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Unveiling the intricacies of nonlinear third-harmonic generation within a hyperstructure
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In this paper, the propagation characteristics of fundamental and third harmonic waves within the designed
hyperstructure are examined using the transfer matrix method. At the same time, the efficiency of third harmonic
generation is quantified. The transfer matrix method provides a framework that takes into account the interference
phenomena and multiple reflections occurring within each layer, thereby facilitating a precise emulation of
the generation and propagation dynamics of the harmonic wave field within the hyperstructure. Moreover, the
conspicuous phenomenon of strong field localization, coupled with the lower group delay observed at the edges
of the photonic band gap, confers an augmented response time on the process of third harmonic conversion.
Consequently, electromagnetic waves situated in close proximity to the band-gap edge experience a heightened
conversion efficiency. Comparatively, when juxtaposed against those designed in the other works hinged on
conventional quasiphase matching techniques and endowed with similar lengths, the distinctive advantages
offered by layered periodic structures manifest in their propensity to establish more precise phase matching
conditions and yield higher conversion efficiencies. The crucial role played by third harmonic generation in
advancing optical imaging, spectroscopy, biomedical applications, and laser technology is due to its distinct
optical characteristics and energy conversion capabilities.
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I. INTRODUCTION

Similar to the existence of an electronic band gap in
semiconducting materials, the layered periodic arrangement
of dielectric substances, characterized by varying refractive
indices, manifests analogous structures of photonic band gaps
(PBGs) through the influence of Bragg scattering [1–4]. The
applications of diverse materials has greatly expanded re-
search possibilities in hyperstructures (HS) [4], including
plasma [5], nonlinear optics [6–8], and other related fields
[9]. The most accurate methods currently employed for study-
ing HS include the transfer matrix method (TMM) [10,11],
plane wave expansion [12], and so on. Among these, TMM
offers a convenient analysis of the internal fields within HS
by utilizing matrices with varying parameters to represent
the electromagnetic (EM) wave transmission characteristics
of different layers. This feature makes TMM computationally
efficient and enables its broad application in studying one-
[13,14], two-, and three-dimensional [15,16] structures.

With the advancement of investigation into harmonic gen-
eration in HS comprised of nonlinear materials [17,18],
the theoretical framework surrounding harmonic generation
within quasiphase matching (QPM) has been expounded
under the constraints imposed by the undepleted pump
approximation. Many studies focused on investigating the
generation, propagation, and efficiency of second harmonics
in HS [19]. The attainment of QPM has been successfully
demonstrated in HS [20]. It is widely acknowledged that
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layered structures manifest Bragg high reflectivity zones
within their linear transmission spectrum, which have been
experimentally verified to significantly amplify the conversion
efficiency of harmonics, as evidenced by most investigations
[21,22]. Finite one-dimensional HS offer sharply defined res-
onances resulting from modal interactions [22] near the Bragg
band edge, thereby facilitating the utilization of these res-
onances to lower the threshold of nonlinear processes and
magnify their conversion efficiency [23]. This phenomenon
arises due to the high-quality factors associated with these res-
onant modes, subsequently resulting in intensified localized
fields at the edge of the reflection band [23]. Furthermore,
resonances induced by Fabry-Perot cavities also serve to
augment nonlinear effects, resembling the characteristics of
optical bistability [24,25]. The outcomes presented in this
study establish a direct correlation between sharper resonance
peaks and more substantial enhancements of the local field,
thereby yielding heightened nonlinear effects [25]. The TMM,
along with its variations, characterizes the physical mecha-
nisms of second harmonic wave (SHW) generation within
nonlinear structures. Moreover, it enables the quantification
of the SHW field in radiation and the enhancement of the
SHW through the alteration of the local mode of the electric
field [26,27]. These aforementioned studies have enlightened
not only the present paper, but also subsequent research en-
deavors in this domain. In recent years there has been a
growing body of research dedicated to the generation and
enhancement of higher-order harmonics in metamaterials,
yielding achievements both in theory and experimentation
[28–30]. High-order harmonic generation possesses signif-
icant application in the field of imaging, and in the study
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conducted by Smirnova and colleagues, THW imaging is
employed to visualize topological edge states [31]. Nonlin-
ear techniques offer superior contrast, sensitivity, and larger
imaging areas when compared to linear imaging methods,
thereby ensuring accurate characterization and optimization
of topological waveguides [31]. Recently, the high-order har-
monic generation has been experimentally observed within
condensed matter systems, and the research scope of high-
order harmonics has expanded to include conventional
semiconductors, topological materials [32–35], and band
insulators [36–38].

