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Coupled-mode theory (CMT) is a widely used approach for describing resonances and eigenmodes in various
photonic structures. Here, we propose a formulation of the CMT describing resonant multilayer structures. In
particular, we revisit the conventional Fabry-Pérot resonator and describe its optical properties from the point of
view of the spatiotemporal formulation of the CMT. This formulation provides partial differential equations de-
scribing both temporal and spatial evolution of the field distribution, thus generalizing the conventional temporal
and spatial versions of the CMT. The developed CMT takes into account the symmetry of the considered
structure, energy conservation law, reciprocity, and causality. By considering the parameters of the developed
CMT to be spatially dependent, we apply it to describe the optical properties of linear variable filters (LVFs)
comprising two Bragg mirrors separated by a wedge-shaped (tapered) layer. In good agreement with the results of
the rigorous numerical solution of Maxwell’s equations, the proposed CMT accurately reproduces the broadening
of the resonant peak and the appearance of Fizeau fringes when increasing the wedge angle of the LVF.
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I. INTRODUCTION

Coupled-mode theory (CMT) is an efficient analytical tool
for describing resonant optical properties of various photonic
structures. Usually, either the temporal or spatial formulation
of the CMT is used. Temporal CMT considers the amplitude
of the eigenmode to be a function of time [1–3]. In contrast,
spatial CMT describes how the field amplitude changes in
space [1,4–7].

Recently, considerable interest was drawn to the devel-
opment of different versions of the so-called spatiotemporal
CMT, which is formulated as a partial differential equa-
tion (PDE) for the mode amplitude considered as a function
of both spatial and temporal variables [8–15]. In particu-
lar, in [8,9], the authors studied the spatiotemporal mode
coupling in a system of parallel waveguides, the dielectric
function of which can also be time dependent. In papers
[10,11], a spatiotemporal CMT was formulated for a dis-
persive medium undergoing a spatiotemporal perturbation.
In papers [12,13] by the present authors, the spatiotemporal
CMT was presented to describe resonances in guided-mode
resonant gratings supporting bound states in the continuum.
In [14], a spatiotemporal CMT was used to describe temporal
waveguide coupling. In a recent paper [15], a spatiotemporal
CMT was developed to describe nonlocal metasurfaces.

In this work, we develop a spatiotemporal CMT for
a Fabry-Pérot resonator in a symmetric environment. The
presented approach allows us to obtain two similar CMT
formulations, both satisfying the energy conservation law and
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reciprocity. The first CMT formulation assumes the scattering
amplitude to be an even function of the angular frequency ω,
whereas the second one considers Hermitian functions. We
show that the second approach allows the CMT to satisfy the
causality condition. Importantly, the parameters of the devel-
oped CMT are expressed through the “local” reflection and
transmission coefficients of the resonator claddings, so that
no overlap integrals are required to be calculated for finding
the coupling coefficients featured in the CMT.

The fact that the parameters of the proposed CMT ana-
lytically depend on the thickness of the resonator makes it
possible to extend the developed theory to the structures, in
which this thickness is a spatially varying function. A prac-
tically important case of such structures, which we consider
in the current work, is a Fabry-Pérot resonator with a lin-
early varying thickness. Such structures are usually referred
to as linear variable filters (LVFs) since the filtered wave-
length changes almost linearly along the structure. Due to
this property, LVFs are widely used in microspectrometers
[16–20], optical sensors [21,22], and hyperspectral imaging
systems [23–25]. For the considered example of an LVF
with Bragg mirror claddings, we demonstrate that the predic-
tions of the developed CMT with varying parameters are in
good agreement with the results of electromagnetic simula-
tions based on the rigorous coupled-wave analysis (RCWA)
technique [26].

The paper is organized as follows. In Sec. II, we describe
the geometry of the considered diffraction problem, intro-
duce the used notation, and discuss several important facts
about the Fabry-Pérot interferometer necessary for the further
derivations. Sections III and IV present the derivation of the
two proposed CMT formulations. In Sec. V, we apply the
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developed CMT to describe the optical properties of an LVF.
Section VI concludes the paper.

II. COUPLED PLANE WAVES EQUATIONS, POLES,
AND ZEROS OF THE FABRY-PÉROT RESONATOR

In this section, we revisit several basic facts about the
Fabry-Pérot interferometer and describe its optical properties
in terms of the poles and zeros of the reflection coefficient.
The introduced notation and the equations obtained here will
be used to formulate the spatiotemporal CMT in the subse-
quent sections.

A. Scattering matrix of the interfaces and coupled plane waves

We will consider structures with a horizontal symmetry
plane, therefore, each interface can be described by the same
scattering matrix

S =
[

r1 t1
t1 r2

]
, (1)

where t1 is the transmission coefficient, r1 is the superstrate-
to-superstrate reflection coefficient, and r2 is the reflection
coefficient for the plane wave propagating inside the slab.

We will assume that the considered structure contains only
lossless materials so that the scattering matrix S is unitary:
S†S = I, where I is the identity matrix and dagger denotes
Hermitian conjugation. The unitarity, which is a form of
writing the energy conservation law, imposes the following
relations on the S-matrix elements:

r∗
1 = r2/�, r∗

2 = r1/�, t∗
1 = −t1/�, (2)

which directly follow from S† = S−1 = adj S/�, where � =
det S = r1r2 − t2

1 .
To obtain the complex reflection and transmission coeffi-

cients of the Fabry-Pérot resonator, let us represent the field
inside and outside the structure as sums of plane waves having
the same in-plane wave-vector component

kx = ω

c
ns sin θ,

where ω is the angular frequency of light, ns is the refractive
index of the superstrate and substrate, and θ is the angle of
incidence. The propagation directions of the introduced plane
waves are shown in Fig. 1(a). According to this figure, we
consider two incident plane waves: the wave in the superstrate
with complex amplitude I and the one in the substrate with
complex amplitude J . The complex amplitudes of the waves
inside the structure are denoted as U and D. The scattered
plane waves with complex amplitudes R and T will be referred
to as the reflected and transmitted waves, respectively.

