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Proposed experiment to measure nonlinear optical susceptibilities in the saturated regime
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When an optical beam passes through a thin slice of a homogeneous material, the change of its phase and
amplitude is characterized by the material’s linear and nonlinear susceptibility, the latter also known as the
hyperpolarizability. The standard method for measuring the nonlinear susceptibility is the Z scan. This widely
used method is sometimes applied outside of its range of validity, leading to systematic errors. These errors
are illustrated for a two-level system with parameters taken from atomic rubidium. The present paper proposes
a method called the phase retrieval of modes to determine the nonlinear susceptibility without an assumption
about its functional form, in contrast to both the Z-scan method and variants intended to apply in cases of
saturation. In brief, a Gaussian beam passes through a thin sample and is detected on three planes in a focal scan.
Phase retrieval methods are used to find coefficients of the modes which in turn determine the optical nonlinear
susceptibility. Nearly exact recovery of the nonlinear susceptibility is shown numerically in the no-noise case.
Additionally, two types of noise are considered: shot noise on the detector and intensity fluctuations of the input.
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I. INTRODUCTION

The manipulation of light by light has been a key theme for
optics research in recent years [1,2]. For example, hot atomic
vapors are good sources of nonclassical light [3]. In a typical
experiment in nonlinear optics, a high-power beam known as
the pump prepares the system in some state. Other beams with
names such as the probe and conjugate, or the signal and idler,
enter and interact with the medium, possibly with a time delay.
The beam of interest may emerge nearly instantaneously, or
after a delay of microseconds to milliseconds in quantum
memory [4]. The beams may have specified frequency, phase,
intensity, and timing relations to each other as in the “coun-
terintuitive pulse sequence” used for the adiabatic transfer of
electrons in a three-level system [5].

The Kerr effect—the change of the index of refraction with
the intensity of the light—is arguably the simplest nonlinear
optical phenomenon since it involves a single beam at a single
frequency without modulation such as an atomic frequency
comb [6] or a chirp [7]. Atomic vapor systems can be saturated
under common laboratory conditions [8]. A good starting
point for a theory able to make predictions in quantum optics
is the ability to describe the saturated Kerr effect. In principle,
it is possible to predict these values by examination of a
density matrix determined by a Lindblad master equation [9].
The rate equations offer a simpler alternative [10], albeit one
with a smaller range of validity.

The Z scan is a widely used method to measure Kerr
coefficients [11,12]. The Z-scan method is relatively simple
to implement since it requires moving a sample through the
focus of a laser beam with a single-channel detector in the
far field. The method assumes that the Kerr coefficient is not
saturated, i.e., that the index of refraction obeys

n(I ) = n0 + n(u)
2 I (1)

where n0 is the linear index of refraction, n(u)
2 is the unsatu-

rated Kerr coefficient, I is the optical intensity, and n(I ) is the

intensity-dependent index of refraction. Both n0 and n(u)
2 are

complex numbers which are independent of the intensity. For
the Z scan to be valid, the functional form of Eq. (1) must hold
and |n(u)

2 I| << 1.
The Z-scan method has been used for many measurements

of the Kerr coefficient. In most cases, the third-order nonlin-
earity is weak and the assumptions of the method are valid.
However, the Z-scan method has also been used to measure
the saturated Kerr coefficient n(s)

2 which is a function of I and
the assumption of a weak nonlinearity is not always valid.
Restricting attention to cases in which the Kerr coefficient
was saturated, there are still many measurements including
rubidium [8,13], cesium [14,15], ruby and alexandrite [16],
GaSb and GaInAsSb [17], tin diselenide [18], PbO [19],
poly (3-hexadecylthiophene) [20], and polydiacetylene single
crystals [21]. This list is representative, but not exhaustive.
Refinement of the Z-scan method remains a topic of current
research interest [22].

Oliveira et al. [16] and Bian et al. [23] generalized the Z
scan to a particular functional form suitable for a two-level
system, still requiring a small contribution to the nonlinear
index. While this represents some progress, even two indepen-
dent two-level systems with different parameters will follow
a more general rule, and more general model forms for the
optical nonlinear susceptibility have been proposed [24]. In
another variant of the Z scan, Gao et al. [25] analyze the use
of Gaussian-Bessel beams in the Z-scan method to improve
understanding of saturation in Rb vapor, generalizing the
original incident Gaussian beam. A more radical alternative
from the Z scan and its generalizations is a spectral method to
measure the saturated nonlinear susceptibility [26].

In the present paper, the systematic errors which result if
the standard Z-scan method is applied to the measurement
of the saturated Kerr coefficient for a two-level system are
detailed in Sec. II. Such errors can amount to 100% errors in
practical cases. Given the motivation to reduce such errors,

2469-9926/2024/110(2)/023501(14) 023501-1 Published by the American Physical Society

https://orcid.org/0000-0002-9928-276X
https://ror.org/05xpvk416
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.023501&domain=pdf&date_stamp=2024-08-01
https://doi.org/10.1103/PhysRevA.110.023501


ZACHARY H. LEVINE PHYSICAL REVIEW A 110, 023501 (2024)

a measurement method called the phase retrieval of modes
(PROM) is proposed. The method allows an accurate mea-
surement of the saturated Kerr coefficient regardless of the
functional form of the nonlinear susceptibility. The hope is
that PROM will lead to higher precision measurements of
the saturated nonlinear susceptibility of atomic vapors. Such
measurements, in turn, can be compared to results from fun-
damental theory [9,10].

II. Z-SCAN METHOD

A. Statement of the problem

When light passes through a thin sample of a nonlinear
medium at normal incidence, in the absence of absorption, the
medium changes the phase of the light at its exit face. There-
after, beam propagation is described by Fresnel diffraction.
In the far field, the Fresnel diffraction takes on the limiting
form of the Fraunhofer diffraction formula: the intensity is
given by a Fourier transform of the input with appropriate
scaling [27]. A given point in the observation plane will have a
strong dependence on an ever-increasing portion of the sample
as the sample-detector distance increases, including the entire
illuminated section of the exit face in the far-field limit. Differ-
ences in the phase across the exit face influence the intensity
downstream, so the linear susceptibility, related to n0, is not
measurable using a single beam. Although the Z-scan method
is typically implemented with a small aperture detector in
the far field, the signals reaching the detector depend on the
phase induced over the whole region illuminated by a Gaus-
sian beam, not simply the value at the maximum. In order
for a single-channel measurement to determine the nonlinear
susceptibility, there must be a known functional form for the
susceptibility, namely Eq. (1) in the original method [11,12].
In the following, I will give an example of the consequences
of assuming Eq. (1) holds for a two-level system, where it
does not. The systematic errors which can arise in practice [8]
motivate the development of an experimental method which
makes fewer assumptions about the functional form of the
nonlinear susceptibility.