In this paper, an approach based on the TMM has been
proposed to investigate the mechanisms involved in the gen-
eration and propagation of THW within the HS. The strong
localization of the EM field and reduced group delay (which
can alter the phase velocity of the incident pump light and
compensate for dispersion effects to some extent, optimizing
the phase matching and temporal evolution in nonlinear pro-
cesses, thereby enhancing energy conversion efficiency [27].)
near the PBGs edge of the HS effectively reduce the threshold
for THW generation and enhance its efficiency. Importantly,
when compared to other works that rely on QPM method-
ologies and have similar sample dimensions, the HS have
significant advantages in achieving improved phase-matching
conditions and higher conversion efficiencies.

II. TMM FOR LAYERED-PERIODIC STRUCTURE

The HS under investigation in the presented study com-
prises a periodic unit consisting of alternating layers of CS2

[39], a uniform nonlinear material, and K9 glass, which
are stacked along the +z direction. The refractive indices
of CS2 and K9 glass are denoted as n(m)

1 and n(m)
2 , respec-

tively, with their corresponding thicknesses represented by
d1 and d2 (the index m = 1 corresponds to the fundamental
field, while m = 3 represents the THW field). The third-
order nonlinear susceptibility of CS2 is represented by χ (3).
A spatially uniform variation of both linear and nonlinear
parameters within the material is assumed. The incident EM
wave propagates along the +z direction, with the electric
field oriented along the +x direction, and the magnetic field
along the +y direction. Representing the forward (+z) and
backward-propagating (−z) waves, E+ and E−, respectively
denote the electric fields. For ease of analysis, a total of
N = 50 periods are considered in the calculations. Due to
the refractive index mismatch between the layers, the EM
wave encounters reflections at the layer interfaces, giving rise
to interference phenomena. As the fundamental wave (FW)
propagates through the structure, it induces nonlinear polar-
ization P(NL) within the CS2 material, acting as a secondary
source for the THG [26]. These harmonics are continuously
emitted at an angular frequency of 3ω1 until they ultimately
emerge from both ends of the HS. By exploiting this process,
a TMM is established to systematically investigate the trans-
mission characteristics of TH waves within the HS. Initially,
the scenario within a single period unit (n1n2) is analyzed
before extending the analysis to explore the intricate genera-
tion mechanisms of TH waves upon stacking multiple units of
the HS.

FIG. 1. Schematic diagram of a HS composed of alternating
layers of CS2 and crown glass K9. The periodic unit is denoted by
(n1n2), with N representing the total number of periods.

A. ANALYSIS OF PERIODIC UNIT

Now, the discourse on the transmission of the FW field
in the HS, assuming that FW is incident from the left side
of the HS with an angular frequency ω1. The electric field
of the FW within the pth slice can be written as E (1)

p =
E (1)

p (z)exp(−iω1t ) and adheres to the following wave equa-

tion Eq. (1), where k(1)
p = n(1)

p k(1)
0 , k(1)

0 = ω1/c, n(1)
p represents

the refractive index corresponding to the FW field within
the pth layer, whereas c denotes the speed of EM wave in
vacuum [11]

d2E (1)
p

dz2
+ k(1)

p
2
E (1)

p = 0. (1)

The E (1)
p can be derived from Eq. (1), and its solution entails

both forward- and backward-propagating waves

E (1)
p (z) = �(1)+

p eik(1)
p (z−zp−1 ) + �(1)−

p e−ik(1)
p (z−zp−1 ), (2)

where zp = zp−1 + dp, (p = 1, 2, 3, . . . and z0 is set to zero).
�(1)±

p is the coefficient of E (1)
p at the left interface (zp−1) of

the pth layer. From the equation ∇ × E = ik0 H, the magnetic
field H (1)

p (z) can be obtained(
E (1)

p (z)

H (1)
p (z)

)
=

(
1 1

n(1)
p −n(1)

p

)(
�(1)+

p (z)

�(1)−
p (z)

)
. (3)

The continuity of the tangential components of the E
and H at the interface of the medium can be expressed by
the boundary conditions as follows: �z × (E2 j−2− − E2 j−2+ ) =
0, �z × (H2 j−2− − H2 j−2+ ) = 0. A linkage between the fields
on both sides of the jth layer in Fig. 1 can be established can
be established in Eq. (4), which can be represented using a
matrix.