Using the scattering matrix (1), we couple the amplitudes
of the waves at the slab interfaces, which brings us to the
following equations:

R = r1I + t1ξU,

D = t1I + r2ξU,

U = r2ξD + t1J,

T = t1ξD + r1J,

(3)
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FIG. 1. (a) Fabry-Pérot resonator and the directions of the
plane waves constituting the field inside and outside the resonator.
(b) One-sided excitation represented as a sum of symmetric and
antisymmetric solutions. (c) Linear variable filter based on a wedged
phase-shifted Bragg grating simulated using the developed CMT.

where the phase shift acquired by the waves upon propagation
between the interfaces is described by the term

ξ = exp

{
ih

√(ω

c
n
)2

− k2
x

}
, (4)

with n and h being the refractive index and thickness of the
slab, respectively. In Eq. (3), I , R, and D denote the amplitudes
of the waves at the upper interface of the slab, whereas J ,
T , and U describe the amplitudes of the waves at the lower
interface.

Let us note that we introduced two incident plane waves,
I and J , to simplify the further analysis. However, at the end,
we will be interested in finding the reflected and transmitted
field in the case when there is only one incident wave (I = 1
and J = 0). In this case, the amplitudes R and T become
the complex reflection and transmission coefficients of the
Fabry-Pérot resonator and can be obtained from Eqs. (3) in
the following well-known form:

R = r1 + r2
t2
1 ξ 2

1 − r2
2ξ

2
, T = t2

1 ξ

1 − r2
2ξ

2
. (5)

B. Zeros of the reflection coefficient

Let us analyze the expression (5) for the reflection coeffi-
cient in the case of normal incidence of light (i e., at kx = 0).
In particular, let us find such a frequency ω0 that the reflec-
tion vanishes: R(ω0, kx = 0) = 0. Solving this equation gives
ζ 2 = r1/(r2�), where ζ denotes ξ evaluated at ω = ω0 and
kx = 0:

ζ = exp
{

ih
ω0

c
n
}
. (6)

The unitarity consequences (2) allow one to rewrite the con-
dition for the reflection coefficient to be zero as

ζ 2 = r∗
2

r2
. (7)
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Note that the right-hand side of this equation has unit modu-
lus, therefore, Eq. (7) can be satisfied at kx = 0 and at a real
frequency

ω0 = c

nh
(πk − arg r2), k ∈ Z. (8)

At this frequency, the considered Fabry-Pérot resonator works
as a spectral filter in the case of normal incidence of light. It
is this frequency, in the vicinity of which we will construct an
approximation leading to the CMT.

For further derivations, let us note that

r2ζ = |r2|ei arg r2 × eiπke−i arg r2 = (−1)k|r2|, (9)

which is a real number.
Let us now show that the zeros defined by the even (odd)

values of k arise due to the excitation of symmetric (anti-
symmetric) eigenmodes of the structure. To do this, in the
following two subsections we find the eigenfrequencies of the
symmetric and antisymmetric modes of the Fabry-Pérot in-
terferometer, which are excited at kx = 0. Let us note that the
eigenmodes studied in this work are the leaky ones possessing
complex frequencies.

C. Poles in the case of a symmetric excitation

We first consider the case of symmetric excitation, that is,
I = J . In this case, the scattered field and the field inside the
structure are also symmetric, which gives R = T and D = U ,
respectively. The coupled plane waves Eqs. (3) take the fol-
lowing simple form:

Rs = r1I + t1ξU,

U = r2ξU + t1I,
(10)

where we denote the “symmetric” reflected wave amplitude R
by Rs.

To find the symmetric eigenmodes, we express Rs from
Eq. (10) at I = 1, which gives

Rs = �ξ − r1

r2ξ − 1
(11)

and find such a complex ω that the denominator in Rs van-
ishes. This happens when ξ = r−1

2 , i.e., at ω = ωp,2l , where

ωp,2l = c

nh
(2π l − arg r2 + i ln|r2|), l ∈ Z. (12)

Here, we assume kx = 0, therefore, we obtain eigenfrequen-
cies of the modes excited by a normally incident plane wave.
Since we assume the incident field to be symmetric, the
obtained eigenmode is a z-symmetric one, which scatters sym-
metrically to the substrate and superstrate.

D. Poles in the case of an antisymmetric excitation

The case of antisymmetric excitation (J = −I , hence T =
−R and D = −U ) is considered similarly to the previous sub-
section. The coupled plane waves equations take the following
form:

Ra = r1I + t1ξU,

−U = r2ξU + t1I,
(13)

where we introduce Ra denoting the reflected field amplitude
R in the case of an antisymmetric excitation. The antisymmet-
ric eigenmodes are calculated as the poles of

Ra = �ξ + r1

r2ξ + 1
. (14)

The poles are found by equating the denominator in Ra to zero,
which yields ξ = −r−1

2 . Therefore, assuming kx = 0, we can
write down the complex frequencies of the eigenmodes as

ωp,2l+1 = c

nh
[(2l + 1)π − arg r2 + i ln|r2|], l ∈ Z. (15)

These are the frequencies of the z-antisymmetric eigenmodes,
which scatter to the substrate and superstrate out of phase.

From Eqs. (8), (12), and (15), we can conclude that the real
parts of the complex eigenfrequencies match the reflection
zeros. From these equations, it follows that the reflection zeros
calculated using Eq. (8) at even k values are associated with
the excitation of symmetric eigenmodes, whereas the odd
values of k correspond to antisymmetric modes. We will use
this important fact in the following derivations.

