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We present a detailed theoretical analysis of a peculiar generation of multiple bound states in the continuum
(BICs) in two-dimensional periodic arrays of dielectric spheres. They emerge in high-symmetry lattices with the
C6v and C4v point groups and involve doubly degenerate quasiguided modes at the � point that can couple to
external radiation. By tuning a system parameter, the doubly degenerate modes can exhibit accidental BICs at a
critical parameter. In the vicinity of the critical parameter, the two bands originating from the degenerate mode
exhibit multiple off-� BICs. They move and annihilate across the two bands by changing the parameter around
the critical one. A ring-like high-Q channel pinned with multiple BICs emerges particularly for the C6v case.
Across the critical coupling, the total vorticity of the multiple BICs is conserved. The k · p perturbation theory
explains some features of the phenomena reasonably well.

DOI: 10.1103/PhysRevA.110.023504

I. INTRODUCTION

Optical bound states in the continuum (BIC) are localized
eigenstates embedded in the radiation continuum [1]. They
have infinite quality factors or, in other words, vanishing
decay rates, although they are inside the light cone. Strong
light confinement via the infinite quality factor enables us to
investigate various applications such as lasing [2], sensing [3],
nonlinear optics [4], and so on, via BICs.

The BICs are found typically in monolayers of spheres and
photonic crystal slabs at the � point [5–8]. Off-� BICs are
also found at generic k points [9,10] via the formation of
polarization vortices [11]. The former BICs are symmetry-
protected and irrelevant to physical parameters unless the
relevant symmetry is unchanged. The latter ones are topo-
logically protected, moving in momentum space. Therefore, a
parameter scan is necessary to find the latter BICs at a given k
point other than �. In this sense, the off-� BICs are sometimes
called accidental.

Recently, merging of an at-� BIC and off-� BICs in a
nondegenerate isolated band attracts much interest as the so-
called super-BIC [12,13]. This BIC is obtained by tuning
system parameters such that the off-� BICs move toward
the � point, where the symmetry-protected BIC exists. The
super BIC has superb properties as it involves an extreme
suppression of the decay rate in a broad region of the mo-
mentum space around �. The decay rate behaves as k6 (k8

for higher-order charges [14]), in striking contrast to the
k2 (k4 for higher-order charges) behavior of the symmetry-
protected BICs. Merging among BICs is available also off the
� point [15], resulting in a (k − kBIC)4 behavior.

Another type of super-BICs was found recently in mono-
layers of spheres [16]. From now on, we call it the
next-to-super-BIC. It is obtained at the � point by tuning
system parameters and exhibits a k4 scaling of the decay rate
at a critical parameter. In contrast to the ordinary super-BIC,

it involves doubly degenerate eigenmodes at the � point.
Moreover, off-critical parameters result in a ring-like high-Q
channel in the triangular lattice system. This high-Q channel
is either P- or S-polarization-like and can be switched by
changing the parameter across the critical value.

Once we have a high-Q channel, we have a continuous
distribution of optical modes with strongly enhanced light-
matter interactions. The channel can be selectively excited by
the polarization of the incident light. As a result, we can steer
the coherent radiation continuously along the ring. The output
light has nearly the same frequency, but the angle changes
continuously. Such a beam steering paves the way for various
applications.

In this paper, we further investigate the next-to-super-BICs
and show that multiple off-� BICs are generated at off-critical
parameters nearby. We show more complex behaviors than in
Ref. [16] can be observed. In addition to the ring-like channel,
discrete multiple BICs can be generated through the next-to-
super-BICs. In this case, the ring is formed asymmetrically in
the parameter space. If we change the parameter across the
critical value, the ring disappears, and multiple discrete BICs
are again generated. Across the critical parameter, the total
vorticity of the BICs is conserved. In addition, the appearance
of the ring depends on the lattice structure.

One of the points behind the above phenomena is spatial
symmetry. We show that the k · p perturbation theory based on
spatial symmetry explains some properties of the phenomena
reasonably well.

The ring-like high-Q channel can be explained in terms of
the multipolar lattice [17,18]. However, the lattice-structure
dependence needs complementary approaches to understand
the phenomena. The k · p perturbation provides one reason-
able scenario as shown in this paper.

The multiple off-� BICs are also produced by breaking
spatial symmetries of photonic crystal (PhC) slabs [19–21].
There, degenerate or nondegenerate symmetry-protected
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BICs at � turn into multiple off-� BICs. Since the orig-
inal symmetry-protected BICs exist irrespective of system
parameters, the resulting multiple BICs are deterministic and
parameter tuning is unnecessary.

This paper is organized as follows. In Secs. II and III, we
present numerical examples of the accidental at-� BICs and
resulting multiple off-� BICs in the triangular and square
lattices of dielectric spheres, respectively. In Sec. IV, we
analyze these phenomena via the k · p perturbation theory of
the Maxwell equation. Finally, in Sec. V, we summarize the
results.