In Eq. (4), the E (1)± represents the forward- and backward-
propagating waves at different positions within the structure
when the periodic unit is placed in air. The composite matrices
are defined as

M p =
(

eik(1)
p dp 0

0 e−ik(1)
p dp

)
Qp =

(
1 1

n(1)
p −n(1)

p

)
.

The first matrix characterizes the phase and amplitude fluctu-
ations undergone by the electric field during its propagation
across a homogeneous medium, from the left boundary to
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the right boundary along the direction of wave transmission. Meanwhile, the second matrix elucidates the interplay between
the fields situated on either side of the material interface, which manifests as a direct consequence of the boundary conditions
imposed

Q1

⎛
⎝E (1)+

2 j−2+

E (1)−
2 j−2+

⎞
⎠ = Q0

⎛
⎝E (1)+

2 j−2−

E (1)−
2 j−2−

⎞
⎠,

Q2

⎛
⎝E (1)+

2 j−1+

E (1)−
2 j−1+

⎞
⎠ = Q0M1Q−1

1 Q0

⎛
⎝E (1)+

2 j−2−

E (1)−
2 j−2−

⎞
⎠,

Q0

⎛
⎝E (1)+

2 j+

E (1)−
2 j+

⎞
⎠ = Q2M2Q−1

2 Q1M1Q−1
1 Q0

⎛
⎝E (1)+

2 j−2−

E (1)−
2 j−2−

⎞
⎠. (4)

Hence, a matrix T j can be established that links the FW electric fields on both sides of the periodic unit (n1n2),⎛
⎝E (1)+

2 j+

E (1)−
2 j+

⎞
⎠ = Q−1

0 Q2M2Q−1
2 Q1M1Q−1

1 Q0

⎛
⎝E (1)+

2 j−2−

E (1)−
2 j−2−

⎞
⎠

= T j

⎛
⎝E (1)+

2 j−2−

E (1)−
2 j−2−

⎞
⎠. (5)

The spatial distribution of the FW across different positions within the periodic unit can be computationally determined by
employing Eq. (5). However, the primary objective of this study revolves around investigating the mechanism underlying THW
generation. The nonlinear polarization within the nonlinear medium in the pth layer, prompted by the interaction with the FW
field, can be mathematically represented as follows [40]:

PNL
p (z, t ) = ε0χ

(3)[E (1)
p (z)

]3
e−i3ω1t . (6)

Unlike the homogeneous Eq. (1) corresponding to the FW, Eq. (7) has a source term on the right-hand side resulting from
nonlinear polarization. The wave equation for the THW field is

d2E (3)
p (z)

dz2
+ k(3)2

p E (3)
p (z) = μ

∂2PNL
p (z, t )

∂t2

= −με0χ
(3)9ω2

1

[
E (1)

p (z)
]3

= −με0χ
(3)9ω2

1

{
�(1)+

p eik(1)
p (z−zp−1 ) + �(1)−

p e-ik(1)
p (z−zp−1 )

}3

= −με0χ
(3)9ω2

1

{[
�(1)+

p

]3
ei3k(1)

p (z−zp−1 ) + [
�(1)−

p

]3
e−i3k(1)

p (z−zp−1 )

+ 3
[
�(1)+

p

]2[
�(1)−

p

]
eik(1)

p (z−zp−1 ) + 3
[
�(1)+

p

][
�(1)−

p

]2
e-ik(1)

p (z−zp−1 )
}
, (7)

where k(3)
p = n(3)

p k(3)
0 , k(3)

0 = 3ω1/c, and n(3)
p represents the refractive index corresponding to the THW field within the pth layer.

