and p2), the rotation angle (θ ),
and lattice constant (a)], and the nonlocal nonlinearity from
Rydberg interaction, which is represented by the effective
strength of interaction α = A2

0

∫∫ �(
ζ )d2ζ .

Based on these considerations and in order to obtain
ground-state patterns, we use numerical simulations to seek
the ground-state solution of the system. This involves solving
Eq. (6) through an imaginary-time evolution method and the
split-step Fourier method. The approach ensures that the total
energy of the system

E =
∫

|∇̃⊥u(
ζ , s)|2d2ζ +
∫

Vop(
ζ )|u(
ζ , s)|2d2ζ ′

+ 1

2

∫∫
�(
ζ ′ − 
ζ )|u(
ζ , s)|2|u(
ζ ′, s)|2d2ζ ′d2ζ (16)

is minimized. This allows for the efficient extraction of the
ground-state properties of the system and aids in the explo-
ration of optical pattern formation.

As a first step, we focus on the case of pattern formation
controlled by the strength of nonlinear interaction α. Figure 7
presents the distributions of |u|2 as functions of ξ and η for
varying values α of nonlocal nonlinear strength, while keeping
the moiré potential constant (e.g., with p1 = 2.5, p2 = 3.5,
and lattice constant a = 2). Specifically, the values of α are
chosen as 0.1, 1, 5, 15, 30, 40, 50, and 100 in Figs. 7(a)–1(h),
respectively. Additionally, we also plot the distribution of
moiré potential Vop(ξ, η) as a function of ξ and η in Fig. 7(i).
The figures reveal that the ground state is basically trapped
by the lattice potential when nonlocal nonlinear strength α is
small [i.e., Figs. 7(a) and 7(b)]. The ring patterns nested in the
square patterns appear when α increases [i.e., Figs. 7(c) and
7(d)]. The ring structures begin to merge with square patterns
and then transit into four droplet structures when α increases
further [i.e., Figs. 7(e) and 7(f)]. At very high values of α [e.g.,
Figs. 7(g) and 7(h)], all patterns evolve into hexagonal droplet
structures.

By keeping the effective strength of interaction α fixed and
varying the moiré lattice constant a, we can further explore the
optical patterns. Figure 8 illustrates the distributions of |u|2
as functions of ξ and η for different values of moiré lattice
constant a, while maintaining α = 40. The chosen values of
a in Figs. 8(a)–8(h) are 0.5, 1.5, 2, 2.7, 2.9, 3.5, 4.3, and 5,
respectively.
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(a) (b) (c) (d)

(i)

(e) (f) (g) (h)

FIG. 7. Distributions of |u|2 as functions of ξ and η for various pattern formations within different values α of nonlocal nonlinear strength:
(a) α = 0.1, (b) α = 1, (c) α = 5, (d) α = 15, (e) α = 30, (f) α = 40, (g) α = 50, and (h) α = 100. (i) Distribution of moiré potential Vop(ξ, η)
as a function of ξ and η at p1 = 2.5, p2 = 3.5, and lattice constant a = 2. In all panels, large values are indicated by red colors, while small
values are represented by purple colors.

When the lattice constant a is small, such as in Fig. 8(a),
multilayer annular structures emerge. As a increases to 1.5
in Fig. 8(b), the annular structures transition into polygo-
nal forms. In Fig. 7(c), increasing α to 2 leads to a shift
from polygonal structures to square-shaped droplet structures.
These then merge completely into droplet structures, as de-
picted in Figs. 8(d) and 8(e). Hexagonal structures begin to
appear when a reaches 3.5. At very high values of a [e.g.,
Figs. 7(g) and 7(h)], all patterns evolve into square structures.

Comparing all panels in Fig. 8, we observe that as a
increases, the distance between the peaks of the droplets
also increases. Furthermore, the patterns undergo a structural
phase transition from multilayer annular structures to polyg-
onal structures, square-shaped droplet structures, droplet
structures, hexagonal structures, and finally square structures.
This analysis demonstrates that the interplay between the

linear moiré potential and nonlinear interaction (nonlinear
potential) leads to the breaking of translational symmetry,
resulting in the emergence of various ground-state patterns.