II. TRIANGULAR LATTICE

Let us first consider the next-to-super-BICs in a monolayer
of dielectric spheres arranged in a triangular lattice. The sys-
tem has the C6v point group symmetry [22]. Therefore, the
eigenmodes are classified according to the irreducible repre-
sentations of C6v . At the � point, the eigenmodes with the
E1 representation of C6v can couple to external radiation. The
other eigenmodes of A1, A2, B1, B2, and E2 representations
are uncoupled, provided their eigenfrequencies are below the
diffraction threshold. Thus, the former eigenmodes generally
have finite lifetimes, whereas the latter eigenmodes have infi-
nite lifetimes and are symmetry-protected BICs.

However, tuning system parameters can cause the former
eigenmodes to have infinite lifetimes. In this way, accidental
at-� BICs can occur for the E1 modes.

Figure 1 shows the resonance angular frequency ωk and
width γk of the E1 modes at the � point (k = 0). They are
evaluated with the photonic Korringa-Kohn-Rostoker (KKR)
method [23–25] together with the curve fitting to the Breit-
Wigner formula [26] of the scattering phase shift δ as a
function of angular frequency ω:

e2iδ = e2iδk

(
ω − ωk − iγk

ω − ωk + iγk

)n

, (1)

where δk is the background (frequency-independent) phase
shift, and n is the degree of degeneracy of the resonant mode
concerned. The scattering phase shift is derived from the S
matrix of the monolayer [27]. At several radii, the eigenmodes
exhibit infinite quality factor accidentally.

Such an accidental at-� BIC can be easily found the-
oretically and experimentally by monitoring the change of
the resonance signal in the transmission spectrum of the
normal incidence. For instance, Fig. 2 shows the change
of the transmission spectrum with the sphere radius around
the critical one of BIC1 in Fig. 1. Since the modes
other than E1 are symmetry-protected, they do not af-
fect the transmission spectrum. Solely the modes of the
E1 representation emerge as an asymmetric resonance sig-
nal of the Fano shape [28] in the spectrum. The spectrum
changes with the radius, and we can find a narrowing of
the resonance width toward the critical radius. The van-
ishing resonance width corresponds to the accidental at-�
BIC.

The above property of the next-to-super-BIC presents a
marked contrast to the super BIC. In the latter case, the
BIC consists of a symmetry-protected BIC and topologically
protected BICs, so it is impossible to observe the super BIC

FIG. 1. The resonance (a) angular frequencies ω0 and (b) widths
γ0 of the E1 modes at the � point in the triangular-lattice monolayer
of dielectric spheres with the C6v point group symmetry, as a function
of sphere radius rs. The modes are classified according to the parity
in the z direction, assuming the centers of the spheres are on the z = 0
plane. The dielectric constant of the spheres is taken to be 12, and that
of the background material is 1. The lattice constant is denoted by a.
Accidental at-� BICs (next-to-super BICs) occur around the modes
indicated by solid circles. The inset in (a) stands for the geometry of
the monolayer.

via the transmission spectrum of the normal incidence. It is
available only through a detailed analysis of the momentum
and parameter dependence of the spectrum.

Figure 3 shows the real and imaginary photonic band
structure around the critical radius of BIC1. Here, the real
photonic band structure is referred to as the resonance angular
frequency ωk , and the imaginary one is to the resonance width
γk , as a function of Bloch momentum k. Although the real
band structure does not change so much in its shape, the
imaginary band structure exhibits a clear contrast between the
two bands of opposite parities and among the three values of
on- and off-critical radii. Below the critical radius [Figs. 3(a)
and 3(b)], the odd-parity band exhibits the off-� BIC at about
ka/2π = 0.1. At the critical radius [Figs. 3(c) and 3(d)], both
the bands exhibit a flat region of nearly zero values in their
imaginary parts. This suppression of the decay rate resembles
that in the super-BIC. However, now γk behaves as k4 instead
of the k6 behavior of the super-BIC. Above the critical radius
[Figs. 3(e) and 3(f)], the even-parity band exhibits the off-�
BIC.

For comparison, the photonic bands originating from the
symmetry-protected BICs at � exhibit a quick blow-up of the
imaginary parts with the k2 scaling as shown in Fig. 4. Near
the � point, we do not observe the trend of decreasing the
imaginary part toward a minimum. We should point out that
the imaginary part is much larger than that from the E1 mode,
whose imaginary part is significantly suppressed.
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FIG. 2. Specular transmission spectra of the normal incidence
in the triangular lattice monolayer of dielectric spheres. The sphere
radius varies from 0.36a to 0.41a with a 0.005a step. The other
parameters are the same as in Fig. 1. The vanishing resonance signal
of the red curve indicates the accidental at-� BIC of BIC1 in Fig. 1.

By scanning the Bloch momentum in all the directions
around the � point, the real band structure consists of two
surfaces touched quadratically at the � point, as shown in
Fig. 5. The upper and lower bands are S- and P-polarization-
like, respectively.

Figure 6 shows the Q-value map of the photonic band
modes at the off-critical radii. It is remarkable that the ring-
like high-Q channels found in Ref. [16] are formed. The
channels lies in the S-polarization-like upper band at rs < rc

and in the P-polarization-like lower band for rs > rc. The
other bands (the lower band at rs < rc and the upper band at
rs > rc) do not have such channels. These channels indicate
that the minimum decay rate γk at the off-critical radii found
in Fig. 3 emerges at nearly the same distance from the � point
regardless of momentum orientation. As we move the radius
rs toward rc, we can show the ring shrinks to the � point
and across rs = rc, the ring moves from the upper band to the
lower band or vice versa.