The right-hand side of Eq. (7) represents the THW source induced by the nonlinear coefficient χ (3). By solving Eq. (7), the
electric field distribution in the pth layer can be obtained in Eq. (8)

E (3)
p (z) = E (3)+

p eik(3)
p (z−zp−1 ) + E (3)−

p e−ik(3)
p (z−zp−1 ) + Gp

(
�(1)+

p

)3
ei3k(1)

p (z−zp−1 ) + Gp
(
�(1)−

p

)3
e−i3k(1)

p (z−zp−1 )

+ 3Rp
(
�(1)+

p

)2(
�(1)−

p

)
eik(1)

p (z−zp−1 ) + 3Rp
(
�(1)+

p

)(
�(1)−

p

)2
e−ik(1)

p (z−zp−1 ). (8)

The E (3)±
p represents the amplitudes of the forward- and backward-propagating THW. The coefficients Gp and Rp are given by

the following expressions:

Gp = −9ω2
1με0χ

(3)

k(3)2
p − 9k(1)2

p

, Rp = −9ω2
1με0χ

(3)

k(3)2
p − k(1)2

p

.
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From the equation ∇ × E = ik0H, we can obtain the magnetic field H (3)
p (z),(

E (3)
p (z)

H (3)
p (z)

)
=

(
1 1

n(3)
p −n(3)

p

)(
E (3)+

p (z)

E (3)−
p (z)

)
+

⎛
⎝ 1 1

3n(1)
p k(1)

0

k(3)
0

− 3n(1)
p k(1)

0

k(3)
0

⎞
⎠

⎛
⎝Gp

[
�(1)+

p (z)
]3

Gp
[
�(1)−

p (z)
]3

⎞
⎠

+
⎛
⎝ 1 1

n(1)
p k(1)

0

k(3)
0

− n(1)
p k(1)

0

k(3)
0

⎞
⎠

⎛
⎝3Rp

[
�(1)+

p (z)
]2[

�(1)−
p (z)

]
3Rp

[
�(1)+

p (z)
][

�(1)−
p (z)

]2

⎞
⎠. (9)

Equations (9) and (3) have significant differences. The first term on the right side of Eq. (9) is commonly referred to as the
“free wave” as it represents the amplitude of the THW. The second and third terms indicate the amplitude of the “bound wave” of
THW. The first arises from the forward and backward FW fields, while the second captures the effects resulting from the mutual
interference between the forward- and backward-FW fields on THW. To achieve a more concise representation of the obtained
results, the aforementioned matrices in Eq. (9) are defined as follows:

Ap =
(

1 1
n(3)

p −n(3)
p

)
, Cp =

(
1 1

3n(1)
p k(1)

0

k(3)
0

− 3n(1)
p k(1)

0

k(3)
0

)
,

F p =
(

1 1
n(1)

p k(1)
0

k(3)
0

− n(1)
p k(1)

0

k(3)
0

)
.

Building upon the aforementioned methodology, the periodic unit (n1n2) is situated within a medium of air, enabling us to
determine the plane wave coefficients E (3)± governing the THW through careful consideration of the boundary conditions. On
the left side of the unit (n1n2), the following relationship is established:

A0

(E (3)+
2 j−2−

E (3)−
2 j−2−

)
= A1

(E (3)+
2 j−2+

E (3)−
2 j−2+

)
+ C1

(
Gp(�+

2 j−2+ )3

Gp(�−
2 j−2+ )3

)
+ F1

(
3Rp(�+

2 j−2+ )2(�−
2 j−2+ )

3Rp(�+
2 j−2+ )(�−

2 j−2+ )2

)
. (10)

On the right side of the unit (n1n2), the following relationship is established:

A0

(E (3)+
2 j−2−

E (3)−
2 j−2−

)
= A2L2A−1

2 A1L1

(E (3)+
2 j−2+

E (3)−
2 j−2+

)
+ A2L2A−1

2 C1K1

(
Gp(�+

2 j−2+ )3

Gp(�−
2 j−2+ )3

)

+ A2L2A−1
2 F1U1

(
3Rp(�+

2 j−2+ )2(�−
2 j−2+ )

3Rp(�+
2 j−2+ )(�−

2 j−2+ )2

)
. (11)

The related matrices in Eq. (11) are defined as

Lp =
(

eik(3)
p dp 0
0 e−ik(3)

p dp

)
U p =

(
eik(1)

p dp 0
0 e−ik(1)

p dp

)

K p =
(

ei3k(1)
p dp 0
0 e−i3k(1)

p dp

)
.

