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Dependence of the number-weighted angular distribution
of Compton-scattered photon beams on the laser intensity
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Inverse Compton scattering of ultra-relativistic electron beams in the field of a high-intensity laser produces
photon beams with angular and spectral distributions that are strongly dependent on the laser intensity. Here
we show that the laser intensity at the interaction point can be accurately inferred from the measurement of the
angular number-density distribution of Compton-scattered photon beams. The theoretical expressions, supported
by numerical simulations, are accurate to within 10%–15% in a wide range of laser intensities (dimensionless
intensity 5 � a0 � 50) and electron energies (250 MeV � E � 15 GeV), and accounts for experimental features
such as the finite transverse size of the electron beam, low-energy cutoffs in the photon detector, and the
possibility of a transverse misalignment between the electron beam and the laser focus.
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I. INTRODUCTION

At the frontier of ultra-high electromagnetic intensities,
it is now possible to access peak laser intensities of up to
∼1023 W/cm2 [1], with even higher intensities envisaged at
upcoming multi-petawatt class facilities [2]. The interaction
of an ultra-relativistic electron beam with electromagnetic
fields of this magnitude represents an ideal experimental
configuration [3–11] to access unexplored regimes of strong-
field quantum electrodynamics (SFQED), where the transition
from perturbative to nonperturbative processes, as well as
the transition from classical to quantum dynamics, occurs
[12–15].

The nonlinear nature of this regime is parameterized by
the peak normalized field amplitude a0, which is related
to the electron quiver momentum, |p⊥|, in the laser field
as a0 = |p⊥|/m. The relative importance of quantum con-
tributions to the electron dynamics is determined by the
quantum parameter, χ = e|Fμν pν |/m3. Here Fμν = ∂μAν −
∂νAμ is the electromagnetic field tensor with potential Aμ,
pν is the electron momentum, and we assume natural units
whereby h̄ = c = 1. Generally speaking, the SFQED regime
is reached whenever a0 � 1 and χ � 1. In the case of
a head-on collision of an electron with energy E with a
plane wave of peak intensity I0 and wavelength λ, the
parameters a0 and χ can be expressed, in the laboratory
frame, as a0 = 6λ [µm]

√
I0 [1020 W/cm2] and χ = (5.9 ×

10−2) E [GeV]
√

I0 [1020 W/cm2].
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Remarkably, formulation and calculation of a first-
principle and accurate theory for the dynamics of an electron
in an external electromagnetic field of arbitrary intensity
is still one of the most fundamental outstanding problems
in electrodynamics, with only sparse experimental studies
reported to date at ultra-high intensities [6–8]. SFQED phe-
nomena (including nonlinear inverse Compton scattering
(ICS) [3,5,8,16], quantum radiation reaction [6,7], and Breit-
Wheeler pair production [4]) are strongly dependent on laser
intensity, which thus must be reliably determined to allow for
a meaningful comparison between experimental results and
different, sometimes competing, theoretical models.

The intensity of a focused high-power laser can be in-
directly inferred from separate measurements of its energy,
pulse duration, and focal spot size [17], with the last often
measured only at a reduced power. This procedure is prone
to significant uncertainties and neglects some potentially im-
portant factors such as the presence of longitudinal fields
in the tight focus of the laser [18] and possible electron-
laser spatio-temporal misalignment. Alternative approaches
involving photo-ionization of low-density gases [19,20] or
measurement of the spatial profile of Thomson-scattered elec-
trons [21,22] have also been proposed to determine the peak
laser intensity, but are of limited applicability for the on-shot
measurement of laser intensity in a SFQED experiment.