E. Numerical example

Let us consider an example of the Fabry-Pérot interferom-
eter, in which the reflection and transmission coefficients are
assumed to be constant: t1 = 0.6, r2 = −r1 = 0.8; the corre-
sponding scattering matrix is, obviously, unitary. We consider
a slab with the thickness h = 1 µm and refractive index n = 2.
The results based on Eq. (5) are presented in Fig. 2(a). The
calculations were performed above the light lines. One can
see three pronounced resonant curves in the figure with the
middle one corresponding to a symmetric mode [with 2l = 2
in Eq. (12)] and the other two emerging due to the excitation of
antisymmetric eigenmodes [with 2l + 1 = 1, 3 in Eq. (15)]. In
the following two sections, we will use this example to illus-
trate how the developed CMT describes the optical properties
of the Fabry-Pérot interferometer.

III. COUPLED-MODE THEORY BASED
ON ω-SYMMETRIC APPROXIMATION

In this section, we derive a spatiotemporal coupled-mode
theory for the Fabry-Pérot resonator. To do this, we make
an important assumption that the elements of the scattering
matrix (1) are constant and, thus, do not depend on ω or kx.
In this case, the only ω- and kx-dependent quantity is ξ in
Eq. (4). To obtain the CMT, we will be replacing ξ (ω, kx )
with an algebraic expression that approximates it in a vicinity
of the point kx = 0, ω = ω0. Importantly, the form of such an
approximation should preserve the symmetry properties of the
considered diffraction problem.

A. Unitary approximation for ξ

Let us start with a simple Taylor approximation for
ξ (ω, kx ) defined in Eq. (4). However, instead of directly ex-
panding this function, we consider ξ as function of kx and q =
ω2, which we denote as η(q, kx ) = exp{ih√

qn2c−2 − k2
x }. By

writing the Taylor series for this function about the point
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FIG. 2. Intensity of light transmitted through the Fabry-Pérot resonator at different angular frequencies ω and different values of the
in-plane wave-vector component kx . Intensity was calculated using (a) exact Eq. (5), (b) approximate Eq. (32) based on ω-symmetric CMT,
and (c) approximate Eq. (37) based on causal CMT.

q = ω2
0, kx = 0, we obtain

ξ (ω, kx ) = η(ω2, kx ) ≈ ζ

[
1 − i

hc

2nω0
k2

x + i
nh

c

ω2 − ω2
0

2ω0

]
,

(16)

where ζ is defined in Eq. (6).
Note that the quantity ξ does have unit modulus, whereas

its Taylor approximation (16) no longer does. Using such
an approximation would result in the violation of the en-
ergy conservation law. To overcome this problem, let us
consider another approximation for ξ preserving the unit mod-
ulus. Since |ξ | = |√ξ | = 1, the complex conjugate of

√
ξ is

(
√

ξ )∗ = 1/
√

ξ . This allows us to write ξ = √
ξ/(

√
ξ )∗, and

by replacing
√

ξ in this expression with its Taylor expansion
similar to Eq. (16), we arrive at the approximation we will be
using in this section:

ξ (ω, kx ) ≈ −ζ
v2

gk2
x − (

ω2 − ω2
0

) + 4ic
nh ω0

v2
gk2

x − (
ω2 − ω2

0

) − 4ic
nh ω0

. (17)

Here, vg = c/n is the phase velocity of light in the slab.
Note that the numerator in this approximation is the complex
conjugate of the denominator, which ensures that the energy
conservation law is not violated. It should also be noted that
the obtained approximation is an even function of the angular
frequency ω; therefore, we refer to this approximation as
ω-symmetric.

To obtain a form of the CMT that takes into account the
presence of the horizontal symmetry plane in the structure,
below we apply the obtained approximation (17) separately
for the cases of z-symmetric (I = J) and z-antisymmetric
(I = −J) excitations.

B. CMT for a symmetric excitation

In this subsection, we will develop the coupled-mode the-
ory for the case of symmetric excitation. Therefore, we will
work with the corresponding symmetric coupled plane waves
model of Eq. (10) from Sec. II C. To obtain an equation in
the form of coupled-mode theory [12], we have to perform
the following change of variables: instead of the unknown
amplitude U , we will use the quantity W = t1ξU + αI , where

α is a constant defined below. The physical meaning of W will
be discussed below [after Eq. (27)]. By rewriting Eq. (10) in
terms of W , we obtain

W − αI = r2ξ (W − αI ) + ξ t2
1 I, (18)

Rs = (r1 − α)I + W. (19)

Then, we apply the approximation (17), which leads us to a
quite complicated expression (not presented here for the sake
of brevity) containing W , ω2W , k2

xW , I , ω2I , and k2
x I terms.

However, if we assume α = t2
1 ζ/(r2ζ + 1), we zero out the

ω2I and k2
x I terms and Eq. (18) becomes

−ω2W = − v2
gk2

xW − ω2
0W + 4ic

nh
× 1 − r2ζ

1 + r2ζ
ω0W

(20)

− 8ic

nh
× t2

1 ζ

(1 + r2ζ )2
ω0I.

Now, let us recall that the frequency ω0, at which the
approximation was constructed, is not an arbitrary frequency,
but the one defined by Eq. (8). Since in this subsection, we
consider the symmetric excitation case, we will assume that
the frequency ω0 is located near a symmetric mode, i.e., k
in Eq. (9) is even and r2ζ = |r2|. This, along with Eqs. (2),
allows us to simplify Eq. (20) and the expression for the
reflection coefficient Rs [Eq. (19)]:

−ω2W = −v2
gk2

xW − ω2
0W + iγω0W + 2ieiφγω0I, (21)

Rs = eiφI + W, (22)

where φ = arg r1 and

γ = 4c

nh
× 1 − |r2|

1 + |r2| . (23)

Solving Eqs. (21) and (22) for Rs at I = 1 gives the com-
plex reflection coefficient for the case of symmetric excitation

Rs(ω, kx ) = eiφ + eiφ 2iω0γ

v2
gk2

x − ω2 + ω2
0 − iω0γ

. (24)

Here, the first term Rs,nr = eiφ is the background (nonreso-
nant) reflection coefficient (i.e., the value of the reflection
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coefficient at ω far from the resonance). The second term in
Eq. (24) describes resonant scattering of light. In this regard,
Eq. (24) is similar to the equation describing the Fano reso-
nance [3,27], in which the resonant and nonresonant scattering
processes are written separately. Bringing the nonresonant and
resonant terms to a common denominator makes it obvious
that |Rs| = 1.

