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Vortex light bullets in Rydberg atoms trapped in twisted PT -symmetric waveguide arrays
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We present a theoretical scheme for generating vortex light bullets (LBs) in a Rydberg atomic system. The
stability property and propagation dynamics of vortex LBs with different topological charges are investigated
in twisted circular waveguide arrays with a parity-time (PT ) symmetry. The numerical solutions of the cor-
responding nonlinear Schrödinger equation are obtained by the modified square operator method and split-step
Fourier method. The longitudinal twist changes the stabilities of six-core vortex LBs and enriches the modulation
diversity as the states with the opposite charges degenerate by the introducing of rotation frequency. Specifically,
we reveal that the energy exchange between waveguides and media gives rise to the formation of necklace
breathers, which is crucial for implementing light storage. These unique characteristics arise from the balance or
quasibalance among the rotation frequency, the Rydberg-Rydberg interaction, and the nonequivalent gain/loss
distribution along the azimuthal direction. We thus provide examples of robust high-charge vortex LBs and
necklace breathers in the Rydberg atomic system with a PT symmetry.
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I. INTRODUCTION

Light bullets (LBs) are maintained due to the balance
between dispersion, diffraction, and nonlinear effects [1].
LBs have been observed in various physical systems, includ-
ing nonlinear optics, plasmas, and Bose-Einstein condensates
[2–5]. These nonlinear waves play a crucial role in optical
communication, high-speed data processing, and quantum
information technology [6–8], making them a topic of sig-
nificant theoretical and experimental interest. However, the
experimental realization of LBs faces several challenges. The
major challenge lies in achieving a balance among the diffrac-
tion, dispersion, and nonlinearity [9,10]. In uniform media,
LBs are typically unstable because the common Kerr nonlin-
earity leads to supercritical collapse [1,11].

The formation of LBs has been studied through various
theoretical proposals, including nonlinear optical materials
with spatially patterned nonlinear interactions [12], optical
tandem systems [13], materials with saturable and quadratic
nonlinearities [14,15], and combinations of local and nonlocal
optical nonlinearities [16,17]. LBs have also been investi-
gated in dissipative settings, where higher-order absorption
commonly occurs [18,19]. Recently, the Rydberg electro-
magnetically induced transparency (Rydberg-EIT) system
has emerged as a promising setting for generating stable
LBs [20–22]. In Rydberg-EIT systems, the cold atomic gas

*Contact author: yuanuanz@163.com
†Contact author: dlw_0@163.com

becomes an effective alternative for the formation, propaga-
tion, and storage of ultraslow weak LBs and vortices [23–26].

A powerful strategy for achieving stable LBs is the in-
troduction of spatial modulations of refractive index. The
existence of stable fundamental LBs in discrete [27] and con-
tinuous [28,29] lattices, as well as vortex LBs [30,31], has
been predicted. This approach has led to the experimental
observation of fundamental LBs in fiber arrays [32,33] and,
subsequently, the observation of discrete vortex LBs [34]. In
the context of communication, vortex LBs are particularly sig-
nificant as they carry nonzero angular momentum. However,
vortex LBs often experience strong azimuthal instability, lead-
ing to the fragmentation of vortex rings in two-dimensional
(2D) [26,35] and three-dimensional (3D) nonlinear systems
[25]. More recently, a proposal utilizing twisted waveguide
arrays has been reported, demonstrating the stability of LBs
[36,37]. The twisting of fiber arrays provides a powerful way
that changes the properties of LBs, resulting in stable LBs
without an energy threshold.

Previous studies on LBs are solely based on transverse
refractive-index modulation. Recently, the PT -symmetric
system with entirely real eigenvalues has extended the quan-
tum theory to complex domains, where the Hamiltonian
is non-Hermitian [38–43]. Unlike the Hermitian Hamilto-
nian which guarantees the energy spectrum to be real, the
non-Hermitian Hamiltonian usually has complex spectrum.
Bender and Boettcher [44,45] proved that all-real spectra
may appear for a broad class of Hamiltonians which are not-
Hermitian but invariant under the transformations of parity
(P) and time (T ) inversions, i.e., PT symmetry. If the PT
symmetry does not hold, the broken PT symmetry will result
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in the presence of complex eigenvalues. The PT symmetry
breaking and the associated change from real to complex
eigenvalues can be generally observed when the gain or loss
of the system is changed.