Recently, it has been proposed that the characterization of
the transverse angular profile of Compton-scattered photons
could provide an estimation of the laser intensity at the in-
teraction point [8,23,24]. The disadvantage of approaches of
this kind is that they depend on a specific SFQED model
of the radiation reaction experienced by the electrons. As
the appropriateness of the model is in turn determined by
a0, these approaches are of limited applicability when the
underlying physics itself is under investigation, for instance,
when probing the transition regimes. A model-independent
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technique, where the laser intensity could be inferred from the
energy-weighted angular profile of the photons, was proposed
in [25], and it was shown to be able to retrieve a value for
a0 at the interaction point with an uncertainty of the order
of a few percent. However, measuring the spatial distribution
of the photon beam energy is experimentally challenging:
detection of high-energy (i.e., MeV-GeV) photon beams is
typically done at either high flux and low energy (up to
∼1 MeV) [26,27] or at high energies on a single-photon basis
[28,29]. This is mainly due to the typically weak dependence
of detector response on photon energy in the multi-MeV
range. Techniques to determine the energy spectrum of a high-
energy, high-flux gamma-ray beam have also been proposed
[30–33]; however, spatial information cannot be recovered.
This experimental limitation constrains the applicability of the
method proposed in [25], which relies on the energy density
profile. We thus propose here an inference method which
relies instead on a precise knowledge of the transverse dis-
tribution of the photon number density, which can be readily
obtained using existing technology.

By first considering the laser as a plane wave with a
Gaussian temporal envelope, analytical expressions for the
number-weighted angular distribution of Compton photons
are derived, including corrections due to radiation reaction,
resulting in a theoretical description which is model indepen-
dent over a large parameter space. Realistic effects such as
the finite electron beam size, laser focusing, and transverse
offsets are then included using geometric considerations of
the interaction. For well-characterized electron beams, this
inference method is shown to provide an accurate single-shot
estimate of the interaction a0 for each collision. We show that
the derived expressions closely match the results of numerical
simulations, in the case of both the plane wave and focused
fields. An uncertainty in retrieving a0 of less than 15% across
the investigated range is demonstrated for the model, even
with the inclusion of pair production, providing an ideal tool
to infer the laser intensity at the interaction point on a shot-to-
shot basis.

II. ANALYTICAL RESULTS

We consider here the case of an electron (of charge
−e, mass m, and energy γ m) colliding head on with a
monochromatic, linearly polarized electromagnetic wave of
peak normalized amplitude a0 and frequency ω0, where γ �
a0 > 1. Defining the laser phase as ϕ, the normalized poten-
tial of such a plane wave is given by aμ = a0g(ϕ)εμ sin(ϕ),
where g(ϕ) is the pulse envelope and εμ is the polarization
vector. The angle between the electron’s momentum and the
laser propagation axis is then given over a single cycle of
the wave as θ (ϕ) = a0 sin(ϕ)/γ , lying in the plane containing
the laser polarization (electric field) vector. Additionally, the
electron quantum parameter for a counterpropagating plane
wave can be expressed as χ (ϕ) = 2γ a0ω0| cos(ϕ)|/m. The
photon emission rate, derived under the locally constant field
approximation (LCFA), is proportional to the instantaneous
electric-field strength, Ṅγ ∝ a0|cos ϕ|, with the dot repre-
senting differentiation with respect to laboratory time. As
emission occurs primarily along the direction of the electron’s
momentum, the mean-square emission angle over a single

cycle can be defined as

σ 2
‖ ≡

∫
θ2(ϕ)dṄγ∫

dṄγ

= a2
0

3γ 2
+ σ 2

⊥. (1)

The subscripts ‖ and ⊥ refer to the directions parallel and per-
pendicular to the laser polarization, respectively (see Fig. 1).
The additional σ 2

⊥ term in Eq. (1) is thus the mean square
emission angle perpendicular to the polarization plane as
shown in Fig. 1. This accounts for the angular broadening
induced by the electron beam divergence and for the fact
that photons are not emitted exactly parallel to the electron’s
instantaneous velocity [34].