VI. SUMMARY

In conclusion, we investigate the optical nonlinear dy-
namics within a system of Rydberg atoms exhibiting a
ladder-type EIT configuration, subjected to a moiré lattice po-
tential. By incorporating nonlocal Kerr nonlinearity stemming
from Rydberg-Rydberg interactions and designing the optical
moiré lattice, we show the condition for formation and prop-
agation of stable solitons, vortices, and optical pattern forma-
tions in the commensurate and incommensurate moiré lattice,
respectively. Through MI analysis and numerical simulations,
we find that HG and LG solitons and vortices exhibit excep-

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 8. Distributions of |u|2 as functions of ξ and η for various pattern formations within different moiré lattice constant a: (a) a = 0.5,
(b) a = 1.5, (c) a = 2, (d) a = 2.7, (e) a = 2.9, (f) a = 3.5, (g) a = 4.3, and (h) a = 5. In all panels, large values are indicated by red colors,
while small values are represented by purple colors.
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tional stability and mobility for self-focusing Kerr nonlinear-
ity. In contrast, our simulations reveal the emergence of vari-
ous extended structures for self-defocusing Kerr nonlinearity.
Additionally, we observe various structural phase transitions
in the optical patterns by varying the moiré lattice constant and
the strength of nonlinear interaction. Our paper provides a ver-
satile platform for manipulating and controlling light-matter
interactions in Rydberg atomic ensembles, which leads to
the breaking of translational symmetry and the emergence of
diverse ground-state patterns. These advancements can have
applications in areas such as optical computing, information
processing, and the creation of novel optical devices.
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APPENDIX: BLOCH EQUATIONs AND THEIR
SOLUTIONS FOR DENSITY-MATRIX ELEMENTS

1. Bloch equation for one-body density-matrix elements

The explicit expression of the optical Bloch equation (2)
for one-body density-matrix elements ραβ is given by

i
∂

∂t
ρ11 − i�12ρ22 − �pρ12 + �∗

pρ21 = 0, (A1a)

i
∂

∂t
ρ22 − i�23ρ33 + i�12ρ22 + (�pρ12 + �∗

cρ32 + c.c.) = 0,

(A1b)

i
∂

∂t
ρ33 + i�23ρ33 + �cρ23 − �∗

cρ32 = 0, (A1c)
(

i
∂

∂t
+ d21

)
ρ21 − �p(ρ22 − ρ11) + �∗

cρ31 = 0, (A1d)

(
i
∂

∂t
+ d31

)
ρ31 − �pρ32 + �cρ21

−Na

2

∫
d3r′VvdW(r′ − r)ρ33,31(r′, r, t ) = 0, (A1e)

(
i
∂

∂t
+ d32

)
ρ32 − �∗

pρ31 − �c(ρ33 − ρ22)

−Na

2

∫
d3r′VvdW(r′ − r)ρ33,32(r′, r, t ) = 0. (A1f)

Here d3r′ = dx′dy′dz′; dαβ = �α − �β + iγαβ (α, β =
1, 2, 3; α �= β); �2 = ωp − (ω2 − ω1) and �3 = ωp + ωc −
(ω3 − ω2), are respectively one- and two-photon detunings;
γαβ = (�α + �β )/2 + γ

dep
αβ with �α = ∑

α<β �αβ (�αβ and

γ
dep
αβ are the spontaneous emission decay rate and dephasing

rate from |β〉 to |α〉, respectively). From the left-hand side of
the above equations, we observe that unlike conventional EIT,
there are additional terms arising from the Rydberg-Rydberg
interaction in Eqs. (A1e) and (A1f), which involves the van
der Waals interaction between two atoms positioned at r′ and
r excited to the same Rydberg states.

While the equations above describe the time evolu-
tion of the one-body density-matrix elements ραβ (r, t ),
they also involve two-body DM elements ραβ,μν (r′, r, t ) =
〈Ŝαβ (r′, t )Ŝμν (r, t )〉 due to the Rydberg-Rydberg interaction.
Likewise, the equations of motion for the two-body DM el-
ements (not shown here for brevity) involve three-body DM
elements, and so on. Solving such a complex many-body
problem requires a suitable truncation of the infinite equa-
tion chain related to many-body correlations, along with a
self-consistent calculation that goes beyond the mean-field
approximation. These advanced methods have been developed
recently [52].

2. Solutions for density-matrix elements

In this paper, we focus on the stationary states of the sys-
tem. As such, the time derivatives in the MB equations (A1)
can be neglected (i.e., ∂/∂t = 0), which is a valid assumption
when the probe and control fields have a long duration. To
proceed, we adopt the method developed in Refs. [52] to
first solve the Bloch equation (A1) under the condition of
Rydberg EIT. We assume that all atoms are initially prepared
in the ground state |1〉. Given the weak intensity of the probe
field, we use �p ∼ ε as the expansion parameter, allowing
us to expand the density-matrix elements as ραβ = ερ

(1)
αβ +

ε2ρ
(2)
αβ + . . . for the combinations (β = 1, 2; α = 2, 3; β <

α). By substituting these expansions into Eq. (A1) and collect-
ing coefficients of εl (l = 0, 1, 2, . . .), we obtain a series of
linear but inhomogeneous equations that can be solved order
by order.

