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We investigate the ground-state properties of the quasi-one-dimensional dipolar gases using continuous matrix
product states techniques. Making use of the first- and second-order correlation functions, we find that the
system supports the superfluid, super-Tonks-Girardeau, and quasicrystal phases according to the Luttinger
liquid theory. We also map out the phase diagram on the parameter plane consisting the contact and dipolar
interaction strengths. Furthermore, we compute the Luttinger parameter, the structure factor, and the momentum
distribution of the system. Finally, we show that the predicted dipolar effect can potentially be observed in
quasi-one-dimensional gases of polar molecules.
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I. INTRODUCTION

Over the past two decades, significant developments have
been achieved in experiments involving one-dimensional (1D)
cold atomic gases [1–10]. Trapping and cooling ultracold
atomic gases made it possible to realized both bosonic and
fermionic integrable models in experiment, such as Lieb-
Liniger (LL) model [11] and Yang-Gaudin model [12,13].
The experimental realization of the 1D Tonks-Girardeau (TG)
gases and BCS pairs allows the studies of the ground-state
properties [1,2], quantum dynamics [3–8], and quantum cor-
relation [9,10]. Interestingly, a natural extension of the LL
model is to include the long-range dipole-dipole interac-
tion (DDI), which presents for atoms with large magnetic
dipole moment [14]. Although DDI makes the 1D system
nonintegrable, it enriches the quantum phases of the system.
Theoretically, 1D dipolar gases have been extensively studied
in using various theoretical approaches. Arkhipov et al. stud-
ied the ground-state properties of a 1D system of dipoles by
means of a quantum Monte Carlo method [15], it was shown
that the system supports a crossover from a liquidlike to a
solidlike state. Deuretzbacher et al. study the ground state
of few bosons with repulsive dipole-dipole interaction in a
quasi-one-dimensional harmonic trap by means of the exact
diagonalization method [16], in which it is predicted that there
are three regimes roughly corresponding to these found in
Ref. [17]. Citro et al. confirmed the Luttinger-liquid behavior
of the 1D dipolar gases using reptation quantum Monte Carlo
method [18]. De Palo et al. calculated the ground-state energy
of quasi-1D dipolar gases using a variational approximation
based on the Bethe ansatz ground-state wave function of the
Lieb-Liniger model [19]. More importantly, there have been
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experimental developments involving highly magnetic dys-
prosium atoms in quasi-one-dimension [20,21]. For instance,
topological pumping of the 1D dysprosium gases into strongly
correlated nonthermal excited states are demonstrated [20]
and the rapidity and momentum distributions of quasi-1D
dysprosium gases were experimentally measured [21].

As an efficient representation for quantum states in low-
dimensional systems, the continuous matrix product state
(CMPS) method offers a unique opportunity for studying
the ground-state and dynamic properties of these systems
[22–28]. Notably, CMPS has been successfully applied in the
study of one-dimensional Bose gases [17,29], Fermi gases
[30], and Bose-Fermi mixtures [31]. In particular, Rincón
et al. study the ground-state phases of the Lieb-Liniger model
with exponentially decaying interactions [17]. Other than the
superfluid phase found in the usual LL model, the exponen-
tially decaying interaction supports the strongly correlated
super-TG and quasicrystal phases. Nevertheless, its poten-
tial within the context of quasi-1D dipolar systems remains
largely unexplored.

In the present work, we investigate the ground-state prop-
erties of the quasi-1D dipolar gases with repulsive contact and
dipolar interactions using the CMPS. The interplay between
short-range s-wave interactions and long-range DDI in atomic
gases has opened the door to exploring a wide variety of
phenomena. Following Ref. [17], we compute the first- and
second-order correlation functions and use them to identify
quantum phases of the gases by following the Luttinger liq-
uid theory. We show that there exists three distinct quantum
phases, i.e., the superfluid, super-TG, and quasicrystal phases.
In general, the strong repulsive contact interaction produces
a TG-type fermionization; while the large dipolar interaction
leads the system into a strongly correlated super-TG and
quasicrystal phases. We also map out the phase diagram on
the parameter plane consisting of the repulsive contact and
dipolar interaction strengths. It turns out that the transitions
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between adjacent phases are of the crossover type. Finally, we
discuss the experimental feasibility by estimating the dipolar
interaction strength in both atomic and molecular gases. We
find that although the predicted dipolar effects can hardly
be detected in dipolar atomic gas, it is highly possible to
observe the strongly correlated phases in ultracold gases of
polar molecules.