It should be noted that the reported expression for the
photon emission rate (Ṅγ ∝ a0| cos ϕ|), is strictly valid only
for χ � 1; for χ � 1, the photon emission rate scales as
Ṅγ ∝ αχ2/3. However, due to the normalizing factor in the
denominator of Eq. (1), this change of scaling does not affect
the resulting form of the inference equation, σ 2

‖ ∼ a2
0/γ

2.
To include the effects of a temporal pulse envelope g(ϕ)

and of radiation reaction, the linearity of variances under
addition can be used to sum the contribution to emission
from each wave cycle. The contribution to the variance of the
angular profile (in the plane containing the laser electric field)
at a given phase is thus σ 2

‖ (ϕ) = a2
0g2(ϕ)/[3γ 2(ϕ)] + σ 2

⊥(ϕ).
Hence, by averaging this over the pulse profile and weighing
by the photon emission rate, the total difference in the trans-
verse variances is

σ 2
‖ − σ 2

⊥ =
∫ ∞

−∞

a2
0g2(ϕ)

3γ 2(ϕ)

dNγ

dϕ
dϕ

/∫ ∞

−∞

dNγ

dϕ
dϕ . (2)

To evaluate γ (ϕ), we will first assume a classical ra-
diation reaction model described by the Landau-Lifshitz
equation [35]. In this case, the electron Lorentz factor evolves
as [36]

γ (ϕ) = γi

1 + RcI (ϕ)/3
, Rc = 2αa2

0γiω0

m
,

I (ϕ) =
∫ ϕ

−∞
g2(φ) dφ, (3)

where γi is the initial Lorentz factor of the electron, and α is
the fine-structure constant. Thus

σ 2
‖ − σ 2

⊥ = a2
0

3γ 2
i

(∫ ∞

−∞
g(ϕ) dϕ

)−1 ∫ ∞

−∞
g3(ϕ)

×
[

1 + Rc

3
I (ϕ)

]2

dϕ. (4)

In general, the second integral cannot be solved analytically,
but for flat-top and Gaussian pulses, the following closed-
form solution is found:

σ 2
‖ − σ 2

⊥ = a2
0

3κ1

[
1

γiγ f
+ κ2

(
1

γ f
− 1

γi

)2
]
, (5)

with κ1 = 1 (
√

3) and κ2 = 1/3 (0.315) for flat-top (Gaussian)
pulses, respectively, and γ f is the final Lorentz factor of the
electron after passing through the field.

Quantum effects affect radiation reaction mainly in two
ways [37,38]: first, the average energy loss by radiation is
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FIG. 1. (a) A visualization of an electron bunch interacting with a linearly polarized laser as described in the text. Here the laser is
vertically polarized, with the electron bunch propagating in the horizontal plane. The resultant radiation cone and its transverse profile on a
detector are shown, with the parallel and perpendicular emission angles, θ‖ and θ⊥, marked. Examples of the simulated angular distributions
of the Compton-scattered photons for an electron energy of 1 GeV and a laser intensity of (b) a0 = 5, and (c) a0 = 20 are shown, with the
direction of σ‖ and σ⊥ highlighted.

reduced by the Gaunt correction factor [39], and second,
the stochastic nature of emission means that γ f is no longer
a single-valued function of γi. For electrons with an initial
energy spectrum dNe/dγi, weighting Eq. (5) by (γi − γ f ) dNe

dγi

and integrating over all γi accounts for the increased emission
power by electrons with higher instantaneous γ . Then, under
the same assumptions as [25], we arrive at an equivalent of
Eq. (5) that takes into account quantum radiation reaction and
a finite initial energy spread:

σ 2
‖ − σ 2

⊥

= a2
0

3κ1

[〈
1

γi

〉〈
1

γ f

〉
+ κ2

{〈
1

γ 2
f

〉
+

〈
1

γ 2
i

〉
− 2

〈
1

γi

〉〈
1

γ f

〉}]

≡ a2
0

3κ1
F (γi, γ f ; κ2). (6)

The moments over the final Lorentz factor γ f distribution
appearing in this expression account for the stochastic broad-
ening of the energy spectrum and are combined into a
single function that depends only on the electron dynamics,
F (γi, γ f ; κ2). We also neglect the formation of electron-
positron pairs via the nonlinear Breit-Wheeler process by the

scattered photons. The consequences of this, particularly in
the χ � 1 regime, are discussed in Sec. IV.