Interestingly, PT -symmetric photonic structures have
been shown to support stable LBs by preventing the collapse
of spatial 2D solitons [46–48] and 3D LBs [25,49]. The dy-
namical characteristics of fundamental and vortex LBs were
studied in focusing Kerr media modulated by complex PT -
symmetric periodic lattices. The imaginary part of the lattice
creates strong internal currents in LBs, significantly affecting
their existence and stability domains [50].

Thus far, 2D vortex solitons have been studied in PT -
symmetric azimuthal potentials [51] and twisted circular
waveguide arrays [37,52,53]. Stable 3D vortex LBs have been
predicted in Rydberg atomic systems [25] and Kerr nonlinear
optical media [42]. It should be noted that all previous studies
on LBs are based on transverse refractive-index modulation.
Moreover, vortex LBs can be stable only for charges m � 2.
The existence and propagation dynamics of 3D vortex LBs
in rotating azimuthal potentials, composed of PT -symmetric
cells located on a ring, have not been explored. Additionally,
it is unknown whether stable 3D vortex LBs can be achieved
through a combination of Rydberg-Rydberg interaction and
PT -symmetric azimuthal potentials. In this paper, we predict
an example of robust vortex LBs forming in Rydberg-EIT
PT -symmetric circular waveguide arrays within a coherent
atomic gas.

This paper is structured as follows. The theoretical model is
presented in Sec. II. Numerical results and discussions about
the six-core vortex LBs are presented in Sec. III. A summary
is provided in Sec. IV. The propagation of six-core vortex
LBs with a value of m = −2 is outlined in the Supplemental
Material, Movie 1 [54]. The evolutions of eight-core counter-
parts with m = −2 and −3 are included in the Supplemental
Material, Movies 2 and 3, respectively [54]. The modulation
of eight-core vortex LBs is presented in the Supplemental
Material, Movie 4 [54]. The Supplemental Material is sum-
marized in Ref. [54].

II. THE MODEL

We adopt a cold four-level atomic system with an inverted-
Y type configuration. The supposed geometry and energy level
structure are depicted in Figs. 1(a) and 1(b), respectively. The
pulsed probe (with frequency ωp and half Rabi frequency �p)
and control (with frequency ωc and half Rabi frequency �c)
laser fields are coupled to the transitions |1〉 → |3〉 and |2〉 →
|3〉, where �i j are spontaneous emission decay rates between
states |i〉 and | j〉. This EIT structure is dressed by a high-lying
Rydberg state |4〉, which is coupled by the auxiliary field (with
frequency ωa and half Rabi frequency �a). �3 = ωp − (ω3 −
ω1) is one-photon detuning, and �2 = ωp − ωc − (ω2 − ω1)
and �4 = ωp + ωa − (ω4 − ω1) are two-photon detunings.
An incoherent pumping (with pumping rate �21) is used
to pump atoms |1〉 → |2〉, providing a gain for the probe
field.

Under the slowly varying amplitude approximation, the
nonlinear Schrödinger equation for the probe field takes the

FIG. 1. (a) Schematic for the experimental demonstration. A
Rydberg-dressed atom is driven by a weak probe field, �p; an
auxiliary field, �a; and a strong control field, �c. Here �i j are the
spontaneous emission decay rates from |l〉 to | j〉 ( j, l = 1, . . . , 4),
and � j are the corresponding detunings. (b) Level diagram and
excitation scheme of the four-level Rydberg-EIT system. (c), (d)
Profiles of real and imaginary parts of six-core waveguide potential
at z = 0.

form [23]

i
∂ψ

∂z
= −1

2
�ψ − R(r, z)ψ − |ψ |2ψ

−
∫

d2r′Vvdw(r′ − r)|ψ |2ψ, (1)

where � = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂τ 2, r → {x, y}/r0 are the
normalized transverse coordinates with r0 = 10 µm being the
typical radius of the probe beam, and z → z/Ldiff is the normal
transverse coordinate with Ldiff = kr2