B. The Z-scan method for the Kerr coefficient
in the low-intensity limit

In the Z-scan method [11,12], a TEM00 Gaussian mode is
incident on a thin Kerr medium, positioned at z1 with a detec-
tor located in the far field. The Z-scan method is intended to
apply if there is an ideal Kerr susceptibility, given by Eq. (1).
The incident wave EA gives rise to a second wave EB which is
first order in n(u)

2 . Functional forms are given in Appendix A.
The transmission T is the ratio of intensities detected on axis
by a small aperture detector with and without the medium and
is given by

T =
∣∣E (0)

A + E (0)
B

∣∣2

∣∣E (0)
A

∣∣2

= 1 + 2 Re
E (0)

B

E (0)
A

+ O
([

n(u)
2

]2)
(2)

where the superscript (0) indicates the fields are taken on
axis. (“Transmission”, as defined in the Z-scan literature, may

exceed 1.) The final term is neglected in the Z-scan method,
as it is in holography. The Kerr coefficient can be found
experimentally by fitting to the function

T = 1 + 4Z1��0(
1 + Z2

1

)(
9 + Z2

1

) (3)

where ��0 is the phase change due to the central field at
the focus and Z1 = z1/zR is the position of the Kerr medium
relative to the laser focus in units of the Rayleigh length, given
in Eq. (B2). An experimental Kerr coefficient can be found by
fitting to the function in Eq. (3). A formula for the Z scan with
the detector at a finite position on axis is given in Appendix A.
Equation (3) is the far-field limit of Eq. (A7).

C. Susceptibility of the two-level system

Equation (1) is not a fundamental principle, but rather a
term in a Taylor expansion of the susceptibility as a function
of intensity. To generate a realistic saturated Kerr susceptibil-
ity, I choose a two-level system. A solution is given in the text
of Grynberg, Aspect, and Fabre (GAF) [28]. Slightly adapting
GAF’s Eq. (2.188), the susceptibility is given by

χ = −nden
d2

ε0 h̄

� + i �sp

2
�2

1
2 + �2 + �2

sp

4

, (4)

where nden is the number density of atoms, d is the dipole
moment of the transition, ε0 is the permittivity of free space,
h̄ is the reduced Planck’s constant, �sp is the spontaneous
emission rate, and �1 is the angular Rabi frequency defined in
Eq. (B3). Equation (4) uses the detuning � = ω − ω0 where
ω is the angular frequency of the light and ω0 is the angular
transition frequency between the ground state and the excited
state. The form given here assumes any decoherence is due
to spontaneous emission, and not, for example, collisional
broadening, as discussed in the text. GAF introduce the sat-
uration parameter s,

s = �2
1

2�2 + �2
sp

2

, (5)

in GAF’s Eq. (2.189). GAF’s Eq. (2.180),

χ = χ1

1 + s
, (6)

follows from Eqs. (4) and (5), where χ1 is the �1 → 0 limit
of Eq. (4). The saturation parameter is related to the intensity
by s = I/Isat with Isat given by

Isat = ε0ch̄2

d2

(
�2 + �2

sp

4

)
. (7)

Equation (7) follows from setting s = 1 and using Eqs. (5),
(B1), and (B3) from Appendix B, which also contains a table
of parameters used in the calculation.

The saturated Kerr susceptibility is given by

n(s)
2 = χ − χ1

2I
= −χ1

2I

s

1 + s
= − χ1

2Isat (1 + s)
(8)

where

n(I ) = n0 + n(s)
2 (I )I (9)
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which may be compared to Eq. (1). The unsaturated Kerr
coefficient is given by the low-field limit which is the same
as the s → 0 limit. Hence,

n(u)
2 = − χ1

2Isat
. (10)

D. The Z-scan method and the saturated Kerr coefficient

The Z-scan method was not designed to measure the satu-
rated Kerr coefficient. Some examples of the systematic error
which results from applying the Z-scan method in the satu-
rated regime are given next. The susceptibility will be given by
the two-level system, with parameters selected for Rb vapor
[29]. See also Appendix B. Our procedure is as follows.

(1) Choose a set of peak incident fields for the TEM00

Gaussian beams.
(2) Find n(s)

2 using the two-level system susceptibility.
(3) Find the electric field at the exit face.
(4) Expand the electric field at the exit face into Laguerre-

Gauss basis functions.
(5) Find the intensity at the detector.
(6) Find the peak-valley difference in a Z scan for each

peak incident field using an expansion into Laguerre-Gauss
modes.

(7) Relate the peak-valley difference to the maximum in-
duced phase ��0, using Eq. (3).

(8) From this phase and assumed system-geometry param-
eters, determine n(Z )

2 .
(9) The theoretically known value of n(s)

2 is compared to its
counterpart as determined by the Z-scan method, as used by
McCormick et al. [8].

Of these steps, the first five are performed only in a simu-
lation and the last four are performed either in simulation or
in an experiment. Next, more details are given with special-
ization to the present case.

Step 1. Three examples are chosen bracketing the satura-
tion field of 38 kV/m in the Rb-like example [29].

Step 2. For the two-level system, use the formulas pre-
sented in Sec. II C.

Step 3. The TEM00 field incident on the thin Kerr medium
is given by

E (P, Z (−)
1 ) = E0

1

1 + iZ1
exp

(
− P2

1 + iZ1

)
(11)

where Z (−)
1 and Z (+)

1 are the respective positions just before
and just after entering the thin sample at Z1. Also, P = ρ/w0

is a dimensionless radial coordinate. (The symbol P is chosen
because it is a capital ρ.) The intensity is given by

I (P, Z1) = c ε0

2
|E0|2 1

1 + Z2
1

exp

(
− 2P2

1 + Z2
1

)
(12)

using Eq. (B1). Variations of I (P, Z1) within the thin Kerr
medium are assumed to be negligible. Upon exit, the field is
modified to

E (P, Z (+)
1 ) = E0

1

1 + iZ1
exp

(
− P2

1 + iZ1

)

× exp

(
−in(s)

2 (I )I
2π

λ
δz

)
(13)

FIG. 1. The real part of the electric field is given for (Inci-
dent, black) an incident TEM00 Gaussian beam with maximum field
strengths on Z = 0 of (a) 25 kV/m, (b) 50 kV/m, and (c) 100 kV/m,
for the field after passing through a thin Kerr medium with parame-
ters from Ref. [8] as approximated (Exact, blue) using the saturable
nonlinear susceptibility from a two-level system. (Z, orange) denotes
the approximation of the Z-scan method, and (K, green) denotes an
ideal Kerr susceptibility. The labels are further defined in Table I. For
this system, s = 1 corresponds to 38 kV/m.

where λ is the free-space wavelength, δz is the thickness of
the Kerr medium, and I is given by Eq. (12). To derive the
Z-scan results, the first two terms of the second exponential
in Eq. (13) are retained. Here, there is no assumption that the
argument of the second exponential is small.