This paper is organized as follows. In Sec. II, we intro-
duce our model. In Sec. III, we present the numerical results,
which include the phase diagram, Luttinger parameter, corre-
lation functions, structure factor, and momentum distribution.
Finally, we conclude in Sec. IV.

II. QUASI-1D DIPOLAR BOSE GASES

We consider a gas of dipolar bosons confined in a trans-
verse harmonic potential, i.e.,

U⊥(y, z) = 1
2 mω2

⊥(y2 + z2),

where m is the mass of the atom and ω⊥ is the frequency of
the trap. To form the quasi-1D geometry, we assume that ω⊥ is
sufficiently large such that the transverse motion of the atoms
is frozen to the ground state of the harmonic potential. After
integrating out the transverse degrees of freedom, we obtain
the quasi-1D Hamiltonian

Ĥ = Ĥkin + Ĥint, (1)

where the kinetic and interaction terms are, respectively,

Ĥkin =
∫ ∞

−∞
dxψ̂†(x)

(
− h̄2

2m

d2

dx2

)
ψ̂ (x), (2)

Ĥint = 1

2

∫ ∞

−∞
dxdx′ψ̂†(x)ψ̂†(x′)Vint (x − x′)ψ̂ (x′)ψ̂ (x). (3)

Here ψ̂ (x) is the field operator and

Vint (x) = g(1D)
0 δ(x) + V (1D)

dd (x) (4)

is the interatomic potential, which consists of the contact
interaction and DDI. More specifically, g(1D)

0 = −2h̄2/(ma1D)
is the strength of the contact interaction with a1D =
−�⊥(�⊥/a3D − C/

√
2). Here �⊥ = √

h̄/(mω⊥) is the width of
the transverse harmonic oscillator, C = 1.4603 is a constant,
and a3D is the s-wave scattering length in three dimensions.
Furthermore, the quasi-1D dipolar interaction contains a long-
range and a short-range parts [16,32,33], i.e.,

V (1D)
dd (x) = gL

�3
⊥

[
vL(x/�⊥) − 8

3
δ(x/�⊥)

]
, (5)

where the DDI strength is gL = cdd(1 − 3 cos2 θ )/4 with θ

being the angle between the dipole moment and the x direc-
tion and cdd = μ0d2/(4π ) or d2/(4πε0) for, respectively, the
magnetic or electric dipoles. Here d is the dipole moment and
μ0 (ε0) is the vacuum permeability (permittivity). Finally, the
long-range part of the quasi-1D DDI potential is

vL(u) = −2|u| +
√

2π (1 + u2)eu2/2erfc

( |u|√
2

)
, (6)

where erfc(·) is the complementary error function. We point
out that vL(u) is a monotonically decreasing function of u and
vL(u) is finite as |u| → 0.

It is convenient to repack the interaction potential into the
sum of short- and long-ranged parts, i.e.,

Vint (x) = gSδ(x) + gL

�3
⊥

vL(x/�⊥), (7)

where

gS = g(1D)
0 − 8gL

3�2
⊥

= −h̄ω⊥

[
�2

⊥
a1D

+ add(θ )

]
(8)

is the strength of the short-range interaction that combines
the contributions from the collisional and dipolar interactions.
Because gS and gL are highly tunable quantities, quasi-1D
dipolar gases can represent a broad range of models. For
instance, the system represents the Lieb-Liniger model if
gL = 0. In particular, in the limit of gS → ∞, it reduces to
the Tonks-Girardeau (TG) gas, for which the bosonic particles
effectively behave as free fermions.

A. Scaling analyses

To reveal some fundamental properties of our system, let
us first recall the CMPS method for bosons introduce in by
Verstraete and Cirac [22]. A CMPS wave function for a 1D
bosonic system of length L with periodic boundary condition
takes the form [22]

|	〉 = tr[Pe
∫ L

0 [Q(x)⊗Î+R(x)⊗ψ̂†(x)]dx]|0〉, (9)

where Î is the unit operator, Q(x) and R(x) are B × B matrices
in the B-dimensional auxiliary space introduced as the vari-
ational parameters of the system, traux(·) represents the trace
over the auxiliary system, P denotes the path ordering, and
|0〉 is the vacuum state. Here, we concentrate on systems with
translation invariance, therefore, {Q, R} are independent of the
position x.