By combining Eqs. (10) and (11), the THW distribution on both sides of the periodic unit (n1n2) can be obtained. By utilizing
Eq. (12), the THW field emitted from both sides can be computed when the periodic unit (n1n2) is placed in the air(

E (3)+
2 j+

0

)
= A−1

0 A2L2A−1
2 A1L1A−1

1 A0

(
0

E (3)−
2 j−2+

)

+ A−1
0

(
A2L2A−1

2 C1K1 − A2L2A−1
2 A1L1A−1

1 C1
)(Gp(�+

2 j−2+ )3

Gp(�−
2 j−2+ )3

)

+ A−1
0

(
A2L2A−1

2 F1U1 − A2L2A−1
2 A1L1A−1

1 F1
)(3Rp(�+

2 j−2+ )2(�−
2 j−2+ )

3Rp(�+
2 j−2+ )(�−

2 j−2+ )2

)
. (12)
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B. TMM FOR PERIODIC CASE

Having gained a comprehensive understanding of employ-
ing TMM for examining the FW field distribution within
periodic unit (n1n2) and elucidating the THW, the subsequent
endeavor involves the derivation of the TMM to investigate
the characteristics of THW propagation across the entirety of
the HS through an iterative scheme.

The spatial distribution of the FW field throughout ev-
ery individual layer encompassing the HS can be effectively
derived by employing Eq. (5). The E (1)−

t = 0 implies the

nonexistence of backwards wave propagation at the right side
of the HS(

E (1)+
t

0

)
= Q−1

0

(
Q2M2Q−1

2 Q1M1Q−1
1

)N
Q0

(
E (1)+

0

E (1)−
0

)
. (13)

Equation (12) serves as the unit transfer matrix for the jth
periodic unit (n1n2) within the entirety of the HS. Consider-
ing the overall periodic nature of the HS, the utilization of
this equation facilitates the derivation of the comprehensive
transfer matrix pertaining to the THW field

(
E (3)+

t

0

)
= A−1

0 SN A0

(
0

E (3)−
0

)
+

N∑
j=1

A−1
0 SN− j

{(
A2L2A−1

2 C1K1 − SC1
)(Gp(�+

2 j−2+ )3

Gp(�−
2 j−2+ )3

)

+ (
A2L2A−1

2 F1U1 − SF1
)(3Rp(�+

2 j−2+ )2(�−
2 j−2+ )

3Rp(�+
2 j−2+ )(�−

2 j−2+ )2

)}
, (14)

where S = A2L2A−1
2 A1L1A−1

1 . By virtue of Eq. (14), the em-
anation of the THW field propagating from opposing facets of
the HS can be ascertained. Consequently, a methodology has
been successfully formulated that embraces the employment
of the TMM to scrutinize THW generation within the HS. The
THW conversion efficiency is defined as

ηcon.effi.
=

∣∣∣∣∣E (3)+
t

E0

∣∣∣∣∣
2

+
∣∣∣∣∣E (3)−

0

E0

∣∣∣∣∣
2

. (15)

III. RESULTS AND DISCUSSION

The constructed HS is assembled by stacking unit cells
composed of CS2 and K9 glass. Accounting for the influence
of dispersion, experimental testing reveals that the refrac-
tive index of K9 glass corresponds to n(1)

2 = 1.512 at the
FW wavelength and n(3)

2 = 1.63 at the THW wavelength.
Similarly, n(1)

1 = 3.6 and n(3)
1 = 3.87, as well as a nonlin-

ear coefficient of χ (3) = 5.442 × 10−20 m2/V2, are observed
[39]. To realize the conversion between the FW field and
the THW field, conventional techniques merely necessitate
satisfying the QPM condition [17,18]. However, with the
introduction of periodic refractive index modulation, plane
waves propagating towards the interface undergo a shift and
are influenced by PBGs. Furthermore, within the HS, the
THW field generated by nonlinear polarization undergoes
multiple reflections [26]. Consequently, deriving an explicit
expression for QPM becomes more intricate. Henceforth, a
numerical approach is employed which involves the manipu-
lation of the medium thickness to directly achieve QPM.