The function is shown for various incident intensities in
Fig. 1. For the input field shown, the exit field is given un-
der three different sets of assumptions. The curves labeled
“Exact” use the saturated form of the susceptibility and the
exponential phase factor. These are the exact answers. The
curves labeled “K” assume that the unsaturated Kerr suscepti-
bility holds and the exponential phase factor is applied. The
curves labeled “Z” use the approximations of the Z scan,
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TABLE I. Formulas corresponding to the curves given in Fig. 1.

Label Expression

Incident E (P, Z(−)
1 ) from Eq. (11)

Exact E (P, Z(+)
1 ) from Eq. (13)

Z E (P, Z(−)
1 )

(
1 − in(u)

2 I 2π

λ
δz

)
K E (P, Z(−)

1 ) exp
( − in(u)

2 I 2π

λ
δz

)

namely the unsaturated Kerr susceptibility and a linear ap-
proximation to the exponential phase factor. Below saturation,
these three approximations lead to very similar results, as
shown in Fig. 1(a). If the central field is a little into saturation,
deviations exceeding 10% are seen in Fig. 1(b). Finally, well
into saturation, as shown in Fig. 1(c), the three curves are
qualitatively different including a near node in the Z-scan case
which is absent in the exact case. Even at this early stage in
the analysis, it is doubtful that the Z-scan field could differ so
greatly from the exact field and still produce an accurate result
for the susceptibility.

Step 4. Before and after interacting with a thin sample
at Z = Z1, a TEM00 Gaussian beam is given by Eqs. (11)
and (13), respectively. We wish to find the Laguerre-Gaussian
expansion coefficients of Eq. (13). The index of refraction
is written as n(NL)(P; Z1) = n(s)

2 (I )I because it depends on
the intensity of the light, which, in turn depends on ρ and
z1, which are proportional to P and Z1. The designation NL
means that the real part of the linear index of refraction is
subtracted off, i.e., n(NL)(P; Z1) = n(P; Z1) − Re n0. The po-
sition dependence of n is due to the intensity of the beam in a
Kerr medium. Let

g(P; Z1) = exp

(
i n(NL)(P; Z1)

2π

λ
δz

)
. (14)

Further details of how the electric field in the exit face is
expanded into a series of Laguerre-Gauss functions are given
in Appendix C.

The results of the expansion for the case of 100 kV/m on
the two-level system example are given in Fig. 2. The real and
imaginary parts of the exact ratio of electric fields are com-
pared with expansions with 5, 10, 15, and 20 basis functions.
Even five basis functions are sufficient to describe the electric
field to a little past ρ/w0 = 1. Adding more functions extends
the region of agreement to larger ρ, i.e., to about ρ/w0 = 2.5
with 20 basis functions. Numerically, I fit to the electric field
past the sample and then divide by it before the sample. Since
the electric field falls off like a Gaussian, this is an inherently
noisy process at large radius. Nevertheless, g is well described
where it differs significantly from 1.

Step 5. The intensity on the detector plane is found by form-
ing the electric field there using the Laguerre-Gauss modes
whose functional form is given below in Eq. (18). For the Z
scan, this expression should be evaluated with P = ρ/w0 = 0
and Z taking on the value of the detector position. Rather than
working out the far-field limit, for convenience, the detector
plane is taken to be at Z = z/zR = 100. See Appendix A for a
formula which shows the finite field transmission. The square
of the electric field is proportional to the intensity, with the
proportionality constant given in Eq. (B1).

FIG. 2. True function g − 1 (solid red) vs finite Laguerre-Gauss
expansion with 5, 10, 15, and 20 basis functions (dashed black) for a
maximum central field of 100 kV/m. The thin Kerr medium is at the
focus Z = 0. This fit is made to the electric field just past the sample.

Step 6. To implement this step, Z1 is varied with the detec-
tor position held fixed.

Step 7. No additional explanation is needed.
Step 8. The phase accumulated by passing through a sam-

ple of thickness δz is

��0 = 2π

λ
nδz, (15)

where n is the index of refraction.
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FIG. 3. (a) For the low electric-field value of 5 kV/m, the Z scan
(black, solid) as calculated with the present method is compared to
(red, dashed) the analytic result of the Z-scan method, Eq. (3); (b) the
Z-scan curves are calculated for higher electric fields, 25–100 kV/m,
into the saturated regime; (c) the peak positions and magnitudes
from part (b) are plotted along with the analytic and numerically
extrapolated limit; (d) similar to (c) for the valley positions and
magnitudes.

Step 9. No additional explanation is needed.
The result of the process is given in Fig. 3. In Fig. 3(a),

the Z-scan transmission is given in the unsaturated regime. In
Fig. 3(b), the same function is given for fields which enter into
the saturated regime. The positions of the peak and valley are
given in Figs. 3(c) and 3(d), respectively, for various electric
fields. These peak positions reproduce the values given by the
original Z-scan papers [11,12].

This problem was also studied earlier [23,30,31]; in partic-
ular, the increase of the spacing of the peaks shown here below
was reported in Ref. [31], but not in Ref. [30]. In contrast,
Ref. [23] reports the peak to valley spacing decreases with
increasing saturation. The problem statement is a little differ-
ent in Ref. [30] in that a top hat incident beam is considered
instead of a Gaussian.

One the experimental side, McCormick et al. [8] use the
peak-to-valley spacing for the unsaturated Z scan, but take the
Rayleigh length to be a fitting parameter. Specifically, the 6-
mm Rayleigh length is fit to 7–9 mm, i.e., an increase of 17
to 50%. If instead the Rayleigh length were held fixed, that
increase would show up in the peak-to-valley spacing, which
is consistent with the values shown in Fig. 3.

FIG. 4. The Kerr coefficient is calculated (n(exact)
2 , blue) as a func-

tion of the peak intensity for a two-level system for the conditions
given in the text; (n(Zscan)

2 , green) is determined by finding the Z-scan
curve given the intensity-dependent Kerr coefficient presented here,
finding the peak-valley difference on this curve, interpreting this
peak-valley distance using low-intensity Z-scan theory, multiplying
by constant factors following the procedure of McCormick et al. [8]
for determining n(s)

2 . The inset shows the systematic error of this

procedure using
n(Zscan)

2

n(exact)
2

− 1. The saturation intensity is marked at

I = Isat which corresponds to s = 1.