Let us now obtain the CMT. To do this, we apply the
Fourier transform F [13] defined as

[FG](t, x) =
∫∫

R2
G(ω, kx )eikxx−iωt dkx dω (25)

to the left- and right-hand sides of Eqs. (21) and (22):

∂2w

∂t2
= v2

g
∂2w

∂x2
− ω2

0w + iγω0w + 2ieiφγω0 fI (t, x), (26)

fR,s(t, x) = eiφ fI (t, x) + w(t, x). (27)

Here, the Fourier images are the spatiotemporal field dis-
tributions of the scattered field ( fR,s = FRs), of the mode
(w = FW ), and of the incident field ( fI = FI). The ob-
tained Eqs. (26) and (27) relate these fields and, therefore,
can be considered as a coupled-mode theory describing the
considered diffraction problem. In this regard, the quantity
W introduced in this section is the spectrum of the excited
eigenmode of the structure.

It is noteworthy that the obtained PDE (26) can be con-
sidered as a nonuniform wave equation. Indeed, the part
∂2w
∂t2 = v2

g
∂2w
∂x2 − ω2

0w is the wave equation for a medium with a
hyperbolic dispersion law ω2 = v2

gk2
x + ω2

0. The iγω0w term
in Eq. (26) describes the leakage of the eigenmode and the last
term 2ieiφγω0 fI describes the excitation of the eigenmode by
the incident field.

If we now consider a monochromatic field with the time de-
pendence of e−iωt , Eq. (26) will become a spatial formulation
of the CMT [1]. Similarly, by considering fields depending
on the spatial variable x as eikxx, we will get a second-order
differential equation, which can be transformed using the
slowly varying envelope approximation to obtain the temporal
coupled-mode theory [3]. In this regard, the obtained PDE
describing both temporal and spatial evolution of the field will
be referred to as the spatiotemporal coupled-mode theory.

C. CMT for an antisymmetric excitation

Deriving the CMT for the antisymmetric excitation is
very much similar to the symmetric case. We start from
Eq. (13), introduce a new unknown W = t1ξU + αI with α =
t2
1 ζ/(r2ζ − 1), and apply the approximation (17). Then, we

assume that the frequency ω0 is located near an antisymmetric
mode, i.e., k in Eq. (6) is odd and r2ζ = −|r2|. This brings us
to

Ra = eiφI + W, (28)

where W turns out to satisfy the very same relation (21) as
in the symmetric case. Despite the fact that this equation has
the same form for the symmetric and antisymmetric cases, the
ω0 values in these two cases are different. Indeed, the value
of ω0 is calculated using Eq. (8) with k being even in the
symmetric case, whereas the odd values of k have to be used
when describing the antisymmetric excitation. Keeping that

in mind, we can use the CMT equation (26), which enables
expressing the reflected signal as

fR,a(t, x) = eiφ fI (t, x) + w(t, x), (29)

where fR,a = FRa. Obviously, the reflection coefficient also
takes the same form as Rs:

Ra(ω, kx ) = eiφ + eiφ 2iω0γ

v2
gk2

x − ω2 + ω2
0 − iω0γ

. (30)

D. CMT for a one-sided excitation

Let us now obtain approximate expressions for the reflec-
tion and transmission coefficients in the case of one-sided
excitation of the structure by a plane wave incident from the
superstrate, i.e., when I = 1, J = 0. To do this, we represent
such a solution as half the sum of a symmetric solution with
I = J = 1 and an antisymmetric solution with I = −J = 1
[see Fig. 1(b)]:

R = Rs + Ra

2
, T = Rs − Ra

2
, (31)

where Rs is given by Eq. (24) and Ra is defined in Eq. (30).
Before moving further, we should recall that the two

referenced equations were obtained to describe different
eigenmodes: Eq. (24) describes reflection of light when a
symmetric mode is excited, whereas Eq. (30) corresponds
to the excitation of an antisymmetric mode. Let us consider
these two cases separately. If we want to describe the optical
properties of the Fabry-Pérot resonator near a frequency of a
symmetric mode (k is even), we should use Eq. (24) for the
Rs term in Eq. (31), yet in the Ra term [see Eq. (30)], we
can neglect the resonant part assuming that the antisymmetric
mode is not excited when we are near the frequency of a
symmetric mode. Therefore, we assume that Ra is equal to
Rnr = eiφ and obtain

R = Rs + Rnr

2
, T = Rs − Rnr

2
.

Similarly, to describe the excitation of an antisymmetric mode
(k is odd), we keep the resonant term in Eq. (30) and neglect
the excitation of the neighboring symmetric modes:

R = Rnr + Ra

2
, T = Rnr − Ra

2
.

The general expressions for the reflection and transmission
coefficients, which are valid for both considered cases, are

R(ω, kx ) = eiφ
v2

gk2
x − ω2 + ω2

0

v2
gk2

x − ω2 + ω2
0 − iω0γ

,

T (ω, kx ) = (−1)keiφ iω0γ

v2
gk2

x − ω2 + ω2
0 − iω0γ

.