Looking closely at the rings, we find 12 off-� BICs: six
on the equivalent �M axes and six on the equivalent �K
axes. These axes are the mirror axes of the triangular-lattice
Brillouin zone. The polarization vortices of the BICs are very
elongated along the rings. The vortex charge diagram is shown
in Fig. 7. The vortex charges are opposite between �M and
�K. Off the mirror axes, the Q values in the ring are still
very high, of order 10−8. Thus, the ring-like high Q channel
is of quasi-BICs pinned with the true BICs on the mirror
axes.

In the above argument, the polarization ellipse in two-
dimensional (2D) momentum space is for the complex 2D

FIG. 3. Real and imaginary photonic band structures of the z-
even parity originating from the E1 mode around the critical radius
rc of BIC1 in Fig. 1. The momentum is taken along the �M and �K
directions. The band structure is classified according to the in-plane
parity concerning the �M and �K axes. The sphere radius is fixed as
(a,b) rs = 0.38a, (c,d) rs = 0.385a (� rc), and (e,f) rs = 0.388a. The
other parameters are the same as in Fig. 1. The inset in (b) represents
the first Brillouin zone of the triangular lattice.

polarization vector e+ defined by

e+ = t+
P0k̂ + t+

s0k̂⊥, (2)

E±(x) =
∑

g

(t±
PgP±

g + t±
SgSg)eiK±

g ·x, (3)

P±
g = ±�g

q0
k̂g − |kg|

q0
ẑ, Sg = (k̂g)⊥, (4)

K±
g = kg ± �gẑ, �g =

√
q2

0 − (kg)2, (5)

kg = k + g, q0 = ω

c
, (6)

where E±(x) is the electric field of the photonic band mode
above (superscript +) and below (−) the monolayer (see
Appendix B), k is a 2D Bloch momentum, and g is a 2D
reciprocal lattice. In the far field, solely the g = 0 component
survives, so that the far-field polarization is determined by t+

P0
and t±

S0. In addition, the vortex charge q is defined by

q = 1

2π

∮
dθk, (7)
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FIG. 4. Real and imaginary photonic band structure originating
from symmetry-protected BICs at the � point. The z parity is odd.
The momentum is taken along the �K direction. The sphere radius is
fixed as rs = 0.38a. The other parameters are the same as in Fig. 1.

where θk is the argument of the long axis of the polarization
ellipse, and the integration contour orbits the vortex core.

Around the BIC2 in Fig. 1, we have similar behavior in
the ring-like quasi-BICs pinned with multiple true BICs on
the mirror axis. However, a slightly different behavior than
in Fig. 6 is observed. Figure 8 shows the evolution of the
multiple BICs through the critical radius of BIC2. Across the
critical radius, the ring-like BIC moves from the upper band
to the lower band. At rs = 0.452a(> rc), there are extra BICs
on the �M axes other than the ring-like BICs of the accidental

FIG. 5. Real band structure originating from the E1 mode at the �

point near the accidental BIC of BIC1 in Fig. 1. The sphere radius is
0.38a. The band structure with |ka/2π | � 0.15 is plotted. The other
parameters are the same as in Fig. 1.

FIG. 6. Q-value map of the two bands originating from the E1

mode at the � point near the accidental BIC of BIC1 in Fig. 1.
The (a) upper and (c) lower bands (in the real band structure) at
rs = 0.38a(< rc ). The real band structure at this parameter is shown
in Fig. 5. The (b) upper and (d) lower bands at rs = 0.388a(> rc ).
Insets show the close-up views overlaid by the polarization ellipse
map of the photonic band with off-� BICs. The vortex charge is
denoted by q.

at-� BIC origin. The latter ring is deformed from a circular
shape to a hexagonal shape by a substantial perturbation. If
we further increase the radius, the extra BICs merge with the
true BICs on �M in the ring, and the ring is further deformed.

The BIC3 in Fig. 1 is found at rs = 0.495a, near the
close-packing condition of the triangular lattice. Within the
photonic KKR method employed in this paper, there is not

FIG. 7. Schematic illustration of the vortex charge diagram in the
ring. The charge distribution is common between the two rings of
Fig. 6.
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FIG. 8. Evolution of multiple off-� BICs around the critical ra-
dius rc � 0.45a of BIC2 in Fig. 1. The upper two rows show the
Q value map of the upper and lower bands originating from the E1

mode at the � point. The lower row shows the vortex charge diagram
of the off-� BICs. The inset shows the real band structure around the
critical radius.

enough parameter space to enlarge the sphere radius beyond
the close-packing condition. We do not consider this BIC here.

The BIC4 has a relatively high resonance frequency, giving
rise to a more complex multiple off-� BIC distribution around
the critical radius. Figure 9 shows the evolution of the multiple
off-� BICs through the critical radius of BIC4. Now the ring
is formed for the lower band at rs = 0.45a(> rc). The upper
band exhibits additional BICs on �M. This ring pinned with
true BICs on �M and �K, and the additional BICs shrink to
the � point as rs → rc. Then, at rs = 0.44a(< rc), the ring
disappears in the lower band, and discrete BICs are generated
from the � point of the upper band. The total vorticity is
conserved across the critical radius.