In Fig. 2, the conversion efficiency achieves a maximal
magnitude of 1.76% at d = 3217.7 nm. As the d under-
goes a decrement, there emerges an escalating pattern in the
conversion efficiency, accompanied by a commensurate am-
plification in the extent of change. During this conventional
process, a successive enhancement of 0.21%, 0.31%, 0.42%,
and 0.41% is observed. The diminishing degree of adjustment
for d reflects that only more precise structural QPM can
achieve greater perfection. Moreover, with diminishing full

width at half maximum, the prerequisites for QPM manifest
heightened stringency, as evidenced by the apex positioned
at the extreme lift of the graphical representation. Although
this pinnacle solely yields a conversion efficiency of a mere
0.41%, it affords a broader array of adaptable thickness pa-
rameters that adhere to the requisites for QPM within the
permissible scope. Additionally, differentials in conversion
efficiency across distinct matching points arise from the prox-
imity of the incident wavelength to the edge of the PBGs,
coupled with the acuity of the diverse resonant modes prox-
imate to the PBGs peripheries. The disparity in intensity
observed among resonant modes situated at the periphery of
a PBG can be accounted for by the following reasons: certain
specific resonant modes may exhibit a greater degree of spa-
tial confinement of the optical field, consequently giving rise

FIG. 2. The variation of conversion efficiency with parameter d
(where d = d1 + d2, and d1 = 900 nm). In this scenario, the incident
wave is characterized by a wavelength λwave = 889.9 nm, and the
pump light electric field E0 and N are set to 2.0 × 109 V/m [39] and
50, respectively.
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FIG. 3. (a) The transmittance corresponding to specific values of
three parameter sets (d) within the wavelength range of 888 nm to
892 nm. (b) When the λwave fixed at 889.9 nm, the various resonant
modes overlap with the λwave as the parameters of d vary.

to heightened energy density and amplified intensity, by ex-
tension. Moreover, there exist coupling phenomena between
these resonant modes. As a consequence of this coupling,
the intensity of particular modes can experience an increase,
while the intensity of other modes may conversely diminish.

With the λwave held constant, adjustment of the parame-
ter d allows for manipulation of the PBGs positions. This
permits precise alignment of the incident wavelength λwave

with neighboring and distinct resonant peaks, albeit limited
to the display of only the adjacent five resonant peaks near
the PBGs edges due to space constraints. The λwave = 889.9
nm, indicated by the shaded grey region within Figs. 3(a) and
3(b). Notably, during the transitional phase from 3217.66 nm
to 3223.19 nm, when d attains a value of 3217.66 nm, the
λwave harmonizes precisely with the resonant peak positioned
nearest to the edges of PBGs. In Fig. 3(b), the resonant mode
corresponding to the conversion efficiency shown in Fig. 2
is displayed and each resonant peak exhibits a transmittance

FIG. 4. The impact of the period number N, denoted as 50, 40,
30, or 20, on both the conversion efficiency and the location of
the matching point is examined. The four different colored curves
represent the observed conversion peaks under optimal matching
conditions. The displayed conversion peaks are generated by the
resonant mode closest to the PBG edge, omitting the conversion
peaks produced by other resonant modes.

exceeding 0.98. The variance in conversion efficiency at each
point stems from the position and intensity of the resonant
peaks. Resonant modes situated proximate to the PBGs edge
showcase enhanced strength, accompanied by an augmenta-
tion in group delay. Consequently, THW experiences lengthier
response times and yields higher conversion efficiency in the
vicinity of the edge relative to other positions. Moreover,
the HS characterized by a greater number of stacked periods
manifest more pronounced PBGs and sharper resonances.

Upon analysis of Fig. 4, a discernible trend emerges the
conversion efficiency at the optimal matching point experi-
ences successive declines of 0.09%, 0.17%, and 0.38% as the
period number N decreases from 50 to 40, to 30 and eventually
to 20. Additionally, the intervals between different matching
points grow larger as the parameter-d varies. In the transition
from N = 50 to N = 40, the interval amounts to 0.13 nm.
Similarly, when transitioning from N = 30 to N = 20, the in-
terval expands to 0.81 nm. These findings align harmoniously
with the previously discussed arguments, substantiating that
the reduction in the N diminishes the intensity of electric
field resonance modes at the PBGs edges. Consequently, this
decrement adversely affects the overall conversion efficiency.