In order to assess the accuracy of these analytical re-
sults, we compare the angular variances predicted by Eq. (6)
with the results of numerical simulations in Fig. 2. Using
the Monte Carlo code PTARMIGAN [40,41], we simulated the
head-on interaction of an electron beam with a plane-wave
laser pulse with a Gaussian temporal envelope of full-width at
half maximum (FWHM) duration τ = 40 fs and wavelength
λ = 0.8 µm. A cylindrically symmetric electron beam with
a radius of rb = 0.5 µm, an RMS divergence of 1 mrad, a
1% RMS energy spread, and different mean energies (250
MeV, 1 GeV and 15 GeV in green, yellow, and blue, respec-
tively) was considered. Additional simulations with an initial
energy spread up to ∼10% showed no appreciable effect on
the results. Three models of radiation reaction were used in
the simulations: no radiation reaction, so that the particle
trajectory is governed by the Lorentz force; classical radia-
tion reaction using the Landau-Lifshitz equation; and a fully
stochastic, quantum model using emission rates calculated in
the LCFA [42].

As low-energy photons can be emitted at large angles, an
energy cut is introduced when extracting σ 2

‖ − σ 2
⊥ from the
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FIG. 2. Difference in the variance parallel and perpendicular to
the laser polarization axis of the emitted radiation profile by an
electron beam with central energy, γim, 1% RMS energy spread and
divergence δ = 1 mrad for γim = 250 MeV (green), γim = 1 GeV
(orange), and γim = 15 GeV (blue) as predicted by Eq. (6) (lines)
and calculated from LCFA simulations (points). Different radiation
reaction models are considered: no (dots), classical (crosses), and
quantum (squares) radiation reaction. The laser is modeled as a plane
wave with a Gaussian envelope with FWHM duration, τ = 40 fs, and
the threshold in emitted photon energy was ω′

min = 1 MeV. The inset
shows the relative difference between the numerical and analytical
results.

simulations, in order to remove the divergent behavior of the
distribution variance, particularly for a0 ∼ O(1). This thresh-
old energy can be expressed as ω′

min = fminγ (ϕ)m, where
0 < fmin < 1. For this work, we used a nominal value of
ω′

min = 1 MeV. However, the results reported here are robust
over a wide range of low-energy cutoffs with higher order
corrections in fmin showing to have a negligible effect (see
Sec. A). The precise implementation of such an energy cut in
practice is experiment specific. As an example, [43] describes
a setup with a thin (500 µm) aluminium window and reports
that photons with an energy less than ∼1 MeV are sufficiently
absorbed or scattered out of the photon cone to be profiled.
The window has a negligible scattering effect on the high-
energy (�100 MeV) photons.

Good agreement between the analytical prediction of
Eq. (6) and the simulation results can be seen across a range of
six orders of magnitude for each radiation reaction model and
initial electron energy with a relative error between Eq. (6)
and the numerical results of less than ∼25%. The simulated
results include a lower energy threshold at 1 MeV, indicat-
ing that applying an energy cut much less than the electron
energy has a negligible effect on the calculation of σ 2

‖ − σ 2
⊥.

For electron energies � 1 GeV, the classical and quantum
models give similar results, but for larger electron energies
(and hence larger χ ), the classical model overpredicts the
broadening compared to the quantum model. This is due to the
“Gaunt-modified” emission spectrum of the quantum model
compared to the classical model. Additionally, for χ � 0.1,
stochastic effects become non-negligible, and radiation is no
longer continuous as in the classical model [37,38,44].

Calculation of σ 2
‖ − σ 2

⊥ requires knowledge of the initial
and final distributions of the electron energy to be able to
determine the appropriate moments, which is straightforward
for simulation data. Experimental measurement of the final
energy spectrum is also uncomplicated, even on a shot-to-
shot basis; however, noninvasive measurement of the initial
electron spectrum is a nontrivial task. Techniques such as
those outlined in [45–47] may be used in cases where the
beam properties are expected to significantly vary shot to shot,
such as in laser-wakefield acceleration (LWFA) experiments.
Alternatively, the distribution can be measured in the absence
of the laser pulse, for sufficiently stable electron beams.