The BIC5 also have a high resonance frequency, resulting
in a complex behavior of multiple off-� BICs affected by a
nearby band of a higher-order vortex charge at the � point.
We do not consider this BIC here.

III. SQUARE LATTICE

A similar design of the accidental at-� BIC and subsequent
multiple off-� BIC generation is available for the square-
lattice systems with the C4v point group. A fine-tuning of
a system parameter results in the accidental at-� BIC of a
doubly degenerate E mode at the � point. Above and below
the critical parameter, multiple off-� BICs emerge in the two
bands originating from the E mode at �. The eigenmodes
of A1, A2, B1, and B2 representations of C4v at the � point
are symmetry-protected BICs provided that there are no open
diffraction channels other than the specular one.

FIG. 9. Evolution of multiple off-� BICs around the critical ra-
dius rc � 0.445a of BIC4 in Fig. 1. The upper two rows show the
Q value map of the upper and lower bands originating from the E1

mode at the � point. The lower row shows the vortex charge diagram
of the off-� BICs. The inset shows the real band structure around the
critical radius.

Figure 10 shows the design of the accidental at-� BIC in
the square lattice of identical spheres. By changing the sphere
radius, we can find three critical radii of the accidental at-�
BICs at rs � 0.415a, 0.485a, and 0.49a for the z-even, z-odd,
and z-even parities, respectively.

Considering the parameter regions around the critical ra-
dius rc, we have multiple off-� BICs. Figure 11 shows the
real and imaginary photonic band structures of the z-even
parity around the critical radius of BIC1 in Fig. 10. As in
Fig. 3, the real band structure does not change so much,
while the imaginary band structure changes remarkably by
changing the sphere radius. Concerning the �M direction, a
similar trend as in Fig. 3 is observed. Namely, above and
below the critical radius, the band that exhibits the off-� BIC
at a nonzero momentum is interchanged. Below the critical
radius [Figs. 11(a) and 11(b)], the odd-parity band exhibits
the BIC while above the critical radius [Figs. 11(e) and 11(f)],
the even-parity band exhibits the BIC in �M. The suppression
of the decay rate at about the critical radius is weaker in �M
but is stronger in �X. Such an anisotropy is manifest also in
the real band structure. As for the �X direction, both the even-
and odd-parity bands exhibit the off-� BICs below the critical
radius, while the BICs are absent above the critical radius.

By scanning all the directions around the � point, the real
band structure is shown in Fig. 12. The anisotropy is evident
in the band structure. The upper band is S-like, and the lower
band is P-like.
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FIG. 10. Resonance (a) angular frequencies ω0 and (b) widths
γ0 of the E modes at the � point in the square-lattice monolayer of
dielectric spheres with the C4v point group symmetry, as a function
of sphere radius rs. The modes are classified according to the parity
in the z direction, assuming the centers of the spheres are on the
z = 0 plane. The dielectric constant of the spheres is 12, and that of
the background material is 1. The lattice constant is denoted by a.
Accidental at-� BICs occur around the modes indicated by the solid
circles. The inset in (a) stands for the geometry of the monolayer.

Figure 13 shows the Q-value maps of the two photonic
bands originating from the E mode at the off-critical radii
of Fig. 11. Now, the ring-like BICs found in the triangular-
lattice system are absent. A similar pattern as in Fig. 13(a)
was observed in Ref. [16]. At rs = 0.41a, the total vorticity
vanishes in the upper band. However, the lower band sustains
the additional BICs on the �X axes. The net vorticity of the
upper and lower bands is thus nonzero. All the BICs are
discrete and move toward the � point as rs → rc. At rs = rc,
the BICs are collapsed there. Across the critical coupling,
multiple off-� BICs are again generated now on the �M axes.
The total vorticity is conserved across the critical coupling.

As for the BIC2 of Fig. 10, the evolution of the multiple
off-� BICs across the critical radius is shown in Fig. 14. Since
the two bands intersect in �M, the Q-value becomes singular
there. At rs = 0.48a, the upper band exhibits the eight off-�
BICs. They are elongated, and their polarizations are perpen-
dicular and parallel to the �X and �M axes, respectively. The
lower band holds four off-� BICs on the �M axes. All the
BICs moves toward the � point as rs → rc. After the collapse,
the four off-� BICs are generated as in BIC1.

The BIC3 exists in a close vicinity of another E1 mode,
resulting in mixed four bands. We do not consider this BIC
here.