0 being the diffraction
length. We suppose the light (with wavelength λ = 760 nm
and wave number k = 2πn/λ) propagates in the material
(with refractive index n ≈ 1.45), and thus the diffraction
length Ldiff = 1.2 mm. τ = t/τ0 is the scaled time coordinate
with τ0 being the initial Rabi frequency of the probe pulse.
It is noted that this is a continuum model, where the wave
function ψ can be used to describe the system. Under the
anticontinuum limit, Eq. (1) can be reduced to a system of
coupled mode equations with ψn(n = 1, . . . , N ), where each
mode couples with its neighbors [55–58].

The external potential R(r, z) has a complex form that is
constructed by N single-mode super-Gaussian waveguides,

R =
N∑

l=1

(pr + i2l+1 pi )e
−[(x−xl )2+(y−yl )2]2/w4

, (2)

where pr and pi represent the strengths of real and imaginary
parts, respectively; N is the core number of the super-Gaussian
beams; and w is the beam width chosen as w = 0.5 (5 µm).
The coordinates of the core centers on the ring are xl =
ρ cos φl and yl = ρ sin φl , where ρ is the radius of ring (set to
be 1) and φl = 2π (l − 1)/N . The potential is PT -symmetric,
satisfying R(r) = R∗(−r), and can be obtained by modulating
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the control and auxiliary fields [41] as follows:

�c

�c0
≈ 1 + 0.25

N∑
l=1

i2l pie
−[(x−xl )2+(y−yl )2]2/w4

,

�a

�a0
≈ 1 + 0.43

N∑
l=1

(pr − 0.65pi )e
−[(x−xl )2+(y−yl )2]2/w4

, (3)

where �c0 and �a0 are the initial half Rabi frequencies of
control and auxiliary fields, respectively.

The last term in Eq. (1) is the long-range interaction be-
tween different Rydberg atoms with the van der Waals poten-
tial Vvdw = h̄V (r′−r), where V (r′−r)=C6/[R6

b + |r′−r|6],
C6 < 0 is the dispersion parameter, r and r′ are vector po-
sitions of two Rydberg atoms, and Rb is the Rydberg blockade
radius which can be obtained as Rb = [|C6�3|/|�c|2]1/6. The
degree of the nonlocality is determined by the parameter
σ = Rb/r0. By adjusting the values of Rb and r0, the nonlinear
system displays three kinds of localized regions: local region
(σ � 1), general nonlocal region (σ ∼ 1), and strongly non-
local region (σ 	 1) [25].

Suppose the waveguide arrays have a longitudinal twist
with rotation frequency α, then xl and yl satisfy the following
rotating relation with the propagation distance z:

xl (z) = x cos(αz) − y sin(αz),

yl (z) = x sin(αz) + y cos(αz). (4)

Thus, Eq. (1) is transformed to the following expression:

i
∂ψ

∂z
= −1

2
�ψ − αLzψ − R(r)ψ − |ψ |2ψ

−
∫

d2r′Vvdw(r′ − r)|ψ |2ψ. (5)

The rotating operator αLz = iα(x∂/∂y − y∂/∂x) does not
change the original PT symmetry since the derivative is
invariant under rotation φk → φk − 2π/N . The rotating op-
erator can be regarded as an effective Coriolis force if one
considers the beam field as a rigid body. The Coriolis force
also denotes the “artificial” angular momentum induced by
the rotation of the potential. It plays a role in accelerating or
slowing the internal energy flux of the beams with angular mo-
menta. Our study focuses on analyzing six-core structures, as
depicted in Figs. 1(c) and 1(d), where each core exhibits gain
or loss. To achieve the desired rotation setup, the rotation fre-
quency of the container housing cold Rydberg atoms should
be small (0 � α < 0.4), and the optimal value is α = 0.1. As
a result, the original PT symmetry remains invariant within
the rotational coordinate system.