(32)

One can easily show that the CMT in the case of one-sided
excitation is still described by Eq. (26) and by

fR(t, x) = eiφ fI (t, x) + w(t, x)

2
, fT (t, x) = (−1)k w(t, x)

2
,

(33)

where fR = FR and fT = FT are the field distributions of the
reflected and transmitted light.
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Let us note that layered structures like the ones considered
in this work can be analyzed using the spatial formula-
tion of the CMT [5–7,28]. Comparing to the spatial CMT,
the proposed spatiotemporal CMT formulation contains the
second-order spatial derivative, which makes it suitable for
describing the optical properties of layered structures in the
vicinity of normal incidence. In addition, the presence of tem-
poral derivative in the CMT allows one to take into account the
frequency (wavelength) in the model. In particular, Eq. (32)
providing explicit dependence on both ω and kx makes the
spatiotemporal CMT a powerful tool for describing spatiotem-
poral pulse transformation by layered resonant structures [29].

E. Numerical example

Let us demonstrate that the derived Eq. (32) describes the
resonant curves in Fig. 2(a) in the ω–kx parameter space.
To use Eq. (32), we have to choose a particular value of
k in Eq. (8); by doing this, we can make the CMT model
to describe one of the resonant curves in Fig. 2(a). As an
example, we chose the middle one corresponding to k = 2
so that the approximation was carried out in the vicinity of
ω0 = 0.9418 × 1015 s−1. The approximated ω–kx transmit-
tance spectrum calculated using Eq. (32) is shown in Fig. 2(b).
It is evident that the line shape, width, and the dispersion
of the resonant curve on the CMT plot is in good agree-
ment with the corresponding resonant curve in Fig. 2(a).
Indeed, the root-mean-square error between the exact and ap-
proximated complex amplitudes calculated in the region ω ∈
[0.75, 1.25] × 1015 s−1, |kx| < 2.5 × 10−3 nm−1 amounts to
only 3.4 × 10−3.

IV. CAUSAL CMT BASED
ON AN HERMITIAN APPROXIMATION

Let us note that the CMT formulation obtained in the pre-
vious section has a notable drawback. According to Eq. (32),
at a fixed value of kx, its denominator diverges at two distinct
complex frequencies. The first one has a positive real part and
a negative imaginary part. This is the “physical” eigenmode,
which we investigate. The second one has a negative real part
and a positive imaginary part. The fact that the imaginary
part of the complex frequency of the second mode is negative
violates the causality condition. While this has no implica-
tions when describing the reflection and transmission spectra,
the violation of causality is undesirable when investigating
spatiotemporal pulse transformations [30] since it leads to a
nonphysical form of the pulse response of the structure. In this
regard, for certain applications, another approximation, which
we derive in this section, might be more favorable.

A. Hermitian symmetry and causality

Let us require the approximating reflection (and transmis-
sion) coefficient to be an Hermitian function, i.e., we require
its values at negative and positive frequencies to be related as
[31,32]

R(−ω) = R∗(ω), ω ∈ R.

Such symmetry, as we demonstrate in this section, provides
the functions R(ω) and T (ω) to be holomorphic in the

upper half of the complex frequency plane, which ensures the
causality condition.

To obtain such approximations, we will construct an Her-
mitian unitary approximation for ξ defined in Eq. (4) instead
of using the ω-symmetric unitary approximation of Eq. (17).
Besides, in order for the resulting approximations for R and
T to be Hermitian as well, we have to assume that the local
reflection and transmission coefficients (r1, r2, t1) of the inter-
faces of the considered structure also satisfy this requirement.
Since these quantities are assumed constant, the hermiticity
property requires r1, r2, t1 to be real numbers. This is exactly
the case for several practically important structures, e.g., di-
electric Fabry-Pérot resonators (including the ones with Bragg
claddings), for which the scattering matrix S describing the
claddings indeed contains only real numbers in the case of
normal incidence of light. Assuming r2 being real allows us
to rewrite Eq. (8) in the following simple form:

ω0 = c

nh
π (k − m), k ∈ Z, (34)

where m = 0 when r2 is positive and m = 1 otherwise [i.e.,
r2 = (−1)m|r2|]. In this case, Eq. (6) yields ζ = (−1)k−m.

B. Hermitian unitary approximation for ξ

Before constructing an Hermitian approximation for ξ de-
fined in Eq. (4), let us note that the quantity ξ contains a
square root, which is a two-valued function. Having chosen
the value of the square root at the positive frequency ω0

from the physical meaning of the problem being solved, we
still have two options in choosing the value at the negative
frequency −ω0. In Sec. III, we considered one such option
requiring ξ (−ω) = ξ (ω) for the approximating expression. In
this section, we will require ξ (−ω) = [ξ (ω)]∗, i.e., we require
ξ to be an Hermitian function. Let us note that these two cases
correspond to different trajectories on the complex plane when
constructing the analytical continuation from the point ω0 to
the point −ω0.

Requiring the approximation of ξ to be Hermitian and
unitary leads to the following approximation, which is derived
in Appendix A:

ξ (ω, kx ) ≈ (−1)k−m+1
v2

gk2
x − (

ω2 − ω2
0

) + 4ic
nh ω

v2
gk2

x − (
ω2 − ω2

0

) − 4ic
nh ω

. (35)

Comparing this approximation with Eq. (17) obtained in the
ω-symmetric case, two differences have to be noted. The first
one is the explicit form of the coefficient before the fraction,
which follows from Eq. (34). The main difference is that the
last terms in both the numerator and denominator contain ω

instead of ω0. Nevertheless, the similarities between Eqs. (17)
and (35) make the derivation of the CMT almost identical to
the one presented in the previous section.