IV. k · p PERTURBATION THEORY

Let us consider the phenomena obtained in Secs. II and III
in the k · p perturbation. The eigenmodes in the monolayer are

FIG. 11. Real and imaginary photonic band structure of the z-
even parity, originating from the E mode around the critical radius
rc of BIC1 in Fig. 10. The momentum is scanned in the �X and
�M directions. The photonic bands are further classified according to
the parity in these directions. The sphere radius is (a,b) 0.41a, (c,d)
0.415a(� rc ), (e,f) and 0.42a. The other parameters are the same as
in Fig. 10. The inset in (b) represents the first Brillouin zone of the
square lattice.

determined by

∇ ×
(

1

ε(x)
∇ × H (x)

)
= ω2

c2
H (x). (8)

Here H is the time-harmonic magnetic field with angular
frequency ω, and ε(x) is the dielectric function that is periodic
in the in-plane coordinate x‖. The inverse dielectric function
can be expanded as

1

ε(x)
=

∑
g

eig·x‖ηg(z). (9)

In addition, the radiation field is also expanded by the plane
waves via Bloch’s theorem as

H (x) =
∑

g

ei(k+g)·x‖hg(z). (10)

Accordingly, the equation to be solved becomes∑
g′

(i(k + g) + ẑ∂z ){ηg−g′ (z)[i(k + g′) + ẑ∂z] × hg′ (z)}

= ω2

c2
hg(z), (11)
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FIG. 12. Real band structure originating from the E mode at the
� point near the accidental BIC of BIC1 in Fig. 10. The sphere radius
is 0.41a. The z parity is even. The band structure with |ka/2π | � 0.2
is plotted. The other parameters are the same as in Fig. 10.

which is symbolically expressed as

H|ψ〉 = E |ψ〉, E = ω2

c2
. (12)

Suppose we have a nearly accidental BIC of a doubly
degenerate eigenmode at the � point. We perform the k · p
perturbation starting from these states as the zeroth-order

FIG. 13. Q-value map of the two bands originating from the E
mode at the � point near accidental BIC of BIC1 in Fig. 10. The
(a) upper and (c) lower bands at rs = 0.41a(< rc ). The (b) upper and
(d) lower bands at rs = 0.42a(> rc ). The insets show the close-up
view of the Q-value map overlaid with the polarization ellipse map.

FIG. 14. Evolution of multiple off-� BICs around the critical
radius rc � 0.485a of BIC2 in Fig. 10. The upper two rows show
the Q-value map of the upper and lower bands originating from the
E mode at the � point. The lower row shows the vortex charge
diagram of the off-� BICs. The inset shows the real band structure
(at rs = 0.495a).

ones. The effective Hamiltonian to be diagonalized is given
by [29]

Heff
ab = 〈φ0a|H(2)|φ0b〉

+
∑
n 	=0

1

ε0 − εn
〈φ0a|H(1)|φn〉〈φn|H(1)|φ0b〉, (13)

H(0)|φ0a〉 = ε0|φ0a〉, H(0)|φn〉 = εn|φn〉, (14)

where H(i) is the operator in the left-hand side of Eq. (11)
expanded by Bloch momentum k (i = 0, 1, and 2 imply
k = 0, k linear, and k quadratic, respectively). The state |φ0a〉
(a = 1, 2) represents the doubly degenerate nearly accidental
BIC mode at �. Here we assume the degeneracy is not lifted
in the first-order perturbation. That is,

〈φ0a|H(1)|φ0b〉 = 0. (15)

This property is verified explicitly by the C6v or C4v sym-
metry. More generally, the matrix element 〈φm|H(1)|φn〉 is
nonzero only if (φm, φn) is attributed to (E1, E2), (E1, A1),
(E1, A2), (E2, B1), (E2, B2), and vice versa for C6v , and to
(E , A1), (E , A2), (E , B1), (E , B2), and vice versa for C4v (see
Appendix A).

The sum in the second term of Eq. (13) generally includes
the continuous radiation modes and discrete quasiguided
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modes other than the mode concerned, as the intermediate
states. The continuous radiation modes give the decay rate
to the original eigenmode via Fermi’s golden rule [30,31].
However, if we start from the mode of the nearly accidental
at-� BIC, the decay rate is strongly suppressed.

The continuous radiation modes belong to the same ir-
reducible representation as the original doubly degenerate
mode below the diffraction threshold. Therefore, the ma-
trix elements vanish between the nearly accidental at-� BIC
and radiation modes. That is why the decay rate is strongly
suppressed.

In the C6v case, the effective Hamiltonian is expressed as

Heff = αk21 + β
[(

k2
x − k2

y

)
σ3 + 2kxkyσ1

]
, (16)

α = α
(2)
E1E1

+
∑
n∈E2

∣∣α(1)
E1E2

∣∣2

ε0 − εn
+ 1

2

∑
n∈A1

∣∣α(1)
E1A1

∣∣2

ε0 − εn

+ 1

2

∑
n∈A2

∣∣α(1)
E1A2

∣∣2

ε0 − εn
, (17)

β = β
(2)
E1E1

+ 1

2

∑
n∈A1

∣∣α(1)
E1A1

∣∣2

ε0 − εn
− 1

2

∑
n∈A2

∣∣α(1)
E1A2

∣∣2

ε0 − εn
, (18)

where σi(i = 1, 2, 3) is the Pauli matrix and parameters α
(2)
E1E1

and so on are given in Appendix A. The resulting effective
parameters α and β are complex with Im[α] � 0. Their imag-
inary parts come solely from the one in the eigenfrequency
of the E1 mode, namely, ε0 = (ω0 − iγ0)2/c2, provided that
the intermediate modes are lossless (Im[εn] = 0). Therefore,
if we start with the E1 mode of the perfect accidental at-�
BIC (γ0 = 0), Im[α] = Im[β] = 0 so that we still have a
vanishing decay rate even at finite k, within the second-order
k · p perturbation. This is the case of the extreme suppression
of the decay rate around the � point of the accidental (next-to-
super) BIC. Since the third-order terms vanish by the inversion
symmetry, the imaginary frequencies of the two bands behave
k4 as pointed out in Ref. [16].