The variational parameters {R, Q} can be determined by
minimizing the total energy

E (n, gS, gL ) = Ekin + Eint, (10)

where n = 〈	|ψ̂†(x)ψ̂ (x)|	〉/〈	|	〉 is the density of the gas,
Ekin = 〈	|Ĥkin|	〉/〈	|	〉 is the kinetic energy, and Eint =
〈	|Ĥint|	〉/〈	|	〉 is the interaction energy. It should be
noted that, to write out Eq. (10), we have made use of the
fact that the total energy is a function of n, gS , and gL.

Following Ref. [22], we note that there exists a scaling
relation between systems with different number densities. To
show this, it is convenient to decompose the interaction en-
ergy into the short- and long-range parts and reexpress it as
Eint = gSEsr + gLElr . Then, as shown in Ref. [22], there exists
a scaling transformation

Q → λQ and R →
√

λR, (11)

under which the physical quantities transform according to
n → λn, Ekin → λ3Ekin, and Esr → λ2Esr. As a result, in the
absence of the long-range interaction, the total energy for a
system with number density n relates to that with unit density
through the relation [22]

E (n, gS, gL = 0) = n3E (n = 1, gS/n, gL = 0). (12)

This relation greatly simplifies the numerical calculation as
we always fix number density at n = 1.
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In the presence of DDI, because the long-range interaction
vL(x) in Eq. (6) does not lead to a simple transformation rela-
tion for Elr under the scaling transformation (11), one cannot
relate the total energies for systems with different number
densities. Nevertheless, we can still find a scaling relation in
the limit �⊥ → 0 under which we have �−3

⊥ vL(x/�⊥) → x−3.
Then under the scaling transformation (11), we have Elr →
λ4Elr , which leads to

E (n, gS, gL ) = n3E (n = 1, gS/n, ngL ) for �⊥ → 0.

In Sec. III, we will verify this scaling relation through numer-
ical calculations.

III. NUMERICAL RESULTS

In this section, we explore the ground-state properties of
the quasi-1D dipolar gases with a given density n. To this end,
we first introduce a chemical potential μ and then numerically
minimize the free energy E − μn.

For convenience, we introduce a set of dimensionless units:
h̄ω⊥ for energy, �⊥ for length, and �

−1/2
⊥ for field operator. As

a result, the Hamiltonian, in the dimensionless form, takes the
familiar form:

H̄ =
∫ ∞

0
dx̄

dψ̄†(x̄)

dx̄

dψ̄ (x̄)

dx̄

+
∫ ∞

0
dx̄dx̄′ψ̄†(x̄)ψ̄†(x̄′)V̄int (x̄ − x̄′)ψ̄ (x̄′)ψ̄ (x̄), (13)

where

V̄int (x̄) = Cδ(x̄) + DvL(x̄) (14)

with C = gS/(h̄ω⊥�⊥) and D = gL/(h̄ω⊥�3
⊥) being the di-

mensionless strengths for the contact and dipolar interactions,
respectively. For the shorthand notation, we will drop the bar
over the dimensionless quantities, which should not cause any
ambiguity.

To characterize the ground-state properties of the gases, we
compute the first- and second-order correlation functions, i.e.,

g(1)(x) = 1

n
〈ψ̂†(x)ψ̂ (0)〉 (15)

and

g(2)(x) = 1

n2
〈ψ̂†(0)ψ̂†(x)ψ̂ (x)ψ̂ (0)〉, (16)

respectively. Clearly, g(1)(x) characterizes the superfluid cor-
relation and g(2)(x) represents the pair correlation. According
to the Luttinger liquid theory, the asymptotic expressions for
these correlations at long distances, nx 
 1, are given by
[17,34,35]

g(1)(nx) ≈ 1

(nx)1/(2K )

[
B0 + B1

cos(2πnx)

(nx)2K

]
, (17)

g(2)(nx) ≈ 1 − K

2π2

1

(nx)2
+ A1

cos(2πnx)

(nx)2K
, (18)

where K , A1, B0, and B1 are coefficients that can be fitted
from the numerical results. Physically, the values of these
coefficients depend on the microscopic parameters in Hamil-
tonian. In particular, K is the Luttinger parameter employed

to characterize the state of the gas. Here we will follow the
convention of calling the ground state of model (1) superfluid
when g(1)(x) decays slower than g(2)(x). This will be satisfied
if K > 1/2. Similarly, we will say that the ground state has
charge order if K < 1/2, i.e., whenever g(2)(x) decays slower
than g(1)(x). This convention stems from the fact that in one
dimension there is no breaking of continuous symmetries;
hence algebraically decaying correlations are the closest be-
havior to long-range order. Since the Tonks-Girardeau (TG)
gas corresponds to K = 1, we will follow the convention in
Ref. [17] and refer the 1/2 > K > 1 as the super-TG gas.