Finally, the exact nonlinear susceptibility is compared to
the one derived from the nine-step process detailed above in
Fig. 4. At low intensities, the two values are equal. However,
as soon as saturation becomes important, there are significant
deviations, as much as 100% in practical cases. Solving this
serious metrological problem is the motivation for proposing
the method described next.

III. PHASE RETRIEVAL OF MODES

In this section, an alternative to the Z-scan method, PROM,
is presented. First, the modes themselves are described. These
are used in a phase retrieval problem. By casting the problem
in terms of modes, the propagation of the solution from one
plane to another in free space is done analytically, avoiding a
numerical step in some schemes [32,33]. A solution of interest
is a linear combination of modes. The idea is to measure the
intensity on a few planes, to find coefficients of the modes
which match that intensity, then to extract parameters from
the coefficients. The procedure is detailed below in this sec-
tion, followed by consideration of noise in the detector and,
separately, fluctuations in the input intensity.

The phase retrieval of nonperiodic objects has been a sub-
ject of great interest for at least the past 25 years [34]. A key
issue was to clarify which observation domains could be used
to perform phase retrieval. Early approaches used real space
and reciprocal space [35,36]. The transport of intensity equa-
tion used nearby planes in a focal series [37]. Later, multiple
widely spaced planes in the defocus series were used for phase
retrieval [33], an approach which is followed here. Recogni-
tion that the Fresnel transformation interpolates between real
space and reciprocal space [38] provides a unifying princi-
ple for these methods. For completeness, the very successful
ptychography method retrieves the phase of a single plane by

023501-5



ZACHARY H. LEVINE PHYSICAL REVIEW A 110, 023501 (2024)

TABLE II. Comparison of Z-scan method and PROM protocol.

Z scan PROM

Kerr coefficient Small, constant Smooth function of intensity
Sample position Variable, through focal region Fixed, at focus
Detector position Far field A few planes such as z/zR = 0.5, 1, and 2
Detector Single channel Array

illuminating overlapping regions [39]. The field was reviewed
by Shechtman et al. [27].

A. The paraxial equation and its modes

If a laser beam is not too tightly focused, its electric field
E may be described with the paraxial equation. In Ref. [40],
the paraxial equation is given as

∂E

∂z
= iλ

4π
∇2

⊥E , (16)

where E , a function of (x, y, z), is a Cartesian component in
the transverse plane. The subscript ⊥ restricts the Laplacian
to the (x, y) plane, with z being the direction of propaga-
tion. Equation (16) may be recast in dimensionless variables
X = x/w0,Y = y/w0, and Z = z/zR. Introducing cylindrical
coordinates, ρ =

√
x2 + y2 and ϕ = arg exp(x + iy), the di-

mensionless variables are P = ρ/w0 with the azimuthal angle
ϕ unchanged. The result is

∂E

∂Z
= i

4

[
∂2E

∂X 2
+ ∂2E

∂Y 2

]

= i

4

[
1

P

∂

∂P

(
P

∂E

∂P

)
+ 1

P2

∂2E

∂ϕ2

]
. (17)

The solutions to these equations are the standard Hermite-
Gauss and Laguerre-Gaussian modes, respectively. For the
circularly symmetric case, the modes are given by

fn(P, Z ) =
√

2

π

(1 − iZ )n

(1 + iZ )n+1
Ln

(
2

P2

1 + Z2

)
exp

(
− P2

1 + iZ

)
(18)

for integer n � 0, with Ln being a Laguerre polynomial. The
result presented here is restricted to being constant in ϕ, al-
though there are solutions for associated Laguerre-Gaussians
as well as for Hermite-Gaussians [41]. The transformations
used to take the formulas from Kogelnik and Li [41] to
Eq. (18) are given in Appendix D. The standard Laguerre-
Gauss modes are orthonormal with respect to the integral∫ 2π

0
dϕ

∫ ∞

0
dPP f ∗

n (P, Z ) fn′ (P, Z ) = δnn′ (19)

where δnn′ is the Kronecker δ function. Since the orthonormal-
ity applies for each plane with constant Z , flux conservation
integrated over different planes is a corollary.

Any linear combination

E =
N−1∑
n=0

cn fn, (20)

where N is the number of coefficients, is a solution of Eq. (17).
Solutions which differ by a constant phase have the same
intensity I ∝ |E |2. Hence, c0 is taken to be a real positive
number in the computational basis. (The edge case of c0 = 0
is excluded, but can be dealt with easily.) Later, we will see
that the phase of c0 has a meaning related to the phase of the
incident wave and the wave just as it leaves the Kerr medium.
There are two phase conventions in effect for the coefficients:
a computational convention that Im c0 = 0, and a physical
convention. Phase retrieval uses the computational conven-
tion, and the physical one is applied afterwards, if necessary.

B. Proposed experimental protocol

The proposed experiment is the following.
(a) Send a coherent beam, preferably a TEM00 Gaussian

beam, through a thin, saturable Kerr medium such as an
atomic vapor cell. Here, the term “thin” means that the thick-
ness of the cell is small compared to the Rayleigh length. The
cell is fixed at the focus.

(b) Record the intensity in a two-dimensional array on
three or more well-separated planes. In this paper, the detector
planes are z = 0.5 zR, zR, and 2 zR relative to the central plane
of the cell.

(c) Choose a basis set consisting of N Laguerre-Gaussian
modes, where N will be a small integer such as 12.

(d) The measurement determines one real, positive coef-
ficient, namely c0, and N − 1 complex coefficients cn with
n > 0.

(e) These coefficients are used to determine the optical
parameters.

Some key differences of the Z-scan method and the PROM
protocol are given in Table II.

The phase is accumulated over a line integral in the cell
[42]. It is

φ(ρ) =
∫

dz
2π

λ
n(ρ, z), (21)

where n(ρ, z) is the index of refraction at ρ and z. The in-
tegrals are performed independently for each value of ρ. In
our case, we expect the density of atoms and the electric field
to be a constant nden, independent of ρ and Z . The first Born
approximation is valid for a thin, dilute sample. Then n(ρ, z)
reduces to n(ρ). Since the sample thickness δz and wavelength
λ are parameters of the experiment, φ(ρ) determines n(ρ)
through

n(ρ) = φ(ρ)
λ

2πδz
. (22)

For a thin, dilute sample the electric field is a function of ρ,
hence the light intensity is a function of ρ.
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TABLE III. The nonlinear contribution to the susceptibility at
E = 100 kV/m, (Exact) as calculated from the two-level system, or
(Telescoping) with a telescoping series based on the difference of
the susceptibilities of two different fields. The label “2,” “4,” or “8”
implies there is a factor of 2, 4, or 8 difference between these two
fields.

