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We present a generalization of the two-body contact interaction for nonrelativistic particles trapped in one
dimension. The particles interact only when they are a distance ¢ apart. The competition of the interaction length
scale with the oscillator length leads to three regimes identified from the energy spectra. When c is less than the
oscillator length, particles avoid each other, whereas in the opposite case bunching occurs. In the intermediate
region where the oscillator length is comparable to ¢, both exclusion and bunching are manifested. All of these
regions are separated by dark states, i.e., bosonic or fermionic states which are not affected by the interactions.
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I. INTRODUCTION

A paradigmatic model for understanding interacting quan-
tum systems is provided by the two-body contact potential.
This zero-range interaction occurs naturally in effective-field
theories for bosons and multicomponent fermions, and it
has proven remarkably useful for describing the physics of
trapped ultracold atomic gases, where the typical length scales
are all much larger than the effective range of the potential
[1,2]. The experimental control possible for ultracold atoms in
effectively one-dimensional (1D) traps has been remarkably
productive for studying the dynamics of single- and multi-
species quantum gases [3—6], in part because the theoretical
description of 1D contact interactions does not require regu-
larization or renormalization to achieve physically meaningful
results [7,8].

For single-component bosons, the N-body Hamiltonian
with a two-body contact potential
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has been exhaustively studied for various trapping potentials
V(x). In the case of an infinite square well or no trapping
potential, the model (1) is the Lieb-Liniger model [9] and
solvable in the bosonic sector by the Bethe ansatz for any
interaction strength g [10—12]. Similarly, for N = 2 and a har-
monic trapping potential the model is also solvable for any g
[7]. The model (1) can also be generalized to multicomponent
boson and fermion models [6,13—15], for which the previous
special cases are also solvable [16].

One of the most remarkable results (valid for any trap-
ping potential) is the Bose-Fermi mapping due to Girardeau
[17]: in the hard-core limit g — oo and for any trapping
potential, bosonic solutions of (1) are in one-to-one correspon-
dence with noninteracting fermionic solutions, sharing the
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same energy and spatial probability density. As the interaction
strength is tuned from g = 0 to g — 00, each bosonic energy
level shifts to the corresponding fermionic level. The contact
interaction at g — oo excludes the bosons from two-body
coincidences, and the bosons are said to be “fermionized.”

A key feature of the contact interaction is that single-
component fermions are not at all impacted by the interaction;
i.e., they are “dark” to the contact potential. Single-component
fermionic wave functions are totally antisymmetric under
exchange, and this antisymmetry forces nodes in the wave
function precisely at the two-body coincidences where the
contact interaction has support. Note that in higher dimen-
sions, two single-component bosons are also dark to contact
interactions when they have nonzero relative angular momen-
tum, which also forces a node at the two-body coincidences.
In other words, the contact interaction creates scattering only
in the s-wave channel. However in one dimension, relative
angular momentum is the same as relative parity for two
particles, and there are only two two-body channels: even
and odd relative parities. Odd relative parity coincides with
fermionic antisymmetry in one dimension, and even relative
parity coincides with bosonic symmetry (see the discussion of
symmetry below), so the contact interaction is felt by states
with even relative parity and can mimic statistical exclusion.

Several proposals to modify the contact interaction al-
ready exist. The most general form for a point defect in
one dimension gives a three-parameter set of contact inter-
actions [18]. This set includes so-called p-wave interactions
that single-component fermions feel but which are dark to
single-component bosons [19,20]. Alternatively, if the two-
body interaction range is taken to be a Gaussian or some
other regularized function that limits to a Dirac §, then there
is a finite range to the interaction, and fermions are again no
longer dark to the interaction.

The goal of this article is to consider a simple gener-
alization of the contact interaction in one dimension. The

©2024 American Physical Society
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interaction we propose introduces a range to the two-body
interaction in a different way: two particles interact only when
they are exactly a distance c apart. The two-body interaction
describing such a system is given by

U(g.c)=g8(x1 —xa+¢)+g0(x1 —x2—c¢).  (2)

The two 6 functions guarantee that particle-exchange symme-
try x; <> x, holds, and therefore, states can be classified as
bosonic or fermionic. In the limit that c — 0, U (g, ¢) becomes
the standard contact interaction again, but for finite c it intro-
duces a new length scale into the physical system that can
compete with the other length scales.