By diagonalizing the effective Hamiltonian, the eigenfre-
quencies of the two bands that stem from the E1 mode at �

are given by

ω2

c2
= (ω0 − iγ0)2

c2
+ (α ± β )k2, (19)

H+
k (x) ∝ kxH (01)

E1
(x) + kyH (02)

E1
(x), (20)

H−
k (x) ∝ −kyH (01)

E1
(x) + kxH (02)

E1
(x), (21)

where (H (01)
E1

, H (02)
E1

) forms the E1 representation at �. If γ0 �
ω0, the decay rate γk is evaluated as

γk � γ0 − c2

2ω0
Im[α ± β]k2. (22)

The radiation field of H+(−)
k is P-like (S-like). The property

of Im[α] > 0 promises a monotonic decreasing of the decay
rate γk with increasing |k| for at least one band because ei-
ther Im[α + β] or Im[α − β] is promised to be positive. The
behavior of the other band depends on the relative magnitude
of Im[α] and Im[β]. Across Im[β] = 0, the band with fast

FIG. 15. Comparison in the complex band structures of
Figs. 3(a) and 3(b) between the KKR result and the k · p per-
turbation of Eq. (19) with a numerical fitting. Fitted values are
α = 0.111 + i9.56 × 10−5 and β = −0.132 + i1.20 × 10−3.

decreasing decay rate with |k| is interchanged. This condi-
tion is satisfied at the critical coupling. There, γ0 = 0 and
thus Im[β] = 0. Moreover, since the dispersion relation is
isotropic, we can have ring-like BICs at the minimum of γk .
These results explain Fig. 6 reasonably well.

More direct and quantitative comparison between the KKR
calculation and the k · p perturbation needs special care. The
perturbation requires a regularization of the nonnormalizable
(due to the radiation loss) quasiguided modes of the E1 repre-
sentation. Therefore, the parameters α

(1)
E1A1

and so on become
regularization dependent. To avoid such an artifact, we con-
sider the fitting of the real and imaginary band structures
around the � point by complex parameters of α and β. The
result is shown in Fig. 15. Since the k · p perturbation is valid
only for small |k|, it can describe the trend there reasonably
well. In particular, the fitting of the real band structure is
perfect. However, the fitting of the imaginary band structure
is not good enough. In the second-order k · p perturbation, the
lower bound of γk (γk � 0) is ignored, so that the fitted γk can
go down beyond the lower bound. This is a drawback of the
present approach.

As for Figs. 8 and 9, the spatial anisotropy is very strong, so
that the k · p perturbation that predicts the isotropic dispersion
is not so efficient.

In the C4v case, the effective Hamiltonian becomes

Heff = αk21 + β1
(
k2

x − k2
y

)
σ3 + 2β2kxkyσ1, (23)

α = α
(2)
EE + 1

2

∑
n∈A1

∣∣α(1)
EA1

∣∣2

ε0 − εn
+ 1

2

∑
n∈B1

∣∣α(1)
EB1

∣∣2

ε0 − εn

+ 1

2

∑
n∈A2

∣∣α(1)
EA2

∣∣2

ε0 − εn
+ 1

2

∑
n∈B2

∣∣α(1)
EB2

∣∣2

ε0 − εn
, (24)
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β1 = β
(2)
1:EE + 1

2

∑
n∈A1

∣∣α(1)
EA1

∣∣2

ε0 − εn
+ 1

2

∑
n∈B1

∣∣α(1)
EB1

∣∣2

ε0 − εn

− 1

2

∑
n∈A2

∣∣α(1)
EA2

∣∣2

ε0 − εn
− 1

2

∑
n∈B2

∣∣α(1)
EB2

∣∣2

ε0 − εn
, (25)

β2 = β
(2)
2:EE + 1

2

∑
n∈A1

∣∣α(1)
EA1

∣∣2

ε0 − εn
− 1

2

∑
n∈B1

∣∣α(1)
EB1

∣∣2

ε0 − εn

− 1

2

∑
n∈A2

∣∣α(1)
EA2

∣∣2

ε0 − εn
+ 1

2

∑
n∈B2

∣∣α(1)
EB2

∣∣2

ε0 − εn
. (26)

By diagonalizing the effective Hamiltonian, the eigenfre-
quency becomes

ω2

c2
= (ω0 − iγ0)2

c2
+ αk2 ±

√
β2

1

(
k2

x − k2
y

)2 + 4β2
2 k2

x k2
y .

(27)

Again, Im[α] > 0, promising a monotonic decreasing of the
imaginary part in Eq. (27) with increasing |k| for at least one
band branch. Now, Eq. (27) is not isotropic. Thus, the ring-like
high-Q channel is not formed. This trend is entirely consistent
with the numerical results obtained in Sec. III.