It is widely acknowledged that the efficacy of THW conver-
sion efficiency is not solely contingent upon QPM conditions
but is also linked to the electric field strength of the incident
pump light. Figure 5 presents a visual representation delin-
eating the functional correlation between pump light strength
and THW conversion efficiency. As the electric field strength
of the pump light varies within the range of 1.7 × 109 V/m to
2.1 × 109 V/m, the conversion efficiency ascends from 0.92%
to 2.15%. By fitting the given results, a rough linear rela-
tionship describing this variation can be approximated. The
conversion efficiency is directly proportional to the strength
of the incident pump wave. In the realm of nonlinear optics,

023505-6



UNVEILING THE INTRICACIES OF NONLINEAR … PHYSICAL REVIEW A 110, 023505 (2024)

FIG. 5. The left panel showcases the augmentation in conversion
efficiency with the escalation of electric field strength at the QPM
point, specifically targeting the resonance peak closest to the PBGs
edge with the parameter d = 3217.66 nm. On the other hand, the
right panel exhibits the linear fitting curves for both variables, pro-
viding an effective visualization of their relationship.

when the pump light interacts with the medium, it initiates
photon interactions and facilitates energy transfer. These in-
teractions are typically accomplished through the utilization
of nonlinear polarization effects, wherein the response of the
medium becomes more pronounced as the electric field inten-
sity increases [26]. Accordingly, within the process of THW
generation, higher intensities of the pump light actively con-
tribute to the conversion of a greater number of photons into
harmonic photons through nonlinear processes. Consequently,
an increase in the strength of the pump light results in an
enhancement of the conversion efficiency.

In addition, the internal distribution of the fundamental
wave electric field intensity within the nonlinear medium
significantly affects the intensity of the PNL. Figure 6(a) il-
lustrates the intensity of the FW at different positions within
the HS. Due to refractive index mismatch within the lay-
ered structure, multiple reflections of the EM waves are
inevitable, leading to pronounced interference between the
reflected waves at different interfaces. It is evident that the FW
electric field undergoes several-fold amplification throughout
the propagation process. The distribution of the THW electric
field within the HS is shown in Fig. 6(b). Due to the periodic
distribution of the nonlinear medium, the variation of the
THW within the HS is more uniform compared to the FW.
It is worth noting that the electric field of the THW not only
depends on the intensity of the FW, as mentioned earlier, but
also incorporates contributions from the “free wave” ampli-
tude and “bound wave” amplitude.

IV. CONCLUSION

In this paper, a method grounded in the transfer matrix
was devised, enabling an exploration of the THG within a
layered HS composed of materials exhibiting nonlinearity. By
considering multiple reflections and interference, a procedure
was provided that allows for the computation of both forward-
and backward-propagation of the THW. In situations where
the lengths of the samples are akin, a comparative analysis
with the customary QPM scheme has evinced the amplifica-
tion of the nonlinear processes engendered by this novel HS.
Such enhancement can be ascribed to the harnessing of potent
electric field energies and locally augmented electromagnetic

FIG. 6. When λwave = 889.9 nm, (a) the spatial distribution of
the FW electric field intensity inside the HS varies with the normal-
ized propagation length (normalized by the incident electric field
intensity). (b) The spatial distribution of the THW electric field
intensity inside the HS varies with the normalized propagation length
(normalized by the backward-transmitted THW intensity, and the
propagation length is normalized by the thickness of each medium
layer).

mode densities, which are proximate to the PBGs. Further-
more, a direct pathway to optimizing parameters is offered,
thereby enhancing the conversion efficiency, considering the
intricate nature of the field dynamics characteristic of the
HS. The distinct optical characteristics and energy conversion
capabilities of THW have played a crucial role in advancing
optical imaging, spectroscopy, biomedical applications, and
laser technology. In light of these contributions, our research
endeavors will be centered around the enhancement of har-
monic conversion efficiency.
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