106 Re n(NL)

Exact −34.32
Telescoping 2 −34.26
Telescoping 4 −34.30
Telescoping 8 −34.46

The defining equations for the unsaturated and saturated
Kerr effects are given in Eqs. (1) and (9), respectively. An
alternate nonlinear expansion is

χ (E ) = χ (1)E + χ (3)E3 + χ (5)E5 + · · · (23)

where the even terms are excluded due to the centrosymmetry
of the atoms in the gas, and, for simplicity, E is taken to
be a scalar. The vector nature of E is important in some
experiments [43]. These expansions are related by

n2 = 1 + χ. (24)

The index of refraction is related to the susceptibility by

n = (1 + χ )1/2 ≈ 1 + χ

2
, (25)

where the approximation is valid if |χ | << 1, which is the
case in the present paper. This assumption is also the validity
condition for ignoring Clausius-Mossotti or Lorentz-Lorenz
local fields, which is done in this paper.

C. Simulation of PROM protocol

As in many simulations of inverse problems, the strategy
is to choose an ideal system with parameters, generate data,
and recover the parameters. In more advanced versions, the
measurements and even the geometry can be subject to noise.
Our phase recovery strategy shares many features with one
presented earlier [44]. For the proof of concept given in this
paper, I specialize to the parameters used in an earlier experi-
ment [8] given in Table IV.

TABLE IV. Parameters used in the calculation. The number den-
sity is for 87Rb using the 72% natural abundance.

Quantity Value Remark

Grid points in P Zero to ten in steps of 0.1 101 points
Optical frequency ω0 384.230 484 468 5 THz
d 2.52 × 10−29 C m
nden 0.72 × 1018 m−3

�sp 38.11 × 106 s−1

δz 1 mm
� −1 GHz
zR 6 mm
w0 38.6 µm Eq. (B2)
Zdet 0.5, 1, 2

The following steps simulate the experiment.
(A) Choose parameters for an incident TEM00 Gaussian

E (P, Z (−)
1 ) at some plane Z1; the focal plane, Z1 = 0, is used

in this paper.
(B) Using a model nonlinear dielectric function, find

the electric field at the exit plane of a thin Kerr medium
E (P, Z (+)

1 ).
(C) Fit E (P, Z (+)

1 ) to Laguerre-Gauss modes in the plane.
(D) Find E (P, Zi ) where i indexes the detector planes.
(E) Square to find the intensity I (P, Zi ).
(F) Optionally, add shot noise to I (P, Zi ).
(G) To simulate fluctuations in the intensity of the incident

beams, integrate the intensity on the detector planes given
by each incident intensity over the probability distribution of
incident intensities.

The intensities I (P, Zi ) are the result of the simulated
experiment. The following steps may be applied to real or
simulated data. Only simulated data are used in this paper.

(H) Find the coefficients cn in the computational basis
which fit the intensity in the computational basis.

(I) Find the estimated E (Z (+)
1 ).

(J) Find g0, the function “g” as found in the computational
basis.

(K) Find n(NL) = −i λ
2πδz

ln g0 + C, where C is a real con-
stant to be determined.

(L) Determine C by either (a) fitting to zero at some di-
mensionless radius P which is sufficiently large so that the
function is approximately zero or (b) finding the difference
of the nonlinear susceptibility at the peak and its value at an
intermediate value of P such as P = 1.

(M) If the (b) method is chosen, the experiment should be
repeated with the peak intensity scaled down by a factor of
η. Eventually, the peak field is small enough that an unsat-
urated scaling relation becomes valid, and the process may
be terminated. The variable nNL may be found by summing a
telescoping series.

D. PROM protocol simulation results

In Fig. 5, results are given for the selected two-level sys-
tem. Three values for the maximum incident electric field
are given. In each case, the fields are given for three cases,
namely, (a) an exact solution if saturation is neglected, i.e., if
Eq. (1) applies; (b) for the exact solution, including saturation,
i.e., using Eq. (9); and (c) the solution found using PROM.
The quantity plotted is nNL = n(u)

2 I or n(s)
2 I .

If the maximum incident field is below saturation, the three
solutions are seen to be similar, as illustrated in Fig. 5(a). Near
or beyond saturation, the nonlinear contribution to the index
of refraction differs greatly from the value given by the unsat-
urated Kerr effect. Nevertheless, PROM is able to reproduce
the exact solution, at least for moderate values of ρ/w0. Past
about ρ = 2w0, the solution is not recovered. If the number of
basis functions is increased, the region of agreement may be
pushed to somewhat larger ρ/w0, about 2.5 for the case of 20
basis functions. The convergence is similar to that plotted in
Fig. 2 for the related quantity g − 1. Ultimately, it is difficult
to get an accurate result at high ρ/w0 because in the protocol
the electric field after the sample is found and then divided
by the incident electric field. Since the incident electric field
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FIG. 5. The real part of the nonlinear index is given for (a) 10
kV/m, (b) 50 kV/m, and (c) 100 kV/m. The real part of the nonlin-
ear index is given, as calculated (wide dash-dotted black) with the
two-level system neglecting saturation (wide dashed orange) with
the two-level system including saturation, and (solid green) as recov-
ered from simulated measurements on three detector planes, namely
Z = z/zR = 0.5, 1, and 2 using PROM with 12 basis functions. An
adjustable constant for the green curve was optimized by hand for
best agreement.

is Gaussian, there is a division of two ever smaller numbers
as ρ/w0 increases, leading to a loss of numerical significance.
The measurement must be derived from values obtained when
ρ/w0 is not too large, a point we return to below.

The coefficients of the true function are compared to the
results obtained with PROM, which are given for various
numbers of basis functions in Fig. 6, as well as to the exact
function expanded into Laguerre-Gauss modes without using
PROM. The coefficients are given accurately for n = 0–5.
Beyond this, the deviation from the true values is on the

FIG. 6. The coefficients of the expansion of the electric field after
the sample based on (black) a 20 basis function expansion of the
electric field just after passing through the thin Kerr medium labeled
“20, true”, (orange) a 12, (green) 15, and (blue) 20 basis function
expansion, as calculated with PROM. The solid lines are a guide to
the eye.

order of the true value itself. Nevertheless, better results are
obtained with more basis functions.

Ultimately, we want to report n(NL) as a function of the
incident electric field, although it is found as a function of
ρ. Of course, the incident electric field, a Gaussian, is also a
monotonic function of ρ. Intuitively, the result should depend
only the incident electric field and not on its associated peak
electric field. For example, if the maximum electric field is
10 kV/m, then the ρ = 0 value gives the nonlinear contri-
bution to the index for that field. However, if the maximum
electric field is 100 kV/m, then a 10-kV/m field occurs for
ρ = √

ln 10 w0. Operationally, these are very different, so the
results of Fig. 7 are an important test on the validity of the
numerical implementation. Since the curves lie on top of
each other, it shows the reported field is independent of the
maximum electric field, as expected.