On the �X axis (ky = 0), the two eigenstates become

ω2

c2
= (ω0 − iγ0)2

c2
+ (α ± β1)k2

x , (28)

H+
k (x) = H (01)

E (x), H−
k (x) = H (02)

E (x), (29)

where (H (01)
E , H (02)

E ) forms the E representation at �. Since
the E representation behaves as (x, y), H+

k is P polarized and
H−

k is S polarized. One of the eigenmodes is promised to have
a decreasing decay rate with |kx|, and the two eigenmodes are
interchanged at Im[β1] = 0 via the critical coupling condition
Im[γ0] = 0.

On the �M axis (kx = ky), the eigenstates become

ω2

c2
= (ω0 − iγ0)2

c2
+ 2(α ± β2)k2

x , (30)

H±
k (x) ∝ H (01)

E (x) ± H (02)
E (x). (31)

The eigenmode of superscript “+′′ is P polarized, and “−” is
S polarized. One of the two eigenmodes is promised to have
a decreasing decay rate with |kx|, and the two eigenmodes are
interchanged at Im[β2] = 0 via the critical coupling condition
Im[γ0] = 0. Again, these features are consistent with Figs. 13
and 14.

The symmetry-protected BICs are also available for C3v

point group systems. There, the eigenmodes of the A1 and
A2 representations at the � point are symmetry-protected,
provided there are no open diffraction channels other than the
specular one. In this case, it is possible to have accidental at-�
BICs for the eigenmodes of the E representation by tuning
system parameters.

The effective Hamiltonian around the nearly accidental
at-� BIC mode is given by

Heff = αk21 + β
[(

k2
x − k2

y

)
σ3 + 2kxkyσ1

]
, (32)

α = α
(2)
EE +

∑
n∈E

′
∣∣α(1)

EE

∣∣2

ε0 − εn
+ 1

2

∑
n∈A1

∣∣α(1)
EA1

∣∣2

ε0 − εn
+ 1

2

∑
n∈A2

∣∣α(1)
EA2

∣∣2

ε0 − εn
,

(33)

β = β
(2)
EE + 1

2

∑
n∈A1

∣∣α(1)
EA1

∣∣2

ε0 − εn
− 1

2

∑
n∈A2

∣∣α(1)
EA2

∣∣2

ε0 − εn
, (34)

where the prime in the second term of Eq. (33) means the
unperturbed E mode is excluded in the sum. In this case,
a significant contribution to the decay rate emerges from
the continuous radiation modes of the E representation via
Fermi’s golden rule. Therefore, suppressing of the decay rate
at nonzero |k| near the accidental BIC (at �) does not occur.
Consequently, the multiple off-� BICs are absent in the k · p
perturbation theory.

In the above arguments, we do not rely on the monolayer
of spheres presented in Secs. II and III, but on the spatial
symmetry of C6v , C4v , and C3v . Accordingly, the multiple
BIC generation with the present scenario is available in other
photonic membranes with C6v or C4v . We can show PhC slabs
with the triangular or square lattice of circular air holes exhibit
multiple BIC generations. The ring-like high-Q channel is also
formed in the C6v case.

V. SUMMARY

In summary, we presented a detailed theoretical analysis of
the multiple BIC generation in the monolayers of spheres with
C6v or C4v point group. A tuning of system parameters results
in an accidental at � BIC of doubly degenerate eigenmodes
at the � point. This BIC, obtained at a critical parameter, is
the next-to-super-BIC with extremely suppressed decay rates
around the � point. Off-critical parameters yield multiple off-
� BICs that are generated from the next-to-super-BIC at the
� point.

In the C6v point group system, a ring-like high-Q channel
pinned with multiple off-� BICs on the mirror axes can be
formed in the two bands originating from the doubly degen-
erate E1 mode at the � point. The spatial anisotropy destroys
the ring in the C4v point group system, but multiple BICs are
certainly formed. Across the critical parameters, these BICs
move from the upper band to the lower band or vice versa,
conserving the total vorticity of the BICs.

We also show that these phenomena are owing to the spatial
symmetry of C6v or C4v and the k · p perturbation explains
the phenomena reasonably well. In addition, the C3v system
does not support the multiple BIC generation through a similar
design.
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APPENDIX A: MATRIX ELEMENTS
IN THE k · p PERTURBATION

We summarize various matrix elements relevant to
the effective Hamiltonian. The symmetry relation under
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point-group operations is crucial. It is given by

H(i)
R1R2

(k) = D†
R1

(A)H(i)
R1R2

(Ak)DR2 (A), (A1)

where the matrix element is the one between the modes
of irreducible representations R1 and R2, and DR(A) is the
representation matrix of group element A in the irreducible
representation R. Equation (A1) constrains the possible form
of the matrix elements as follows.

In the C6v case, The nonzero matrix elements in the first-
order k · p perturbation are given by

H(1)
E1E2

(k) = α
(1)
E1E2

(kxσ1 + kyσ3), (A2)

H(1)
E1A1

(k) = α
(1)
E1A1

(
kx

ky

)
, (A3)

H(1)
E1A2

(k) = α
(1)
E1A2

(−ky

kx

)
, (A4)

H(1)
E2B1

(k) = α
(1)
E2B1

(−ky

kx

)
, (A5)

H(1)
E2B2

(k) = α
(1)
E2B2

(
kx

ky

)
, (A6)

where α
(1)
E1E2

and so on are complex. The vanishing matrix
elements between E1 and B1(B2) are crucial for the k4 scaling
of the decay rate in the symmetry-protected BICs of the B1 and
B2 representations, which have a higher-order vortex charge of
q = −2.