III. INTENSITY INFERENCE

A. Plane waves

By measuring the angular size of the radiation profile, it
is thus possible to infer the laser intensity, i.e., the interaction
a0, using Eq. (6). This inference depends on the mean initial
and final electron energies, with any explicit radiation reaction
dependence being absorbed into the latter. Rearrangement of
Eq. (6) gives

a2
0 = 3κ1

F (γi, γ f ; κ2)
(σ 2

‖ − σ 2
⊥). (7)

Since the intensity inference depends on the difference in the
parallel and perpendicular variances, the effect of electron
divergence δ is removed as this is contained in both σ 2

‖ and σ 2
⊥,

under the assumption of a cylindrically symmetric electron
beam. The divergence of the electron beam will also have an
indirect effect on the overlap of the electron beam and laser
focal spot, which is discussed in more detail in Sec. III B.

Figure 3 shows the result of applying Eq. (7) to the same
simulated electron-laser configuration as in the previous sec-
tion for the different electron energies and radiation reaction
models. Across the range under investigation, the inference
works remarkably well, within 10% across the entire range of
intensities and each radiation reaction model, with the only
exception of a0 < 5 and high electron energy. As expected,
the no radiation reaction model is the most precise in this
case, estimating the peak intensity to ∼1% accuracy. For the
classical and quantum models, Eq. (7) begins to underestimate
the correct value as a0 increases. Moreover, for large a0, the
radiative cooling of the electrons may result in the assumption
of γ � a0 no longer holding. At this point, the inference
becomes less accurate as the typical emission energy is of
similar magnitude to the employed energy cut. This is dis-
cussed further in Sec. IV. Simulations also show that detecting
photons within the angular range |θ | � 2a0/γ f is necessary
for accurate inference.

The uncertainty in inferring the intensity using Eq. (7) due
to measurement of the electron energies and of the profile
variances can be expressed as

(
δa0

a0

)2

= (σ 2
‖ + σ 2

⊥)δσ 2

(σ 2
‖ − σ 2

⊥)2
+ 1

4

(
δF
F

)2

,

δF
F = (1 − 2κ2)2A + κ2

2 B

C
,
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FIG. 3. Inferred a0, calculated from the simulation results using
Eq. (7), vs nominal a0 (and percentage error, inset) for different
radiation reaction models. The simulations assume an electron beam
with a δ = 1 mrad divergence, a 1% energy spread, and different
mean energies: γim = 250 MeV (green), γim = 1 GeV (orange), and
γim = 15 GeV (blue). Laser pulse was modeled as a plane wave with
a Gaussian envelope of FWHM duration, τ = 40 fs. The black solid
line is plotted as a guide for the eye. The inset shows the relative
difference between the numerical and analytical results.

A = �2
i,1δ�

2
i,1 + �2

f ,1δ�
2
f ,1,

B = δ�2
i,2 + δ�2

f ,2,

C = [�i,1� f ,1 + 3κ2(�i,2 + � f ,2 − 2�i,1� f ,1)]2, (8)

where ��,n = 〈γ −n
� 〉 are the negative moments of the initial

and final electron gamma factors. For a0 ∼ O(1), the domi-
nant source of uncertainty comes from the measurement of
the transverse variances. In particular for this intensity range,
(σ 2

‖ − σ 2
⊥)2 can become very small, resulting in a large un-

certainty on the inferred a0 due to the negligible ellipticity
of the gamma-ray beam. For a0 � 10, the ellipticity of the
radiation profile increases with a0, and so the uncertainty in
inferring a0 due to the measurement of σ‖ and σ⊥ decreases
approximately quadratically.

B. Focused fields

Intensity measurements in a more realistic scenario require
consideration of the spatial and temporal structure of a fo-
cused laser, as well as the finite size of the electron beam.
For instance, if the laser is focused to a spot of 1/e2 radius
w0 comparable to or smaller than the transverse RMS radius
rb of the electron beam, the electrons will experience a dis-
tribution of intensities. In this case, the inferred a0 will be
reduced compared to the true peak a0 as the laser intensity
distribution will be effectively averaged over the spatial profile
of the electron beam. To account for this geometrical effect,
we consider a cylindrically symmetric electron beam with a
Gaussian transverse profile of radius rb and transverse off-
set xb compared to the centroid of the laser focal spot. The
field intensity experienced by a single electron at a transverse
position (x, y) compared to the laser peak intensity will be

a(x, y) = a0 exp[−(x2 + y2)/w2
0 )]. Averaging over the profile

of the electron beam, the inferred intensity will be given by the
average, to lowest order in α, ainf