As an experimentally accessible quantity using Bragg
spectroscopy, the static structure factor

S(k) = 1 + n
∫ ∞

−∞
dxe−ikx[g(2)(x) − 1] (19)

is also of great importance. In particular, it provides informa-
tion about the spatial arrangement of particles in many-body
systems, which can be used to determine whether the system
has a crystal structure. Finally, we will also compute the
momentum distribution

p(k) = n
∫ ∞

−∞
dxe−ikxg(1)(x), (20)

which was experimentally measured for quasi-1D dipolar
gases [21].

Below we will first check the validity of the CMPS cal-
culations and then present our results on the ground-state
properties of the quasi-1D dipolar gases. We also point out
that, for the results presented in this work, the gas density is
fixed at n = 1 unless otherwise stated. This is equivalent to
choose n−1 as the length unit.

A. Validity checks

As the preliminary checks for our CMPS calculations,
we first solve the Lieb-Liniger model (D = 0) by following
Refs. [17,22]. Unsurprisingly, our calculations can reproduce
those presented in these studies. For the next step, we perform
the validity checks in the presence of the long-range dipolar
interaction. Specifically, we examine the convergence of the
CMPS wave function by increasing the bond dimension B.
In Fig. 1(a), we compare the first-order correlation functions
computed using different bond dimensions for the set of pa-
rameters n = 1, C = 2, and D = 0.1. As can be seen, the
correlation functions converge up to x ∼ 30 for B = 24. And
the size of the power-law region in g(1)(x) also increases with
B. Moreover, it is found that all physical quantities converges
with B. As an example, we plot the Luttinger parameter K as
a function of B in the inset of Fig. 1(a). Clearly, K exhibits
a systematic convergence as B increases. Following Rincón
et al. [17], we assume that K (B) is quadratic in 1/B. As
a result, the relative error for B = 24 is as low as 2.2%.
In numerical calculations, it is found that the calculation is
extremely time consuming for B = 24, we will use B = 16
for all results presented in this work. We point out that the
relative error with B = 16 is still below 3%.

In addition to checking the convergence of the CMPS
solution for quasi-1D dipolar gases, the correctness of these
solutions should also be examined. Unlike the integrable
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FIG. 1. Validity checks for the numerical calculations. (a) Su-
perfluid correlation functions calculated using different bond dimen-
sions. Other parameters are n = 1, C = 2, and D = 0.1. (b) Ratio R�⊥
as a function of density n (in units of �−1

0 with �0 = 1) for C = 0,
D = 10, and various �⊥’s. For reference we have also plotted the
function n3 using solid line.

Lieb-Liniger model, which can be exactly solved using Bethe
ansatz, the direct comparison to exact solution for the non-
integrable dipolar gases is inapplicable. Here we present an
indirect check by verifying the scaling relation Eq. (12). As
an example, we plot, in Fig. 1(b), the ratio

R�⊥ ≡ E (n,C, D)

E (n = 1, n−1C, nD)
(21)

as a function of n for various �⊥’s with C = 0 and D = 10. As
can be seen, R�⊥ approaches to n3 as �⊥ → 0, which verifies
the scaling relation Eq. (12) and indirectly proves the validity
of the CMPS calculations

B. Luttinger parameter

Figure 2 summarizes the main results of this work by
mapping out the quantum states of the quasi-1D dipolar gases
on the C-D plane. As can be seen, the parameter plane
is divided into three regions by the lines defined by the
equations K (C, D) = 1/2 and 1. According to the criterion
proposed in Ref. [17], the regions satisfying K < 1/2 and
K > 1 belong, respectively, to the quasicrystal and superfluid
states, and the intermediate region with 1/2 < K < 1 is the
super-TG state. To facilitate further discussion, we introduce
two critical dipolar interaction strengths, D∗

1/2(C) and D∗
1(C),

corresponding to the lines denoted, in Fig. 2, by � and �,
respectively. Apparently, both D∗