For experimental consideration, this rotation system can be
realized in a cold gas of 88Sr atoms [21,25]. Thus, the rele-
vant values of the physical parameters are r0 = 10 µm, τ0 =
1.1 µs, �21 = 0.2π MHz, �3 = 2π × 16 MHz, �4 = �34 =
2π × 16.7 kHz, C6 = 2π × 81.6 GHz µm6, �2 = 1.67 ×
106 s−1, �3 = 9.67 × 107 s−1, �4 = 1.36 × 107 s−1, �c =
�c0 = 1.2 × 107 s−1, and �a = �a0 = 5 × 106 s−1. The units
of the scaled propagation distance and time are 1.2 mm and
1.1 µm, corresponding to z = 1 and t = 1, respectively. The
unit for softcore size is estimated as Rb ∼ 8.6 µm [25].
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FIG. 2. (a), (b) Linear spectrum of b with superscript ±1 and 2
representing the topological charge. Here, panels (a) and (b) repre-
sent the real and imaginary parts of b. (c) Critical value of pi with
increasing α in the linear condition. Point A in panel (b) stands for
the critical point where b turns to complex. The fixed parameters in
the panels are pr = 3, pi = 0.1, σ = 2.5, and α = 0.15.

III. NUMERICAL RESULTS AND DISCUSSIONS

Vortex solitons can be sought in the form ψ =
ϕ(x, y, τ )eimθ+ibz, where ϕ(x, y, τ ) is the stationary solution,
m is the topological charge of the angular mode, θ is the
azimuthal angle, and b is the propagation constant. In the
numerical calculation, the initial condition is selected as

ϕ0 = A

(√
x2 + y2

w0

)|m|
e
− (x−x0 )2+(y−y0 )2+(τ−τ0 )2

w2
0 , (6)

where the initial amplitude A = 1, the width of laser
beam w0 = 0.5 (standing for 5 µm), and the beam cen-
ter (x0, y0, τ0) = (0, 0, 0). We substitute the initial solution
ψ0 = ϕ0eimθ+ibz into Eq. (5), and the vortex solutions are ob-
tained by means of the modified square operator method [59].
Vortex LBs with six-core and various topological charges
(m = ±1,±2) are found in this 3D rotating system with Ryd-
berg atoms, satisfying the charge rule m < N/2 [60].

A. Modulation and characteristics of six-core vortex LBs

Upon the removal of the Kerr local nonlinearity and
Rydberg-induced nonlocal nonlinearity from Eq. (5), the
equation transforms into a linear equation with an infinite
number of eigenvalues and associated linear eigenmodes. In
cases where nonlinearity cannot be ignored, nonlinear modes
can bifurcate from linear modes. Linear modes intuitively
reveal the possible profiles of nonlinear modes originating
from them [61].

The dispersion relation with the given super-Gaussian po-
tential is depicted in Fig. 2(a). One observes that the linear
spectra of the six-core system experience a breaking of PT
symmetry. Two branches of bre (with m = ±1 and m = ±2)
merge at a critical value, pcr

i = 0.18 (labeled with point A).
Actually in the dispersion relation, more eigenvalues b corre-
sponding to |m| > 2 can be obtained, but they have complex
values and the corresponding LBs are unstable. They are not
plotted in Fig. 2(a). Beyond point A, the imaginary part bim

splits into two branches from zero, indicating the change from
real to complex eigenvalues. This transition is usually denoted
as the PT symmetry breaking for the non-Hermitian system.
Further, the complex eigenvalues with m = ±1 are always
conjugate to those with m = ±2 [52].

The critical value pcr
i of the symmetry-breaking point

changes quasiperiodically with the rotation frequency α, as
shown in Fig. 2(c). The PT -symmetric structure is partly
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FIG. 3. (a) Power of vortex LBs vs propagation constant b, where
the solid and dashed lines represent the robust and unstable states.
(b) Real part of λ with respect to b. The fixed parameters in the panels
are pr = 3, pi = 0.1, σ = 2.5, and α = 0.15.

affected by the rotation of waveguide arrays, resulting in the
decrease of pcr

i . However, when the rotation frequency α ex-
ceeds an inflection point (α = 0.181), the pcr

i values increase
with α and reach the second maximum value at α = 0.34 due
to the rotation invariant with φk → φk − 2π/N .