We consider the specific case of two particles in a harmonic
trap H(g, c) = Hy + U(g, c), where U(g, c¢) is defined above
and

R 1
Ho=—5 (02 +32) +ymet (i +3). )

The trap introduces another length scale to the problem, the
harmonic oscillator length an, = +/i/(mw). We show below
how the competition between the length scale ¢ and ay, sepa-
rates the energy spectrum into three regimes: (1) the exclusion
regime for ¢ < ap, and low energies, where the model behaves
similarly to the contact interaction model, including two-body
exclusion of particles for large g; (2) the truncation regime for
¢ > ap, and low energy, where the interaction length scale ¢
is so large that it suppresses the tail of the wave functions
and creates a bunching effect; and (3) the crossover regime
for ¢ ~ an, where exclusion and bunching compete and small
variations of ¢ can lead to dramatic changes in the wave
function variance.

The interfaces between these regions are defined by the
appearance of dark states in the interaction U (g, c¢). These are
noninteracting eigenstates that simultaneously solve the inter-
acting problem [21,22], and they are typically encountered in
systems with contact interactions [7]. The particles residing
in such states are insensitive to the tuning of the interaction
strength, and we use the term dark states for them in analogy
to states in quantum optics that are insensitive to optical driv-
ing [23]. Unlike the contact interaction, these dark states are
both fermionic and bosonic and are sporadically distributed
throughout the spectrum for specific values of ¢ correspond-
ing to zeros of Hermite polynomials. At these points triple
degeneracy occurs at infinite interactions, where two bosonic
(fermionic) states cluster with another fermionic (bosonic)
one. Moreover, dark states determine the competition between
bunching and exclusion in the crossover regime.

The outline is as follows: in Sec. I, we analyze the sym-
metries of the model and identify the bosonic and fermionic
sectors. In Sec. III, we construct the solutions at infinite in-
teractions, analyze the corresponding energy spectrum, and
subsequently discuss the ensuing symmetries. In Sec. IV, we
provide analytic solutions for arbitrary g and ¢ and analyze
how the spectrum and probability density vary with the pa-
rameters. Finally, in Sec. V we summarize our results and
examine possible realizations of the presented model.

II. STRUCTURE OF THE MODEL

As a first step towards solving the model H (g, c¢), we make
a transformation to center-of-mass and relative coordinates,

X =31(x +x)
X =X — X, €]

so that the Hamiltonian separates as H(g,c¢) = H.m. +
Hi1(g, ©):
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Hp(g,¢) = _Eax + " +g5(x+c)+gb(x—c). (5

The model (3) therefore is equivalent to two one-dimensional
quantum systems. It is trivially integrable, with the role of
the integral of motion for each degree of freedom played by
each sub-Hamiltonian energy. Another consequence is that,
like all 1D quantum systems with nonsingular potentials, the
spectrum of each sub-Hamiltonian should be nondegener-
ate except in the case g — oo [24,25]. In what follows, we
employ harmonic oscillator units such that i, m, and w all
equal 1.

The center-of-mass sub-Hamiltonian H. ., is the familiar
1D harmonic oscillator, independent of interaction strength g
and interaction displacement c. The energy eigenstates have
wave functions

2\% 1 "
<I>N(X)=<;) WHN(ﬁX>e : (6)

where Hy(+/2X) is the Nth-order Hermite polynomial. The
center-of-mass separates out, and therefore, we ignore it for
the rest of the calculation.

For the relative sub-Hamiltonian H.(g, ¢), we denote the
eigenstates as ¢, (x) with eigenenergies ¢,. The quantum num-
bern € {0, 1, 2, ...} counts the number of nodes (for finite g).
In the special case g = 0, the solutions are the noninteracting
relative wave functions

1

0 Ly 1 —x2/4
¢ (x) = (E) ﬁm(x/ﬁ)e ", (7)
with energy (n + 1/2). As we show in the next sections, solu-
tions for arbitrary values of g and ¢ can be found analytically
by solving the transcendental equation given by matching
boundary conditions for parabolic cylindrical functions at x =
+c.