FIG. 7. Saturated Kerr coefficient as a function of electric field
based on the retrieved answer calculated with 20 basis functions and
a peak electric field of (orange) 10 kV/m, (green) 50 kV/m, and
(blue) 100 kV/m. The nonlinear indices have been adjusted so that
all give the same answer at 1 kV/m, a deeply unsaturated value.
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FIG. 8. The saturated Kerr coefficient as a function of the radial
position, as calculated with PROM with a maximum electric field
of 50 kV/m using 12 basis functions and shot noise based on the
intensity, assuming the total number of counts per detector plane
is (a) 107, (b) 109, and (c) 1012 at each sampled plane in (P, Zdet ).
Each case is based on 50 samples. The uncertainties are statistical,
and based on a coverage factor k = 2, often called “2σ ,” or 95%
confidence.

1. Results with detector noise

The effect of noise in the detector is shown in Fig. 8. The
results in the figure were obtained by calculating the intensity
on each of the three detector planes, then taking the integrated
intensity to represent a mean number of photons arriving on
the plane. The cases shown are for 107, 109, and 1012 photons
per plane. Hence, the total number of photons is three times
larger. The intensity at each pixel is taken to be the mean of a
Poisson distribution. A sampled intensity is made by drawing
from the distribution for each pixel on each detector plane.
The sampling is performed 50 times, with PROM applied
to each sample to estimate the nonlinear contribution to the
index of refraction. The uncertainties shown in Fig. 8 are

FIG. 9. (a) The saturated Kerr coefficient as a function of the
electric field, including (black) the exact expression for the two-
level system as in Fig. 7, and values found with PROM using 12
basis assuming the incident electric field varies by (thick orange) 0,
(green) 0.5%, and (dashed blue) 10%. There is no detector noise.
The calculation uses 21 point Gaussian integration. In panel (b), the
differences of the curves with 0.5 and 10% electric-field fluctuations
from the noise-free answer are shown. The calculation was done
with the computational convention, so differences in Re n(NL) are
meaningful, but not the value itself. Since all calculations use the
same convention, intercomparisons are meaningful.

statistical. As in Fig. 5, the uncertainties grow dramatically
as ρ/w0 becomes large. Increasing the number of photons
allows low-noise results to be recovered at somewhat larger
radii, but clearly the ability to push out to large radii is
limited.

To provide grounding to an experiment, the number of
photons is converted to joules. Conveniently, for λ = 780 nm,
there is 1.6 eV per photon. Hence, 107, 109, and 1012 photons
are 1 pJ, 100 pJ, and 100 nJ, respectively. If 1 µW is incident
on the detector, the required observation times per plane are
1 µs, 100 µs, and 100 ms, respectively.

2. Results with incident field fluctuations

The effect of fluctuations in the incident laser intensity is
given in Fig. 9. There, a noise-free calculation for a two-level
system presented in Fig. 5 is compared to the same result with
a Gaussian distribution of input noise. Details about how these
fluctuations are treated numerically are given in Appendix E.
The results lie on top of each other in Fig. 9(a), hence the
effect of the intensity fluctuations is shown in Fig. 9(b). The
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FIG. 10. The difference of the nonlinear susceptibility as a func-
tion of radial position is given for several initial field strengths
in units of kV/m. The incident electric field follows E (ρ ) =
E0e−(ρ/w0 )2

. The dashed vertical lines indicate the radial position for
which the incident field has fallen by a given factor. The black dots
are the points used to evaluate the series given in Eqs. (26)–(28).

scale in Fig. 9(b) is about 100 times smaller than in Fig. 9(a).
Usually, variations are quoted in terms of the electric field.
These would be about double the values shown, namely 1 or
20%. These show the protocol is robust to fluctuations in the
laser intensity.

3. Results with telescoping series

As noted in steps L and M above, PROM gives the differ-
ence of the nonlinear contribution to the index of refraction.
Additional information is needed to get the value itself. As
noted above, this can be done with a single measurement
which can be linked to a zero electric-field result, hence the
nonlinear susceptibility is zero, or to an electric field small
enough to be described in the unsaturated regime where other
methods apply, including the Z scan.

As illustrated above, the results are prone to large un-
certainties if taken with ρ/w0 being too large, which might
occur at a value as little as 2. As an alternative, a tele-
scoping series variant is recommended. The differences of
the nonlinear susceptibilities at two electric fields are given
by PROM. A lower electric field will occur on the wings
of the incident field. In the example shown in Fig. 10, the
ratio of a point on the wing to the central value is taken to
be 2, 4, or 8. In Table III, the nonlinear susceptibility is
calculated in three ways and compared to the exact answer
for the two-level system. As noted above, PROM gives the
nonlinear susceptibility up to an additive constant. This im-
plies that the differences are given correctly. For the results
of Table III, the maximum incident field performed seven
times with factor of 2 steps, namely 1.5625, 3.125, 6.25, 12.5,
25, 50, and 100 kV/m. Let Pk = √

ln k for k = 2, 4, 8. The
radial positions Pk are chosen so that the electric field differs
by a factor of k between the peak and some general radial
point. The telescoping series was formed in three ways. Here,
the arguments to n(NL) are the radial position in the variable
P = ρ/w0 and the electric field (kV/m). If only one argument
is present, it is the electric field. For a factor of 8 difference,

we take

n(NL)(100) = [n(NL)(0; 100) − n(NL)(P8; 100)]

+ [n(NL)(0; 12.5) − n(NL)(P8; 12.5)]

+ 64
63 [n(NL)(0; 1.5625) − n(NL)(P8; 1.5625)]

= [n(NL)(100) − n(NL)(12.5)]

+ [n(NL)(12, 5) − n(NL)(1.5625)]

+ 64
63 [n(NL)(1.5625) − n(NL)(1.5625/8)]. (26)

This is a telescoping series if n(NL)(P8, 100) = n(NL)(0; 12.5)
which is true in principle because both represent the nonlinear
susceptibility for an electric field of 12.5 kV/m. The equality
is demonstrated numerically in Fig. 6. Hence, the single argu-
ment version of n(NL)(E ) is the nonlinear contribution to the
susceptibility for a given electric field. (For brevity, the units
of kV/m are implied.) All other terms follow by analogy. For
the factor of 4 difference, we take

n(NL)(100) = [n(NL)(0; 100) − n(NL)(P4; 100)]