The power of vortex LBs, defined as U = ∫∫∫ |ψ |2dxdydτ ,
is shown in Fig. 3(a) with respect to the propagation constant
b. The robust and unstable states of vortex LBs are plotted
by solid and dashed segments, respectively. The results show
that the power of vortices with larger topological charges (e.g.,
m = +2) is greater than that of those with smaller topological
charges (e.g., m = +1), and vortices with positive m have U
values larger than those of vortices with negative m.

The instability growth rate of these vortex LBs is cal-
culated by the linear stability analysis by introducing weak
perturbation ψ = (ϕ + peλt + q∗eλ∗t )eimθ+ibz, where p and q
are small perturbations with |p, q| � |ϕ|, the symbol ∗ rep-
resents the complex conjugation, and λ’s are the complex
eigenvalues standing for the instability growth rate of the
disturbation. λ can be obtained by substituting ψ into Eq. (5)
and linearizing it around the stationary solution. The vortex
LBs can propagate stably when Re(λ) = 0. The spectrum of
Re(λ) in Fig. 3(b) indicates that the stability domain of vortex
LBs with positive topological charges (m = +1 and +2) are
smaller than the ones with negative charges (m = −1 and −2).
The stability domains of b given by Figs. 3(a) and 3(b) are
[0.5 0.93], [0.5 1.8], [0.6 0.87], and [0.7 2.0] for m = +1,
−1, +2, and −2, respectively. Here the real part of instability
growth rate is of the order of 10−3 in the simulation, i.e.,
Re(λ) < 10−3. The real part of λ in Fig. 3(b) appears to be
very close to zero; however, it is not exactly zero. Even within
the stability domains, the vortex LBs can be generated stably
but may not propagate for a long distance.

The stability domains in nonlinear conditions can be tuned
by varying the imaginary part of the potential pi, the degree
of nonlocal nonlinearity σ , and the rotation frequency α,
as shown in Fig. 4. The PT symmetry can be obtained in
the scope of [blow

cr , bupp
cr ], shown in Figs. 4(a), 4(c), and 4(e),

where the blue areas stand for the stability domains in the
(b, pi ) plane, and blow

cr and bupp
cr are lower and upper values

of b for robust solitons. One finds that by increasing pi, the
scope of [blow

cr , bupp
cr ] progressively shrinks and merges at the

PT -symmetry-breaking point B (pcr
i = 0.2, bcr = 1.39) in

Fig. 4(a). Beyond point B, this system cannot get stable vortex
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FIG. 4. Propagation constant b and power of six-core vortex LBs
as functions of pi (a), (b), nonlocal nonlinearity degree σ (c), (d), and
rotation frequency α (e), (f). Point B in panel (a) stands for the critical
point where b turns to complex. The solid and dashed lines represent
the robust and unstable states. The fixed parameters are pr = 3,
pi = 0.1, σ = 2.5, and α = 0.15.

solitons (or pure real b) when pi > 0.2. On the other hand,
the scope [blow

cr , bupp
cr ] as a function of σ and α in Figs. 4(c)

and 4(e) shows a milder tendency. The scope initially in-
creases slightly and then decreases as the nonlocal coefficient
σ increases. Furthermore, it decreases with the rotation
frequency α.

The power of six-core vortex LBs can be determined by
system parameters such as pi, σ , and α, as shown in Figs. 4(b),
4(d), and 4(f), respectively. It is found that the power almost
does not change with the increase of pi. When pi is beyond
stability domains, the eigenvalues become complex and the
vortex LBs with robust power cannot be obtained (depicted
by the dashed lines or outside the axis scales). The power U
decreases monotonically with the increase of σ [Fig. 4(d)],
indicating that the power needed to maintain the robust vortex
LBs in a Rydberg-dressed nonlinear atom system becomes
smaller with the strengthening of the nonlocal degree [20,22].