1/2(C) and D∗
1(C) are mono-

FIG. 2. Quantum phases on the C-D plane characterized by the
Luttinger parameter K . The markers � and � denote the bound-
aries determined by K = 1/2 and 1, respectively. The regions with
K < 1/2 and K > 1 belong to the quasicrystal and superfluid phases,
respectively; while that with 1/2 < K < 1 is the crossover region.
The Tonks-Girardeau gas corresponds to K = 1.

tonically decreasing functions of C. For C = 0, the critical
dipolar strength for the super-TG phase is D∗

1(0) ≈ 4.2. The
presence of the contact interaction then bring D∗

1 down to zero
at the large C limit, i.e., D∗

1(∞) = 0, which states that the
TG regime can only be achieved in the limit C → ∞ without
DDI. Moreover, the quasicrystal state only appears when D is
sufficiently large. Although the contact interaction alone does
not lead to quasicrystal, its presence is favorable for quasicrys-
tal state such that the minimum dipolar interaction strength is
D∗

1/2(∞) ≈ 16.1. Then lowering C leads to a larger critical
dipolar strength for quasicrystal such that D∗

1/2(0) ≈ 21.
To gain more insight into the behavior of the Luttinger

parameter, we plot the D dependences of K in Fig. 3(a). As
can be seen, the value of the Luttinger parameter may cover
all three phases by varying D. In principle, the Luttinger
parameter ranges over the whole positive real axis, in analogy
to that of the extended Lieb-Liniger (ELL) model [17]. More
specifically, for a given C, K is a monotonically decreasing
function of D. Even though K decreases more rapidly when
C is smaller, all K converge to the same value (<1/2) as
D → ∞. This suggests that the properties of the quasicrystal
phase in the large D limit is solely determined by the long-
range interaction. Furthermore, we present, in Fig. 3(b), the
Luttinger parameter K as a function of C for different D’s. As
can be seen, for a given D, K is always a decreasing function
of C, which, at large C limit, converges to a value (�1) solely
determined by D. In addition, the larger the D is, the smaller
the slope of the decreasing function K (C) becomes. And K (C)
is roughly independent of C when D = 100.

C. Correlation functions

To further explore the properties of the quasi-1D dipolar
gases, let us examine the correlation functions of the quantum
states. To this end, we plot the distance dependences of the
superfluid and pair correlations in Figs. 4(a) and 4(b), respec-
tively, for various sets of interaction strengths (C, D). For a
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FIG. 3. Luttinger parameters. (a) K versus D for various C’s.
(b) K versus C for various D’s.

better comparison, the parameter sets are chosen to represent
the LL models (dash-dotted lines) and the pure dipolar models
(solid lines).

For comparison, let us briefly recall the correlations of
the LL model [36]. For the weak-coupling case with C = 1,
g(1)(x) clearly demonstrates superfluid order. As C increases,
the superfluid correlation is gradually suppressed and, in the
strong coupling case (C = 103), the superfluid correlation ex-
hibits the behavior of the TG limit, which corresponds to a
spinless fermionic system. As to the pair correlation of the
LL model, g(2)(x) of C = 1 monotonically increases from its
minimum value g(2)(0) to the asymptotic value at large dis-
tance. While for large C, the Friedal oscillation is developed
on g(2)(x), which is the characteristic of the Tonks-Girardeau
regime. In fact, the pair correlation function of C = 103 is vi-
sually indistinguishable from that of the TG gas, i.e., g(2)(x) =
1 − sin2 πnx/(πnx)2, indicating that C = 103 is sufficient to
represent the strongly coupled LL model.

As to the pure dipolar model, the interaction strengths
adopted in Fig. 4 cover all the regions of interest. Let us first
examine the superfluid correlation. For the weak-coupling
case (D = 1), g(1)(x) closely resembles those of the LL case
with K > 1 such that the system is also in the superfluid state.
For D = 8, the superfluidity is suppressed although the gas
is still in the superfluid state. In addition, because the Lut-
tinger parameter satisfies 1/2 < K < 1, the bosonic system is
described by strongly interacting repulsive spinless fermions,
i.e., a suppressed superfluid state or the super-TG regime.
Further increasing D leads to an almost complete suppression
of superfluid correlations such that the Luttinger parameter
reduces to K < 1/2.

FIG. 4. Superfluid (a) and pair (b) correlation functions for var-
ious sets of interaction parameters (C, D). The straight dashed line
with a slope 1/2 in (a) denotes the TG limit.