+ [n(NL)(0; 25) − n(NL)(P4; 25)]

+ [n(NL)(0; 6.25) − n(NL)(P4; 6.25)]

+ 16
15 [n(NL)(0; 1.5625) − n(NL)(P4; 1.5625)]

= [n(NL)(100) − n(NL)(25)]

+ [n(NL)(25) − n(NL)(6.25)]

+ [n(NL)(6.25) − n(NL)(1.5625)]

+ 16
15 [n(NL)(1.5625) − n(NL)(1.5625/4)]. (27)

For completeness, for the factor of 2 difference, we take

n(NL)(100) = [n(NL)(0; 100) − n(NL)(P2; 100)]

+ [n(NL)(0; 50) − n(NL)(P2; 50)]

+ [n(NL)(0; 25) − n(NL)(P2; 25)]

+ [n(NL)(0; 12.5) − n(NL)(P2; 12.5)]

+ [n(NL)(0; 6.25) − n(NL)(P2; 6.25)]

+ [n(NL)(0; 3.125) − n(NL)(P2; 3.125)]

+ 4
3 [n(NL)(0; 1.5625) − n(NL)(P2; 1.5625)].

(28)

The final difference is corrected to account for the susceptibil-
ity differences down to E = 0, assuming the smallest incident
field is in the unsaturated Kerr regime, which is true in the
example. If the telescoping series involves a change by a
factor of γ in the electric field, assuming the smallest electric
fields are in the unsaturated Kerr regime, then it is simple to
derive that the final interval must be increased by a factor of
γ 2/(γ 2 − 1) to account for the contributions of the E → 0
limit. The points used are illustrated in Fig. 10.

The result given in Table III is significant for two reasons.
On the one hand, it demonstrates a theoretical method which
experimentalists could use to measure the nonlinear suscepti-
bility in a way which avoids considering values at large radial
coordinates where there is a potential for noise amplification
with the PROM protocol. On the other hand, it provides a
confirmation of the numerical methods. Although it is obvious
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that we can add and subtract the susceptibility at several inter-
mediate electric fields, in practice, one susceptibility is found
on the wing of a distribution with a strong incident electric
field and another is found at the center of a weaker incident
field.

IV. CONCLUDING REMARKS

The Z-scan method assumes the lowest-order functional
form for the Kerr effect, namely n = n0 + n(u)

2 I , where n(u)
2

is independent of the light intensity I . Under this assumption,
it is possible to measure n(u)

2 using a single-channel detector.
Such measurements have been performed countless times.
However, if n2 itself depends upon the intensity, then the
results of the Z-scan method do not necessarily yield the
unsaturated n(u)

2 or the saturated n(s)
2 (I ) values, but rather some

functional of n(s)
2 (I ) which is described by diffraction theory.

In this paper, some examples of potential errors are presented
using a simple analytic model of the nonlinear susceptibility,
namely a two-level system [28] with Rb-like parameters [29].
At low intensities, the Z-scan method does an excellent job of
recovering the associated Kerr coefficients, but at high inten-
sities the reported values are only semiquantitatively correct.

The Introduction noted several materials for which the
saturated susceptibility was measured, including atomic va-
por cells. If an atomic vapor cell is excited with a Gaussian
beam with cylindrical symmetry, the response will also have
cylindrical symmetry. The optical response will depend on
the intensity, but it will do so without rapid variation as
a function of radius. Such a function can be expanded in
terms of analytic functions such as Laguerre-Gaussian modes
in a single plane in a rapidly convergent series [45]. The
Laguerre-Gaussian mode can be used to predict the intensity
on any plane. Each Laguerre-Gaussian mode is an analytic
solution to the paraxial wave equation. The linearity of the
paraxial wave equation guarantees that linear combinations of
Laguerre-Gaussian modes also are solutions. Hence, we can
write an objective function to compare the goodness of fit
in the measurement space for complex coefficients referring
to the interaction plane. The simplest objective function is
a least-squares fit. In the absence of noise, the recovery is
excellent. The PROM protocol is robust to both noise in the
detector and fluctuations in the input optical intensity.

The required observation times and robustness to incident
light fluctuations put low demands on laser stability or human
resources, suggesting the experiment could be performed by a
small, albeit specialized, research group in a single day. The
required computing resources are also modest: an individual
solution of PROM took about 1 h on a single processor of a
3.7-GHz workstation using a scripting language. Little effort
was made to lower the computation time, so this figure should
be regarded as an upper bound. Hopefully the method can be
implemented in a real experiment, leading to an accurate mea-
surement of the saturated Kerr effect, a prototypical nonlinear
optical phenomenon.
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APPENDIX A: THE Z SCAN AT FINITE DETECTOR
POSITION

Sheik-Bahae et al. [11,12] give Eq. (2) for the normalized
transmission in the case in which the detector is on axis in the
far field. As discussed in Sec. II, the incident wave

EA = E0

1 + iZ
exp

(
− P2

1 + iZ

)
(A1)

is multiplied by a phasor

exp
(

i
n2ε0c

2
|EA|2

)
≈ 1 + i

n2ε0c

2
|EA|2. (A2)

The first term is simply EA, and the second term leads to

EB = i
n2ε0c

2
|EA|2 1

1 + iZ
exp

(
− P2

1 + iZ

)
. (A3)

Equation (A3) is seen to be a TEM00 Gaussian. The maximum
induced phase is given by

��0 = n2ε0c

2
|E0|2. (A4)

To make further progress, return to the unscaled variables ρ =
Pw0 and Z = zzR, note that EB is a Gaussian on the plane of
the Kerr medium, and identify the real and imaginary parts of
the reciprocal of the the coefficient of ρ2 to identify the beam
waist parameter and distance to the focus of EB. The results
are that the beam waist of B is given by

(
w

(B)
0

)2 = 3w2
0

(
1 − 8

9 + Z2
1

)
(A5)

where z1 = Z1zR is the position of the Kerr medium relative to
the focus beam EA in unscaled units and the focus of beam B
is given by

z(B)
1 = 8z1

9 + Z1
. (A6)

With this expression for EB it is possible to calculate the
interference of EA and EB at all points in space. For example,
it is possible to develop an analytic expression for the integral
over finite apertures. Similarly, using the same expansion as
the references, the formula for the normalized transmission
with the detector at a finite distance is

T = 1 + 4(ZD − Z1)(1 + Z1ZD)��0(
1 + Z2

1

)(
1 + 9Z2

1 − 16Z1ZD + 9Z2
D + Z2

1 Z2
D

) ,

(A7)

where ZD is the position of the on-axis detector relative to
the focus of the laser beam in units of the Rayleigh length.
Equation (2) is obtained from Eq. (A7) by taking limZD→∞.
The function is plotted in Fig. 11 for a few representative cases
for variable Z1 at fixed ZD, i.e., with the Kerr medium scanned
through the laser focus while the detector is held at some fixed
position relative to the laser focus.