C. Coupled-mode theory

Following the same steps as in Secs. III B to III D brings us
to a new form of the coupled-mode equation

∂2w

∂t2
+ γ

∂w

∂t
= v2

g
∂2w

∂x2
− ω2

0w − 2eiφγ
∂ fI

∂t
, (36)
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which is a nonuniform damped wave equation with an addi-
tional term ω2

0w describing the dispersion of the considered
eigenmode. Note that it is the derivative of the incident signal,
which makes this equation nonuniform, and not the signal
itself as in Eq. (26). The reflected and transmitted fields can
still be calculated using Eq. (33). The corresponding approx-
imations for the reflection and transmission coefficients have
the following form:

R(ω, kx ) = eiφ
v2

gk2
x − ω2 + ω2

0

v2
gk2

x − ω2 + ω2
0 − iωγ

,

(37)

T (ω, kx ) = (−1)keiφ iωγ

v2
gk2

x − ω2 + ω2
0 − iωγ

,

where eiφ = sgn r1 = (−1)m+1.
Comparing the last equation with the results of Sec. III,

we can infer that the only difference is the iωγ term, which
appears instead of iω0γ [cf. Eq. (32)]. This seemingly little
difference has an important consequence that in the obtained
approximations (37), the eigenfrequencies always have neg-
ative imaginary parts, which allows us to refer to such an
approximation as causal. Indeed, one can show that for such
approximations, the impulse response is nonzero only inside
the light cone [30,33]. This makes the Hermitian approxima-
tion useful when describing spatiotemporal shaping of optical
pulses by resonant structures (see, e.g., [29,30]). However,
the ω-symmetric approximation of Sec. III, which is sim-
pler, might be more convenient for theoretical analysis of
monochromatic light diffraction and description of structures,
for which the scattering matrix S might contain complex
numbers.

D. Numerical example

Figure 2(c) shows the transmittance spectrum calculated
using Eq. (37) at k = 2. The root-mean-square deviation
of the approximated complex amplitude from the exact
one [Fig. 2(a)] calculated in the region ω ∈ [0.75, 1.25] ×
1015 s−1, |kx| < 2.5 × 10−3 nm−1 amounts to 2.6 × 10−3,
therefore, as in the previous case, the derived causal CMT
provides a good approximation for the resonant curve.

For a more detailed comparison between the two derived
CMT models, we considered the vertical cross sections of the
plots from Fig. 2. These cross sections calculated at kx = 0
are shown in Fig. 3, according to which, the ω-symmetric
approximation of Sec. III D provides a slightly better agree-
ment at the frequencies below ω0, whereas the Hermitian
approximation from Sec. IV C gives better results at ω > ω0.
In this regard, one should rely on other reasons rather than the
accuracy when choosing between the two presented approxi-
mations, as we discussed in the end of the previous subsection.

V. APPLICATION TO A LINEAR VARIABLE FILTER
BASED ON A PHASE-SHIFTED BRAGG GRATING

A. Geometry of the structure

Let us now consider a more sophisticated example demon-
strating the applicability range of the developed CMT, namely,
a Fizeau interferometer, which is a wedged version of the

0.7 0.8 0.9 1.0 1.1 1.2
0

0.5

1

Eq. (5)

Symmetric

Hermitian

Angular frequency ω (1015 s−1)

T
ra
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|2

FIG. 3. Intensity of light transmitted through the Fabry-Pérot
resonator at different angular frequencies ω in the case of normal
incidence calculated using Eq. (5) (solid red line), ω-symmetric
approximation of Eq. (32) (dotted black line), and Hermitian approx-
imation of Eq. (37) (dashed blue line).

Fabry-Pérot interferometer. As a particular structure, we will
consider a phase-shifted Bragg grating (PSBG) with a wedge-
shaped central layer as shown in Fig. 1(c). Such structures,
nowadays referred to as linear variable filters (LVF), are
widely used in modern microspectrometers [16,18], sensors
[22], and hyperspectral imaging systems [25].

Each Bragg mirror of the considered structure consists
of three pairs of layers with refractive indices n1 = 2.1 and
n2 = 1.45, which correspond to TiO2 and SiO2, respectively.
The thicknesses of the layers were calculated from the Bragg
condition hi = λB/(4ni ), i = 1, 2, where λB = 800 nm. The
central layer has a refractive index n = n2 = 1.45 and a lin-
early varying thickness

h(x) = h0 + x tan α, (38)

where α = 0.5◦ is the wedge angle and h0 = λB/(2n) =
190 nm is the thickness of the central layer at x = 0. There-
fore, the mode excitation condition at x = 0 is fulfilled for
normally incident light having the wavelength λB = 800 nm.

We will assume that a monochromatic plane wave is nor-
mally incident on the considered structure. Depending on the
wavelength of the incident light, the Fabry-Pérot resonance
condition (8) will take place at different points along the
structure. Therefore, we expect the light with different wave-
lengths to be transmitted at different spatial positions x. Such
an optical property of LVFs is beneficial for spectrometric and
hyperspectral applications [16,18,25].

B. Local uniform approximation
and rigorous numerical simulations

When the wedge angle α is very small, we can calculate
the local reflectance and transmittance by simply substituting
Eq. (38) into Eq. (5). This means that we replace the structure
with a uniform nonwedged structure having the central layer
thickness h equal to the local thickness h(x) of the considered
structure. We will refer to this approach as the local uniform
approximation. The transmittance and reflectance plots cal-
culated using this approach are shown in Fig. 4 with dashed
blue lines. We can see a pronounced Lorentzian peak in the
transmittance and a corresponding dip in the reflectance plot.

The local uniform approximation is valid when the wedge
angle α is very small. However, even for values of α as
small as the considered value 0.5◦, a more accurate treat-
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FIG. 4. (a) Reflected and (b) transmitted field distributions of the
LVF calculated using the local uniform approximation (dashed blue
lines), RCWA (dotted red lines), and the developed CMT (solid black
lines).

ment is required. To demonstrate this, we utilize the RCWA,
an established numerical tool for solving Maxwell’s equa-
tions [26,34]. Since RCWA is aimed at simulating periodic
structures, we considered a 15-µm part of the wedged PSBG
covering x ∈ [−7.5, 7.5] µm. Then, we periodized this part
along the x axis and optically isolated the adjacent periods
with anisotropic PML layers. The upper Bragg grating in-
terface was aligned with the x axis, whereas the tilted lower
Bragg grating was replaced with its staircase approximation
consisting of 500 layers. The simulations were performed
using 2 × 100 + 1 Fourier harmonics, which turned out to
be sufficient for the RCWA to converge. Transverse-electric
(TE) polarization of the incident wave was considered in the
simulations. To compare the RCWA results with the CMT,
we calculate the reflected and transmitted field distributions
|Ey|2 along the dashed lines shown in Fig. 1(c). These lines
are 250 nm above and below the structure; such distance is
required to exclude evanescent waves from the consideration.