For the pair correlation function, g(2)(x), of the pure dipolar
model, its long-distance behavior for D = 1 is very similar
to that of the LL model in the weak-coupling regime. Sur-
prisingly, we do not observe any Friedal oscillation for D = 8
even though the Luttinger parameter is smaller than unit. This
suggests that the short-range repulsion induced by the long-
range potential vL(x) is not as strong as the contact interaction
since vL(x) is finite as |x| → 0. For D = 15, although Friedal
oscillation appears on g(2)(x), the pair correlation function for
pure dipolar gas differs significantly from that of the spinless
fermions (i.e., the C = 103 case) at short distance. However,
for x � 3, these two becomes nearly indistinguishable from
each other. Further increasing D, the oscillation on g(2)(x)
becomes more pronounced. Of particular importance, the pair
correlations decays slower than the superfluid correlation, in-
dicating that there exists a definite wave vector modulating
the density fluctuations. The appearance of this wave vector
in g(2)(x) signals the establishment of charge order, i.e., a
quasicrystal state.

D. Structure factor and momentum distribution

To gain more insight into the quasicrystal state, we ex-
amine the structure factor S(k), which is experimentally
measurable via the Bragg spectrometry. In Fig. 5(a) we plot
the structure factor S(k) for various sets of parameters. For
the LL model, the slope of S(k) at the low-k limit is K/(2πn),
which is proportional to the Luttinger parameter. In particular,
the static structure factor of the TG gas takes an extremely
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FIG. 5. (a) Static structure factor S(k) for various sets of interac-
tion parameters (C, D). (b) Comparison of the Luttinger parameters
fitted using g(1)(x) and S(k) for pure dipolar model.

simple form. Namely, S(k) linearly increases until it reaches
the asymptotic value 1 at the wave vector |k| = 2πn. For the
pure dipolar model, we may also use the low-k behavior to fit
the Luttinger parameter. As shown in Fig. 5(b), the Luttinger
parameter obtained by fitting the low-k behavior of S(k) is in
good agreement with that obtained by fitting g(1)(x). For weak
dipolar interaction (D = 1), S(k) resembles that of the LL
model. While for D = 15, a peak emerges at k = 2πn, which
confirms the charge order in the density fluctuations. As D is
further increased, not only the height of the peak increases,
but addition peaks appears when k/(2πn) is an integer.

Finally, we examine the momentum distribution, which
was measured from the time-of-flight images for the a 1D
dyspersium gas recently [21]. In Fig. 6, we present the mo-
mentum distributions for both LL model and pure dipolar
gases. Ideally, as shown in Ref. [36], the momentum distri-
bution diverges at k → 0 for the superfluid phase. However,
the numerical results always indicate that p(0) is finite. The
underlying reason is that g(1)(x) decays very slowly such that
it only vanishes until x is so large that is inaccessible in
numerical calculations. For dipolar gases, although p(k) with
small D is similar to that of the LL model, the whole mo-
mentum distribution is significantly flattened as D increases,
which may facilitate the identifications of the dipolar effects
in experiments.

FIG. 6. Momentum distributions p(k) for various sets of interac-
tion parameters (C, D). The inset is the zoom-in plot of the small k
regime.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a detailed study on the
ground-state properties of the quasi-1D dipolar Bose gases
by providing the phase diagram. In this system, the interplay
of the contact and dipolar interaction gives rise to a variety
of quantum phases characterized by the Luttinger parameter.
Generally speaking, the strong repulsive contact interaction
produces a TG-type fermionization, while the large dipolar
interaction leads the system into a strongly correlated super-
TG and quasicrystal phases.

As to the experimental feasibility, let us estimate the dipo-
lar interaction strengths for typical dipolar gases. Among
the experimentally realized dipolar atomic gases, Dy atom
possesses the largest magnetic dipole moment with μm =
9.93 μB, where μB is the Bohr magneton. Given the trans-
verse trap frequency ω⊥ = 2π × 25 kHz as in the experiments
[21], the largest dimensionless dipolar interaction strength is
D ≈ 0.1, which is still too small for observing any dipolar
effects in quasi-1D gases. However, we may also consider
the quasi-1D gases of ultracold polar molecules [37–44].
As concrete examples, we consider the bosonic NaRb and
NaCs molecules whose electric dipole moments are d = 3.2
and 4.75 Debye, respectively. Given the same transverse trap
frequency as that of atoms, the largest dipolar interaction
strengths for NaRb and NaCs molecules are, respectively,
D ≈ 68 and 258. Apparently, the strong dipolar interaction
between polar molecules is sufficiently large for us to observe
the quasicrystal phase.
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