0 =
√

〈a3〉/〈a〉. This inferred
a0 is then

ainf
0 = a0

√
P

Q
exp

(
− ζ 2

PQ

)
, (9)

where P = 1 + 3ρ2, Q = 1 + 6ρ2 and ρ = rb/w0,
ζ = xb/w0. This geometrical correction [Eq. (9)] is similar
to that found in [25], with differences only in the numerical
factors due to the different scalings in photon number and
power emission rates (proportional to a0 and a2

0, respectively).
To determine if this reduction in the inferred intensity is

well accounted by Eq. (9), we performed a series of simu-
lations of a 250 MeV and a 1 GeV electron beam with a
transverse Gaussian profile of radius, rb, colliding head-on
with a laser pulse having a Gaussian intensity profile focused
to a spot size w0. As examples, we show simulation results in
Fig. 4 as a function of the electron beam radius, assuming two
laser intensities (a0 = 10 and a0 = 20), two transverse offsets
(xb = 0 and xb = w0), and different radiation reaction models.
Increasing the electron beam size has an observable effect on
the inference, resulting in a reduction by ∼30% for ρ � 1.
This is consistent with the limit of Eq. (9) to be 1/

√
2 for

ρ → ∞. Conversely, for misaligned beams, increasing rb im-
proves the inferred a0 value, as progressively higher intensity
regions in the laser field distribution will be experienced by
the electrons. For large ρ, more of the electron beam interacts
with the low-intensity fringes of the laser pulse, where the lo-
cal χ will be low, resulting in low-energy, high-angle photons.
These low-energy photons are then removed by the energy
threshold, resulting in a smaller angular profile and hence an
underestimate in the inference of a0. The increased pondero-
motive scattering due to radiation reaction acts to compensate
with this underestimation in both the classical and quantum
models. Similar simulations for different electron energies and
peak a0 (not shown) yield similar conclusions.

If the peak laser intensity is measured by an alternative
means, such as those mentioned in Sec. I, any misalignment in
the form of a transverse spatial offset could be estimated from
the reduction in the inferred intensity ainf

0 with respect to the
nominal a0. Similarly to [25], producing a distribution of ainf

0
on different shots is sufficient to monitor imperfect pointing
stability, and any systematic effects such as finite electron
beam size can be deduced.

IV. DISCUSSION

While the nominal a0 can be inferred to within 10% for
most of the parameter space explored here, there are a few
caveats to the proposed approach. As Eq. (5) was derived
under the assumption of LCFA rates, the use of Eq. (7)
in the regime a0 ∼ O(1) is anticipated to give less accu-
rate results [15,48]; the LCFA overpredicts the emission of
low energy—and, hence, higher divergence—photons in this
range resulting in an overestimation in the inferred a0. A
correction for a0 ∼ O(1) using the more accurate locally
monochromatic approximation (LMA) [49–53] is the subject
of current work.
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(a) (b)

(c) (d)

FIG. 4. Fraction of inferred a0 to true value as a function of increasing electron beam size for xb = 0 (blue) and xb = w0 (yellow). Electron
beam had a mean energy of 250 MeV (a, b) and 1 GeV (c, d) with 1% RMS spread. The laser pulse was modeled with a Gaussian spatiotemporal
profile with waist w0 = 2.04 µm (a, c) and 1.02 µm (b, d) and FWHM duration τ = 40 fs, corresponding to a peak intensity of a0 = 10 and
20, respectively. Different radiation reaction models were also considered. The dashed red line is plotted as a guide for the eye.