The RCWA simulation results are shown in Fig. 4 with
a dotted red line. By comparing the RCWA results with the
local uniform approximation, one can see that the rigorous
simulations predict a bit broader peak and several secondary
peaks appearing to the right of the first one. Such secondary
fringes are known to appear in Fizeau interferometers [16,35–
37]. Note that both the width of the main peak and the magni-
tude of the secondary peaks depend on the wedge angle. If we
decrease the wedge angle, the secondary fringes in the RCWA
spectrum will disappear and the line shape will converge to the
Lorentzian one predicted by the local uniform approximation.
However, witnessing such a convergence in hardly possible
using RCWA since rigorous simulations are rather time and
memory consuming. For the considered case, the simulations
take about 8 minutes, yet for smaller wedge angles, which are
more interesting for practical applications due to smaller sec-
ondary fringes, the required time grows rapidly. In this regard,

a faster approach for simulating PSBGs with nonconstant (and
not necessarily linearly varying) central layer thickness is
desirable. Below, we show that the developed CMT can be
considered as such an approach.

C. Application of the coupled-mode theory

To describe the considered wedged structure with the de-
veloped CMT, we rely on Eq. (26), which was obtained within
the ω-symmetric approximation. Since in this structure, the
thickness of the central layer varies along the x direction,
the parameters of the CMT ω0, γ , and vg will no longer be
constant.

Obviously, the frequency of the reflection zero ω0 in
Eq. (26) depends on the layer thickness h, therefore, ω0 will
become x dependent when describing a wedged structure.
Moreover, in the considered example, the dependence of the
reflection coefficient r2 on ω also becomes important. In this
regard, the frequency ω0 should be determined as the solution
of the following equation:

ω0(x) = c

nh(x)
{πk − arg r2[ω0(x)]}. (39)

Regarding the parameters γ and vg, the simulations (not
presented here for the sake of brevity) show that taking into
account their dependence on x leads to only marginal changes
in the resulting reflected and transmitted fields. In this regard,
in the following simulations, we will assume that γ and vg

are constant. However, as we discuss in Appendix B, the
dependence of r2 on ω requires us to use not Eq. (23) but
more accurate Eq. (B2) for calculating γ . Similarly, the group
velocity vg has to be calculated using Eq. (B3), which takes
into account the dependence of r2 on both ω and kx. In the
simulations, we used the values γ = 5.322 × 1013 s−1 and
vg = 0.569 c, which were calculated in this way at h = h0.

Having calculated the parameters of the CMT, we can
write down the final form of the differential equation. Since
we consider a monochromatic normally incident plane wave
with unit amplitude, we assume fI (t, x) = e−iωt . Therefore,
the PDE (26) becomes an ordinary differential equation

v2
gw

′′(x) = [ω0(x)2 − ω2 − iγω0(x)]w(x) − 2ieiφγω0(x).

(40)

Following the reasoning from Sec. III D, we can calculate the
reflected and transmitted field distributions as

fR(x) = eiφ + w(x)

2
, fT (x) = (−1)k w(x)

2
.

Here and in Eq. (40), we omit the e−iωt term, i.e., we use
w(t, x) = w(x)e−iωt and similar relations for fR and fT . To
solve the differential equation (40) numerically, we use the
shooting method with the boundary conditions w(−X ) =
w(X ) = 0, where X = 7.5 µm defines the solution region:
x ∈ [−X, X ].

The obtained numerical solution is shown in Fig. 4 with
solid black lines. For each wavelength, less than 9 seconds
were required to solve the CMT equation. It is evident from
the figure that the CMT predictions are in good agreement
with the RCWA simulation results. The slight difference is
mainly due to two facts with the first one being that the
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FIG. 5. (a)–(c) Reflected and (d)–(f) transmitted field distributions of the LVF calculated using the (a), (d) local uniform approximation,
(b), (e) RCWA, and (c), (f) the developed CMT. The plots calculated at different wavelengths are vertically shifted by two units each for visual
clarity.

constant values of vg and γ were considered in the CMT. The
second one is that in the RCWA, the reflected and transmitted
field distributions were calculated not on the PSBG interfaces
but along the dashed lines [see Fig. 1(c)], therefore, the shapes
of the reflected and transmitted beams were slightly changed
due to propagation. Note that the developed CMT well de-
scribes the reflected and transmitted fields in a relatively
narrow x range, in which only one eigenmode is excited. For
example, if we would consider greater values of x in Fig. 4, the
peaks and dips corresponding to the excitation of higher-order
Fabry-Pérot modes would appear in the plots obtained using
the local uniform approximation and the RCWA. Each of
these peaks can also be described using the CMT by taking
different k values in Eq. (39).

To demonstrate that the considered structure indeed
works as an LVF, we repeated the simulations for several
wavelengths ranging from 750 nm to 850 nm. The results are
presented in Fig. 5, which shows that the CMT predictions are
in good agreement with the RCWA results. In particular, the
CMT accurately reproduces the spatial shift in the resonant
peak position appearing with the change in the wavelength.
Note that the CMT parameters, which were used to calculate
the plots in Figs. 5(c) and 5(f), were the same as presented
above since the angular frequency ω is explicitly present in the
derived CMT equation (40). Therefore, we demonstrate that

the developed CMT can be used to describe compact linear
variable filters with the wedge angle being not negligibly
small. The CMT not only reproduces the secondary peaks
appearing near the main one, but also enables obtaining
accurate estimates for the amplitudes of the electromagnetic
field above and below the structure.