The first-order solution reads

ρ
(1)
21 = d31

D
�p ≡ a(1)

21 �p, (A2)

ρ
(1)
31 = −�c

D
�p, (A3)

where D = |�c|2 − d21d31. The second order solution is

ρ
(2)
11 = [i�23 − 2|�c|2M]N − i�12P

−�12�23 − i�12|�c|2M
, (A4)

ρ
(2)
33 = N

i�12
− ρ

(2)
11 , (A5)

ρ
(2)
32 = �c

d32

(
2ρ

(2)
33 + ρ

(2)
11 − 1

D

)
, (A6)
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where M = 1/d32 − 1/d∗
32, N = d∗

31/D∗ − d31/D, and P = |�c|2
D∗d∗

32
− |�c|2

Dd32
. The third-order solution is given by

ρ
(3)
21 = a(3)

21,1|�p|2�p + a(3)
21,2Na

∫
d3r′VvdW(r′ − r)ρ (3)

33,31(r′ − r), (A7)

where a(3)
21,1 = �∗

c
D ρ

(2)
32 + d31

D (2ρ
(2)
11 + ρ

(2)
33 ) and a(3)

21,2 = �∗
c

D .

We observe that the two-body density-matrix element ρ
(3)
33,31 needs to be calculated concurrently with ρ

(3)
21 as described in

Eq. (A7). Upon a straightforward examination of the magnitude of the two-body density-matrix elements ραβ,μν under the weak
EIT condition, we begin the expansion of ραβ,μν from the order of ε2. Thus, we express the expansion as follows: ραβ,μν =
ε2ρ

(2)
αβ,μν + ε3ρ

(3)
αβ,μν + . . . . This expansion leads to the following two-body equation for second order:

⎛
⎜⎝

d21 0 �∗
c

0 d31 −VvdW/2 �c

�c �∗
c d21 + d31

⎞
⎟⎠

⎛
⎜⎜⎝

ρ
(2)
21,21

ρ
(2)
31,31

ρ
(2)
31,21

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

− d31
D

0
�c
D

⎞
⎟⎟⎠|�p|2. (A8)

The solution is of the form

ρ
(2)
αβ,μν = a(2)

αβ,μν |�p|2, (A9)

with {αβ,μν} = {21, 21}, {31, 31} and {21, 31}. Additionally, other two-body equations for second order can also be derived
using the relation ρ

(2)
αβ,μν ≡ ρ

(1)
αβ ρ (1)

μν for {αβ,μν} = {21, 12}, {31, 13}, and {21, 13}. These equations do not involve the term
VvdW and can be derived by combining the first-order density-matrix elements as indicated by the relation.

The third-order equations for the two-body density-matrix elements ρ
(3)
αβ,μν can be addressed by solving the equations pro-

vided, which yield solutions of the form

ρ
(3)
αβ,μν = a(3)

αβ,μν |�p(r′, t )|2�p(r, t ), (A10)

where a(3)
αβ,μν are functions of the system parameters. Here ρ

(3)
αβ,μν satisfies

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i�12 + d21 �∗
c −i�23 0 �∗

c −�c 0 0

�c i�12 + d31 0 −i�23 0 0 �∗
c −�c

0 0 i�23 + d21 �∗
c −�∗

c �c 0 0

0 0 �c M1 0 0 −�∗
c �c

�c 0 −�c 0 d32 + d21 0 �∗
c 0

−�∗
c 0 �∗

c 0 0 d23 + d21 0 �∗
c

0 �c 0 −�c �c 0 M2 0

0 −�∗
c 0 �∗

c 0 �c 0 d23 + d31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(3)
22,21

ρ
(3)
22,31

ρ
(3)
33,21

ρ
(3)
33,31

ρ
(3)
32,21

ρ
(3)
21,23

ρ
(3)
32,31

ρ
(3)
31,23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(2)
21,21 − a(2)

21,12 − a(2)
22

a(2)
21,31 − a(2)

31,12

−a(2)
33

0

a(2)
21,31 − a(2)

32

−a∗(2)
32 − a(2)

21,13

a(2)
31,31

−a(2)
31,13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|�p(r′)|2�p(r, t ) (A11)

whereM1 = d31 + i�23 −VvdW/2 andM2 = d32 + d31 −VvdW/2. The solution ρ
(3)
33,31 can be obtained from the above equa-

tion, which reads

ρ
(3)
33,31 = a(3)

33,31|�p(r′)|2�p(r, t ), (A12)

where a(3)
33,31 is the function of the system parameters, such as �αβ , �α , and control laser �c.
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