As a0 increases, the electrons lose more energy via ra-
diation, which reduces the typical photon emission energy
over the interaction. If the selected energy cut ω′

min be-
comes comparable to the mean peak synchrotron energy [54],
the accuracy of the inference method is reduced since a
non-negligible fraction of the photon distribution would be
removed. The range of a0 which can be accurately inferred
for a given energy cut can thus be estimated in the following
way. We can impose the (mean) peak synchrotron energy
ωpeak = 0.44γ mχ to be at least twice the energy cut. Using the
definition of the electron quantum parameter, this requirement
becomes γ 2a0 � 2.27ω′

min/ω0. For a Gaussian envelope of
FWHM duration τ , radiation reaction can be accounted for
by Eq. (3) with I (∞) = ω0τ

√
π/4 ln 2, resulting in the valid

intensity range

a0 � 860
λ [µm]

τ 2/3 [fs] ω
′2/3
min [MeV]

. (10)

For a laser of wavelength λ = 0.8 µm and FWHM duration
τ = 40 fs, a 1 MeV energy cut will provide accurate inference
of the intensity for a0 � 70, as depicted in Fig. 5. Decreasing

the energy threshold to 0.01 MeV increases the range to
a0 � 350. It should be noted that reducing the energy cut at
low a0 will tend to decrease the inference accuracy here. It is
thus important to select an energy threshold appropriate for
the intensity range under investigation and suitable for the
specific experimental configuration.

In the derivation of Eq. (6), we neglected the effect of
pair production on the profile of the photon beam. This is
valid for χ � 1 as production is exponentially suppressed
in this regime. However, for χ � 1, electron-positron gener-
ation can become significant. Fig. 6 shows how the relative
error in inferring a0 from the photon beam profile is af-
fected by enabling pair production in PTARMIGAN. For χ < 1,
the effect of pair production is negligible as expected. As
χ increases above O(1), the inference becomes less accu-
rate, both without and with pair production enabled. Overall,
in this regime, using Eq. (7) results in a maximum rela-
tive error ∼15%–20%. This indicates that, in this regime,
it is difficult to distinguish the effects due to stochastic en-
ergy loss of the electron beam even without the presence
of addition electron-positron pairs. This is also true on an
analytical level as it has not yet been shown how to include the
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FIG. 5. Plot showing the regions of a0 − χ parameter space
where the assumptions used to derive Eq. (7) are less accurate due to
the use of LCFA (purple shaded region), neglecting pair production
(blue shaded region), and introducing an energy cutoff in the photon
detection (shaded red region). Simulated parameters are marked as
points for mean electron energy 250 MeV (green), 1 GeV (orange),
and 15 GeV (blue).

kinematic effect of pair generation on the transverse photon
profile.

V. CONCLUSIONS

In summary, we have shown that the number-weighted
radiation profile produced by an ultrarelativistic electron beam
traversing an intense counterpropagating laser pulse can be
used to determine the peak laser intensity at interaction. Ad-
ditionally, we have shown that the inference can be applied
with consistent results for different radiation reaction models;

FIG. 6. Relative error in the value of inferred a0 for the same
parameters as Fig. 3 with a quantum radiation reaction model. Simu-
lations were performed for γim = 250 MeV (green), 1 GeV (orange),
and 15 GeV (blue), both with and without nonlinear Breit-Wheeler
(NBW) pair production enabled.

this is particularly advantageous for experiments which aim to
test different dynamic models. This inference technique has
been analyzed over a large range of intensities and electron
energies, resulting in a tested range of the quantum parameter
over three orders of magnitude (∼10−2–10).

Recently, advancements have made Bayesian methods
popular for handling measurements of extensive parameter
spaces. However, definitive observation of strong-field QED
effects or radiation reaction at a high confidence level will
rely on combining different measurements of the collision
parameters as cross-signal consistency enhances the signif-
icance of the results. Extraction of the collision a0 via the
method presented here is therefore a crucial component of
this analysis. Moreover, [55] present a novel approach which
could be applied in upcoming experiments although there is
a large computational cost with this framework, excluding
the possibility of an on-shot implementation. In particular, as
the quantities in Eq. (7) can be measured independently, and
on a single-shot basis, this approach is ideal for diagnosing
variations in a0 in a shot-to-shot manner.

Furthermore, the model can be used to monitor, on a shot-
to-shot basis, potential beam misalignment at the interaction
point. We therefore present this inference method as a com-
plementary tool to Bayesian approaches.