VI. CONCLUSION

In the present work, we developed and numerically verified
two formulations of the coupled-mode theory for a Fabry-
Pérot resonator in a symmetric environment. In the frequency
domain, the CMT allows one to obtain simple rational ap-
proximations for the transmission and reflection coefficients
as functions of angular frequency ω and in-plane wave number
kx. In the “spatiotemporal” domain, the CMT is written as a
partial differential equation. Making the coefficients of this
equation not constant, but spatially dependent allowed us to
apply the developed theory to a linear variable filter compris-
ing two Bragg mirrors separated by a wedged defect layer. We
demonstrated that the CMT accurately describes the optical
properties of the LVF and is significantly less demanding in
terms of the computation resources as compared to rigorous
electromagnetic simulations. This makes the developed CMT
an efficient tool for the design and analysis of linear variable
filters.
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The developed theory can be applied to a wider range of
structures having different claddings instead of the multilayer
ones, e.g., subwavelength high-contrast gratings. Even more
importantly, one can define an arbitrary thickness variation
law h(x) in the CMT instead of a linear one. This will, in
particular, enable describing variable filters with nonlinear
λ(x) dependence and compact resonators with finite trans-
verse dimensions. Finally, it is worth noting that while the
developed CMT is valid in the vicinity of kx = 0 (at near-
normal incidence), even a simpler theory can be constructed
in the case of oblique incidence, in which not a hyperbolic, but
a linear dispersion law of the eigenmodes should be assumed,
resulting in a first-order PDE.
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APPENDIX A: HERMITIAN UNITARY
APPROXIMATION FOR ξ

Here, we derive a rational approximation for the func-
tion ξ (ω, kx ) [Eq. (4)] in the vicinity of the point kx = 0,
ω = ω0, where ω0 is given by Eq. (34). The sought-for ap-
proximation has to be unitary [|ξ (ω, kx )|2 = 1] and Hermitian
[ξ (−ω, kx ) = ξ (ω, kx )∗].

Let us first consider the case when k − m in Eq. (34) is an
odd number. To obtain an approximation in this case, we note
that |ξ |2 = 1 implies ξ = (ξ + 1)/(ξ ∗ + 1). Then, we express
ξ in terms of its real and imaginary parts and, after simple
transformations, we obtain

ξ (ω, kx ) = κ (q, kx ) + iω

κ (q, kx ) − iω
, (A1)

where q = ω2 and κ (q, kx ) = √
q(Re ξ + 1)/ Im ξ =√

q cot{ h
2

√
qn2c−2 − k2

x }. Then, we replace κ (q, kx ) with
its Taylor approximation at (q, kx ) = (ω2

0, 0) containing only
the constant term, which is zero, the q term, and the k2

x term:

κ (q, kx ) ≈ nh

4c

[
c2

n2
k2

x − (
q − ω2

0

)]
.

Substituting this expression into Eq. (A1) gives the following
approximation for ξ :

ξ (ω, kx ) ≈ v2
gk2

x − (
ω2 − ω2

0

) + 4ic
nh ω

v2
gk2

x − (
ω2 − ω2

0

) − 4ic
nh ω

, (A2)

which is valid for odd values of k − m.
To obtain the approximation for even values of k − m, we

note that ξ = −(ξ − 1)/(ξ ∗ − 1) and after similar steps, we

arrive at the same Eq. (A2) with the only difference being the
minus sign before the fraction.

Bringing these two approximations together, we obtain
the sought-for unitary Hermitian approximation presented in
Eq. (35). To conclude this Appendix, let us note that the ob-
tained approximation is similar to the Chisholm approximant,
which provides a rational approximation for two-variable
functions [38].

APPENDIX B: CMT COEFFICIENTS
FOR DISPERSIVE INTERFACES

Here, we show how the CMT can be reformulated to take
into account the fact that the elements of the scattering matrix
S of the interfaces depend on ω and kx. We will take into ac-
count linear dependence on ω and, due to symmetry, quadratic
dependence on kx. In this case, as we will demonstrate, the
form of the CMT will remain the same and only the values
of the coefficients will change. We note that such an approach
(redefining the CMT parameters to take into account various
additional effects) is widely used in CMT-like theories [1].

In the main part of the article, we obtained the CMT by
replacing ξ with its approximation. Here, we use a different
approach for finding the CMT parameters. For the symmetric
excitation case, we use Eq. (2) to rewrite Eq. (11) in the
following form:

Rs = −eiφ [(r2ξ − 1)/
√

r2ξ ]∗

(r2ξ − 1)/
√

r2ξ
, (B1)

where the numerator is the complex conjugate of the denom-
inator. We note that r2 and ξ depend on ω and kx. Now, we
consider the denominator as a function of q = ω2 and kx and
replace it with Taylor series containing only the constant term,
the q term and the k2

x term. Comparing the obtained result with
Eq. (24) allows one to find the following updated values of the
CMT parameters:

γ = 4c

nh − cirω

× 1 − |r0|
1 + |r0| , (B2)

v2
g = c

n
× ch + nω0irk2

nh − cirω

, (B3)

where r0 = r2(ω0, 0), rω = r (1,0)
2 (ω0, 0)/r0, and rk2 =

r (0,2)
2 (ω0, 0)/r0.

The obtained expressions for γ and vg take into account
the ω and kx dependence of the interface reflection and trans-
mission coefficients. Importantly, for the considered dielectric
PSBGs, the logarithmic derivatives rω and rk2 can be assumed
imaginary numbers, therefore, the quantities γ and vg are
real numbers. One can similarly show that for the case of an
antisymmetric excitation, Eqs. (B2) and (B3) also hold true.
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