In rotational atomic system, the U -α relation of vortex
LBs has opposite rules with different signs of topological
charges, i.e., dU/dα > 0 with positive m (m = +1 and +2),
and dU/dα < 0 with negative m (m = −1 and −2) [Fig. 4(f)].
This phenomenon can be attributed to the nonequivalent dis-
tribution of gain/loss along the azimuthal direction [51]. On
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FIG. 5. Profiles of six-core vortex LBs in (x, y, τ ) space with α = 0, 0.15, and 0.3 and m = 0, ±1, and ±2. The moduli of three isosurface
layers are 85%, 50%, and 5% of the maximum values |ψ |max, respectively. The insets are the corresponding projection and phase distributions
in the (x, y) plane. The other parameters are pr = 3, pi = 0.1, and σ = 2.5.

the other hand, the rotation frequency is taken as α > 0, a
counterclockwise rotation according to Eq. (4). The Cori-
olis force of the pulse increases the power of vortex LBs
[36,37,51,52]. As is well known, the phase of the vortex LBs
has a counterclockwise rotation with m > 0 and a clockwise
rotation with m < 0. The power of the solitons as well as
the Coriolis force would be enhanced (reduced) when m > 0
(m < 0). The induction of α changes the stability of vor-
tex solitons and enriches their modulation diversity as the
states with the opposite charges degenerate by the intro-
ducing of rotation frequency, similar to the case of vortex
solitons in twisted waveguide arrays without PT symme-
try [37]. Thus, the optimal frequency for observing robust
vortex solitons with various topological charges is α = 0.1.
Exceeding this value, the stability domains of the vortex soli-
tons would be relatively small, especially for the topological
charge m = +2.

The physics lies in the superposition of the orbital angular
momentum of the vortices and the artificial angular momen-
tum induced by the twisted waveguide arrays. In principle,
vortex solitons with lower angular momentum are more stable
than those with higher angular momentum. Thus, the rota-
tional direction of waveguide arrays can weaken or strengthen
the stability of vortex solitons with opposite charges.

Typical examples of six-core vortex LBs with differ-
ent rotation frequencies and topological charges are shown
in Fig. 5, where fundamental LBs are also presented for
comparison. As α increases, the profiles do not show any sig-
nificant differences and the phase structures exhibit a gradual
distortion. According to the phase structures, vortex LBs are
more unstable with positive topological charges or larger ro-
tation frequencies. This phenomenon is more obvious when
m = +2, as the profile expands dramatically with the increase
of α due to the Coriolis force, agreeing well with the U -α

relation in Fig. 4(f). For physical reasons, the Coriolis force
and PT topological symmetry contribute to this distortion of
profiles and phase structures.

B. Propagation and power current of six-core vortex LBs

To validate the predictions of the linear-stability analysis,
we have performed extensive propagation simulations of six-
core vortex LBs with different topological charges, by means
of the split-step Fourier method with absorptive boundary
conditions. The results are illustrated in Fig. 6. One finds
that the robustness of the vortex structures varies depending
on the sign of the topological charges. The profiles illustrate
that vortices with positive charge (m > 0) are more prone to
degenerate. This is evident since the core number gradually
decreases from 6 to 3, ultimately resulting in the collapse of
the vortex LBs, as illustrated in Figs. 6(a) and 6(b).

On the other hand, vortex LBs with α > 0 and m < 0
maintain a dynamic equilibrium and propagate stably during
propagation, as depicted in Figs. 6(c) and 6(d). As they prop-
agate, the intensities of the cores display a periodic cycle with
four steps: (i) equal distribution [Fig. 6(d1)], (ii) alternating
distribution [Fig. 6(d2)], (iii) recovering to equal distribution
[Fig. 6(d3)], and (iv) alternating distribution in the opposite
sites [shown in Fig. 6(d4)]. This phenomenon is referred to a
necklace breather (NB) whose cycle is �z = 180. It is note-
worthy that this NB effect occurs after a certain propagation
distance, i.e., z = 500. Movies of six- and eight-core NBs can
be found in the Supplemental Material [54] more directly.