Additionally, radiation reaction is, as yet, still not well
understood experimentally. Given an alternative measurement
of a0, Eq. (6) could be used to provide insight on the effect of
radiation reaction on the electron motion by considering the
photon profile.

The data sets required to reproduce the analysis and fig-
ures are available at [56].
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APPENDIX: SPECTRAL CUTOFF

Equation 5 is derived under the assumption that a nonzero
fmin has a negligible effect on the difference in the variances.
The effect of fmin can be estimated by considering the emis-
sion rate as a function of χ and fmin. Assuming that fmin � χ ,

dNγ

dt
= 5αmχ

2
√

3γ

[
1 − 1.076

(
fmin

χ

)1/3

+ 0.2309
fmin

χ
+ · · ·

]
.

(A1)

The emission rate falls to 50% and then 10% of its uncorrected
value when fmin/χ = 0.118 and 1.35, respectively. Note that
for a pulse with a nontrivial envelope, χ → 0 as ϕ → ±∞,
whereas fmin is always finite. Thus in the fringes of the pulse,
fmin �� χ and the perturbative expansion is not accurate. Then
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(a) (b)

(c)

FIG. 7. Results from theory (lines) and LCFA-based simulations (points) for 1 GeV electron beams colliding with 30 fs Gaussian pulses
where (a) a0 = 10, (b) a0 = 20, and (c) a0 = 40. Blue, green, and orange indicate no radiation reaction, classical radiation reaction and
quantum radiation reaction, respectively. The solid lines give the predictions of Eq. (5) and Eq. (6), as appropriate. The dashed lines include
the correction from the low-energy cutoff, Eq. (A7), for the no-radiation reaction and classical radiation reaction cases.

the parallel variance at a given phase becomes

σ 2
‖ (ϕ) = a2

0g2(ϕ)

3γ 2(ϕ)

{
1 − 0.140

[
fmin(ϕ)

χ (ϕ)

]1/3
}

+ σ 2
⊥, (A2)

where fmin(ϕ) = ω′
min/[γ (ϕ)m] and χ (ϕ) =

2a0γ (ϕ)g(ϕ)ω0/m. Adding a low-energy cutoff reduces
the expected variance, because low-energy photons are
generally emitted at larger angles. Averaging this over the
pulse envelope, the following correction to Eq. (5), at lowest
order in fmin/χ , is obtained:

�(σ 2
‖ − σ 2

⊥) � a2
0

3γ 2
i

(
fmin

χ

)1/3 1.076 AB − 1.216CD

D2
, (A3)

A =
∫ ∞

−∞
g3(ϕ)

[
1 + Rc

3
I (ϕ)

]2

dϕ, (A4)

B =
∫ ∞

−∞
g2/3(ϕ)

[
1 + Rc

3
I (ϕ)

]2/3

dϕ, (A5)

C =
∫ ∞

−∞
g8/3(ϕ)

[
1 + Rc

3
I (ϕ)

]8/3

dϕ, (A6)

D =
∫ ∞

−∞
g(ϕ) dϕ, (A7)

where fmin and χ are now defined in terms of the initial elec-
tron energy and peak laser amplitude, i.e., fmin = ω′

min/(γim)
and χ = 2a0γiω0/m. In the absence of radiation reaction, for
a flat-top pulse:

lim
Rc→0

�(σ 2
‖ − σ 2

⊥) � −0.151
a2

0

3γ 2
i

(
fmin

χ

)1/3

, (A8)

and for a Gaussian pulse:

lim
Rc→0

�(σ 2
‖ − σ 2

⊥) � 0.0162
a2

0

3γ 2
i

(
fmin

χ

)1/3

. (A9)

The correction is particularly small for the Gaussian pulse. If
radiation reaction is included, this correction must be evalu-
ated numerically from the expressions above.

In fact, Fig. 7 shows that, for a0 � 10, corrections to the
emission rate do not need to be considered for energy cuts
less than the synchrotron peak energy, Eq. (A1), as mentioned
in Sec. II. For our choice of ω′

min = 1 MeV, the correction is
of the order of a few percent and so has a negligible effect on
the results presented here.
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