Although the peak and valley amplitudes have a modest
dependence on the detector position ZD, the effect on their
difference is very small. For example, the far-field amplitudes
are [12] 1 ± [(

√
52 − 5)/3]1/2 ≈ 1 ± 0.203 034, so their dif-

ference is approximately 0.406 068. At ZD = 100, (i.e., the
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FIG. 11. Normalized transmission curves T for the Z scan are
given with the detector at selected finite distances, (solid black) 5 zR,
(dotted green) 10 zR, (dashed orange) 100 zR, and (solid blue) ∞
or far field, as a function of the position of the Kerr medium from
Eqs. (2) as Z1 = z1/zR and (A7). The Kerr medium is moved during
a Z scan. The trough and peak in the far field are shown as dashed
black vertical lines.

detector at 100 Rayleigh lengths from the focus), the peak am-
plitude, valley amplitude, and their difference are 1.206 538,
0.800 434, and 0.406 105 respectively. Some numerical cal-
culations in this paper are performed using ZD = 100.

APPENDIX B: ADDITIONAL ASSUMPTIONS, COMMON
RELATIONS, AND PARAMETERS

Some assumptions which were not otherwise given in the
text are these: the paraxial approximation is valid; the incident
field does not have a significant change of amplitude when
going through the Kerr medium; there are no transient effects
in the gas although in a real vapor cell the atoms are exposed
to the electric field for a time measured in microseconds;
the detuning � is large enough so that thermal broadening
can be neglected; and the Laguerre-Gauss expansions have a
nonvanishing term c0.

Several common relations are listed here. The intensity of
light is related to a plane wave with electric-field amplitude E
by

I = 1
2ε0c|E |2. (B1)

The Rayleigh length is given by

zR = πw2
0

λ
(B2)

where w0 is the Gaussian beam waist parameter. The Rabi
(angular) frequency is given by

� =
∣∣∣∣dE

h̄

∣∣∣∣. (B3)

Also, 1 Hz s = 2π [46].
Parameters used in the calculation are given in Table IV.

APPENDIX C: EXPANSION OF KERR PHASES
INTO LAGUERRE-GAUSS FUNCTIONS

We seek the expansion coefficients of

E (P; Z (+)
1 ) =

∑
n

cn fn(P; Z1) (C1)

where the cn are complex coefficients. Using the orthonormal-
ity relation in Eq. (19),

cn = 2π

∫ ∞

0
dPP f ∗

n (P; Z1)E (0)

√
2

π

1

1 + iZ1

× exp

(
− P2

1 + iZ1

)
g(P; Z1). (C2)

Taking the form of fn from Eq. (18),

cn = E (0)

(
1 + iZ1

1 − iZ1

)n 4

1 + Z2
1

∫ ∞

0
dPP Ln

(
2

P2

1 + Z2
1

)

× exp

(
− P2

1 − iZ1

)
exp

(
− P2

1 + iZ1

)
g(P; Z1)

= E (0)

(
1 + iZ1

1 − iZ1

)n ∫ ∞

0
dU Ln(U ) G(U ; Z1) e−U (C3)

where U = 2P2/(1 + Z2
1 ) and G(U ; Z1) = g(P; Z1). Equa-

tion (C3) is evaluated numerically through the use of NGL

Gauss-Laguerre quadrature points Ui with weights wi. The
formula is

cn ≈ E (0)

(
1 + iZ1

1 − iZ1

)n NGL∑
i=1

Ln(Ui ) G(Ui; Z1) wi. (C4)

Fortunately, the formula used in the numerical evaluation does
not depend on the phase factors of the TEM00 Gaussian, but
only on the phase induced by the Kerr medium.

APPENDIX D: CONVERSION OF THE KOGELNIK-LI
SOLUTION TO DIMENSIONLESS FORM

Although the solution for the standard Laguerre-Gaussian
modes [41] was given shortly after the invention of the laser,
the transformation of the stated solution in their Eqs. (34) and
(35) to dimensionless form took some care. The physical wave
is related to the solution to the paraxial wave equation [40] by
a factor eikz. Reference [41] takes the plane wave to have the
form e− jkz. So we set j = −i. Another key simplification is

1

1 + iZ
= exp[− ln(1 + Z2)1/2 − i arctan(Z )], (D1)

where Z = z/zR. Aside from these, the conversion involves
routine algebraic substitutions applied to the solution in
the reference in the following order: k → 2π/λ, q →
[1/R + iλ/(πw2)]−1, R → z + z2

R/z, λ → πw2
0/zR,w →

w0[1 + (z/zR)2]1/2, z → ZzR, and r → Pw0. The expressions
were then simplified with computer algebra. The final
expression, Eq. (18), was verified by showing it is a solution
of the dimensionless paraxial wave equation, Eq. (17).
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APPENDIX E: ACCOUNTING FOR SPREAD OF INCIDENT
INTENSITIES WITH HERMITE-GAUSS QUADRATURE

To study the effect of a variation of incident intensity, I
assume that the incident intensity varies as a Gaussian with
some specified standard deviation, i.e.,

I (P, Zi; E0, σE ) = 1√
2π

∫ ∞

−∞
dI (inc) exp

(
− (I (inc) − I0)2

2σ 2
I

)

× I (P, Zi; I (inc) ) (E1)

where I (inc) is the central optical intensity, σI is its standard
deviation, and I (P, Zi; I inc) ) is the calculation of I (P, Zi; E ) as
discussed in Sec. III.

To evaluate this integral numerically, I use Hermite-Gauss
quadrature. Setting u = (I (inc) − I0)/σI , Eq. (E1) may be writ-
ten as

I = 1√
2π

∫ ∞

−∞
du e−u2/2F (u) (E2)

where the definition of F (u) is given from context. The inte-
gral is implemented as the sum

I ≈
∑

i

WiF (ui ). (E3)

Gauss-Hermite quadrature is traditionally given in terms of
the integral

I =
∫ ∞

−∞
dx e−x2

f (x) ≈
∑

i

wi f (xi ). (E4)

Values are given in Abramowitz and Stegun [47] and a
formula is given online [48]. From a change of variables
in the integrals it is easy to show Wi = wi/

√
π and ui =√

2xi. Equation (E3) is implemented with a 21 point quadra-
ture. The calculation time is dominated by the time to find
the coefficients cn from the intensity. The Gaussian integral
introduces a negligible additional computational burden be-
cause the intensities are summed before the coefficients are
recovered.
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