The vortex LBs can be considered as a molecule of free-
standing solitons rotating around the waveguide axis, which
is similar to the gyrating solitons in a necklace of optical
waveguides with PT -symmetric fashion [62]. However, there
are mainly three differences.
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FIG. 6. Propagation of six-core vortex LBs along the propagation distance z with (a), (b) m = +2 and z = 100, 300, 400, and 500, and (c),
(d) m = −2 and z = 500, 600, 700, and 800. The moduli of three isosurface layers are 85%, 50%, and 5% of the maximum values, respectively.
The projections of moduli in the (x, y) plane are shown in the second and fourth rows. The other parameters are pr = 3, pi = 0.1, σ = 2.5,
and α = 0.1.

(i) The main equation (1) represents an uncoupled equa-
tion in which ψ can describe all the states in every waveguide,
whereas in Ref. [62] each waveguide is associated with cou-
pled wave functions ψn(n = 1, . . . , N ).

(ii) The coordinates in our system rotate with frequency α,
while solitons gyrate around the necklace by switching from
one waveguide to the next in Ref. [62].

(iii) There exists a distinction between the gain and loss
factors.

During the propagation of vortex LBs, energy is transferred
from the core to the surrounding media, where it is stored.
Subsequently, after traversing a certain distance, the stored
energy is released back into the core. This recurring energy
exchange is influenced by various factors, such as the rota-
tion of coordinates and topological charges. The presence of
an NB implies a power flow between the media and cores,
which highlights its potential applications as light switch and
storage.

To investigate the effect of power current on the stablility
of vortex LBs in this 3D rotational system, we define the
transverse power current as 
S = 1

2 (ψ∇ψ∗ − ψ∗∇ψ ). Here,
ψ = ϕ exp(imθ ) is the solution of Eq. (5). The power current
between neighboring cores is depicted in Fig. 7, using both
nontwist (α = 0) and twist system (α = 0.1) configurations.

FIG. 7. Power current of six-core vortex LBs with m = ±1 and
α = 0 and 0.1. The red arrow represents the direction of the power
current. The insets are the direction of phase structure and the modu-
lus of power current |S|. The other parameters are pr = 3, pi = 0.1,
and σ = 2.5.
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The left and right parts of each panel illustrate the direction
of the phase gradient (global current) and the power current
from gain to loss in adjacent cores (local current). Notably,
the global current is influenced by topological charges, while
the local current indicates the direction of transfer from gain
to loss between the nearest waveguide, as depicted in the
imaginary part of potentials in Figs. 1(c) and 1(d).

Based on global and local currents, the power current

S exhibits an anticlockwise (clockwise) rotation with m =
+1(−1), as illustrated by the red arrows in Fig. 7. The global
and local currents flow in the same direction [Figs. 7(a) and
7(b)], which is different from the partially PT -symmetric
case [51]. We should note that the energy flux does not ex-
hibit qualitative differences for varying pi. The localization
of the power current modulus is strengthened by the rotation
of coordinates when m > 0 [Fig. 7(c)]. Furthermore, when
considering the coordinate rotation, the modulus of the power
current exhibits different distributions, depending on the sign
of topological charges, see e.g., the right side of each panel
in Figs. 7(c) and 7(d). This nonequivalence of two azimuthal
directions arises in the rotational PT -symmetric system and
affects the generation, transformation, and stability of the
vortex LBs.

IV. CONCLUSIONS

To summarize, we proposed a scheme for generating ro-
bust vortex LBs in a Rydberg atomic system under the
modulation of twisted PT -symmetric circular waveguide ar-
rays. The proposed system employs a cold Rydberg-dressed

four-level atomic configuration with an inverted-Y type struc-
ture. Robust vortex LBs can be observed with various
topological charges. The vortex LBs with opposite charges
exhibit different dynamics under the action of the Coriolis
force. Particularly, the vortex LBs with negative topological
charges exhibit broader stability domains compared to those
with positive charges, due to the difference in azimuthal an-
gle in the rotational configurations. Furthermore, the power
decreases with the strengthening of nonlocal nonlinearities
induced by the long-range Rydberg interactions. We found
vortex solitons are robust even in the presence of gain and
loss, i.e., PT symmetry. This finding was rarely reported
in other PT-symmetric schemes. Our predictions may have
applications in the light switch and storage devices.

Data will be made available upon reasonable request.
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