In the second order, the relevant matrix element becomes

H(2)
E1E1

(k) = α
(2)
E1E1

k2 + β
(2)
E1E1

((
k2

x − k2
y

)
σ3 + 2kxkyσ1

)
, (A7)

where α
(2)
E1E1

and β
(2)
E1E1

are real.
In the C4v case, the nonzero matrix elements in the first-

order k · p perturbation are given by

H(1)
EA1

(k) = α
(1)
EA1

(
kx

ky

)
, (A8)

H(1)
EA2

(k) = α
(1)
EA2

(−ky

kx

)
, (A9)

H(1)
EB1

(k) = α
(1)
EB1

(
kx

−ky

)
, (A10)

H(1)
EB2

(k) = α
(1)
EB2

(
ky

kx

)
, (A11)

where α
(1)
EA1

and so on are complex. In the second order, the
relevant matrix element becomes

H(2)
EE (k) = α

(2)
EE k21 + β

(2)
1:EE

(
k2

x − k2
y

)
σ3 + β

(2)
2:EE 2kxkyσ1,

(A12)

where α
(2)
E1E1

, β
(2)
1:E1E1

, β
(2)
2:E1E1

are real.
In the C3v case, the nonzero matrix elements in the first-

order k · p perturbation are given by

H(1)
EE (k) = α

(1)
EE (kxσ1 + kyσ3), (A13)

H(1)
EA1

(k) = α
(1)
EA1

(
kx

ky

)
, (A14)

H(1)
EA2

(k) = α
(1)
EA2

(−ky

kx

)
, (A15)

where α
(1)
EE and so on are complex. The matrix element of

Eq. (A13) vanishes by the time-reversal symmetry if the two
E modes that form the matrix element are identical. In the
second order, the relevant matrix element becomes

H(2)
EE (k) = α

(2)
EE k2 + β

(2)
EE

[(
k2

x − k2
y

)
σ3 + 2kxkyσ1

]
, (A16)

where α
(2)
EE and β

(2)
EE are real.

The parameters α
(1,2)
R1R2

and β
(2)
R1R2

are not determined solely
from the symmetry relation [Eq. (A1)].

APPENDIX B: ELECTRIC FIELDS
OF QUASIGUIDED MODES

We employ the following method for evaluating the polar-
ization ellipse map. At a true BIC point, the kernel of a secular
matrix gives the eigenmode and its determinant vanishes on
the real frequency axis.

In the monolayer of spheres, the secular matrix S is given
by [23,32]

S(Lβ )(L′β ′ ) = δLL′δββ ′ − tβ

l Gββ ′
LL′ , (B1)

Gββ ′
LL′ = 1

l (l + 1)

∑
L1L2

[(Pβ )†]LL1 GL1L2 [Pβ ′
]L2L′, (B2)

GLL′ = 4π
∑
L′′

il−l ′−l ′′ 〈L|L′′|L′〉SL′′ , (B3)

SL =
∑
X 	=0

h(1)
l (q0|X |)Y ∗

L (X̂ )eik·X , (B4)

where L = (l, m) (|m| � l) is the angular momentum index,
β(= M, N ) is the index to classify two transverse vector
spherical waves, tβ

l is the so-called t matrix of the sphere,
Pβ is the transformation matrix from scalar spherical waves
to vector spherical waves, 〈L|L′′|L′〉 is the Clebsh-Gordan
coefficient, h(1)

l is the spherical hankel function of the first
kind, YL is the spherical harmonics, and X is the 2D real-lattice
vector. The structure constant SL is efficiently calculated via
the Ewald method [33]. Through ψ

β
L = Ker[S], the electric

field outside the monolayer is expressed as

E(x) =
∑
LX

h(1)
l (q0|x − X |)YL(̂x − X )V Leik·X , (B5)

V L =
∑
L′β

Pβ

LL′ψ
β

L′ . (B6)

Its plane-wave-expansion coefficient t±
σg (σ = P, S) becomes

t±
σg = 2π

q0�gAUC

∑
L

(−i)lYL(K̂
±
g )σ±

g · V L, (B7)

where AUC is the area of the unit cell.
Off the BIC point, the determinant is nonzero on the real

frequency axis but can be zero in the complex frequency
plane. This zero should be the resonance pole of the S matrix,
namely, �k = ωk − iγk . We assume that the right eigenstate
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of S with the least absolute eigenvalue can be approximated
as the kernel on the real frequency axis near the zero. Then,
we can obtain the plane-wave coefficients t±

σg(ω) through
Eq. (B7). We further assume that it can be Taylor expanded
around ω = �k , namely,

t±
σg(ω) � t±

σg(�k ) + (ω − �k )C±
σg (σ = P, S). (B8)

Then, from the two points ωa and ωb on the real frequency
axis, we can estimate t±

σg(�k ) as

t±
σg(�k ) = (ωa − �k )t±

σg(ωb) − (ωb − �k )t±
σg(ωa)

ωa − ωb
. (B9)

We confirm that the resulting t±
σ0(�k ) vanishes at the BIC

points.
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