Before constructing these solutions, we first analyze
the kinematic symmetries of H(g,c), by which we
mean the group of symmetry transformations that commute
with the Hamiltonian H (g, ¢) for any value of g and c. Two
symmetries always hold: spatial inversion IT and particle per-
mutation X. These transform the particle coordinates (x1, x7)
and the c.m.-relative coordinates (X, x) in the following man-
ner:

H(X], -x2) - (—XI, _-xz)v H(Xv -x) - (_Xv _-x)v (8)

(x1,x) = (X2, x1), XX, x) —> X, —x). 9
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The combined symmetry group G = {e, I1, X, [1X} gener-
ated by IT and X is isomorphic to the Klein four-group G ~
V4. This group is Abelian and has four one-dimensional uni-
tary irreducible representations corresponding to the possible
signs %1 representing IT and X.

Defining [T and ¥ as operators acting on the Hilbert space
of wave functions that represent the coordinate transforma-
tions IT and X, states @y (X) and ¢, (x) transform as

Moy(X) = (—D¥On(X), TdN(X) = Pn(X),
g, (x) = (=1)"¢,(x),  Shu(x) = (—=1)"$u(x). (10)

The center-of-mass wave functions are invariant under par-
ticle exchange, but the relative wave functions can be split
into two sectors: bosonic wave functions that are even un-
der exchange and fermionic spatial wave functions that are
odd under exchange. The two fermions are spin polarized,
i.e., single component, so that the combined spatial and spin
relative wave functions are odd under the ¥ operation. For
the case of two particles, we also see that particle-exchange
eigenstates coincide with relative-parity eigenstates: bosonic
wave functions are necessarily even under (relative) parity,
and fermionic are odd under relative parity. These sectors
decouple and can be considered separately.

For the sake of completeness, we note that the Hamiltonian
Hy + U(g, c¢) has additional symmetries in the limits g =0
and g — 0o. When g = 0, the Hamiltonian Hj is the familiar
two-dimensional isotropic harmonic oscillator. Its kinematic
symmetry (i.e., the group of all symmetry transformations that
commute with the Hamiltonian) is given by U(2). The rele-
vance of this group can be understood in two ways: (1) as the
set of all unitary transformations of the ladder operators @, and
ay into a} = upa; + upap and a), = uza; + upa; and (2) as
the set of all orthogonal and symplectic transformations of
four-dimensional classical phase space, where the intersection
O(4)N Sp(4,R) ~ U(2). These sets of transformations are
equivalent and preserve Hy. The dimensions of the irreducible
representations of U(2) are in one-to-one correspondence with
the degeneracies of the energy levels of Hy [26]. Further,
the uniform spacing between adjacent energy levels of Hj
can be understood by considering the dynamical symmetry
group, i.e., the group of all space-time transformations that
preserve the action of the 2D harmonic oscillator. This group
is called the harmonic oscillator group HO(2) and includes the
kinematic symmetry group U(2) as a subgroup [27].

The symmetries in the g — oo case will be discussed after
we present the energy spectrum.

III. INFINITE INTERACTIONS

Despite the fact that g = oo is a special regime requiring
separate treatment, further insight can be gained regarding the
structure of eigenstates and the degeneracy of energy levels.
Such knowledge will be useful later on when we analyze the
structure of eigenstates at finite interaction strengths.

A. Energy levels

To find the energy-level structure at g = +00, we proceed
as follows. The relative x coordinate is separated into three re-
gions, I = (—o0, —c¢), I = (—c, ¢), and IIIl = (¢, 00). These

are disjoint intervals, given that there is effectively a hard wall
at the interaction centers dc. Therefore, the wave functions
have to vanish at the intersections of the intervals. The relative
Hamiltonian in regions I and III corresponds to the Hamil-
tonian of a single particle confined in a harmonic oscillator,
truncated by a hard-wall boundary at x = —c (I) or x = ¢
(IID). In region II, H, corresponds to that of a single particle
confined in a box potential superimposed with a harmonic
oscillator.

We first focus on the latter region. The relative wave func-
tions are known; they are combinations of parabolic cylinder
functions [28-30],

P (x) = ™Dy (x) + Dy (—x), (1)

where QUM = €™ — 1/2 and the coefficients have yet to be
determined. The superscript denotes that the two particles
are located inside the interval determined by the interaction
centers, (—c, ¢). In the case where Q,(li“) = n, an integer, these
functions reduce to the nth-order Hermite polynomials [28],

D,(x) = 27" H,(x//2)e ¥ /* = 2m) " Vnl ¢(x).  (12)

The hard-wall boundary conditions imposed by the box
potential imply that ¢ (—c) = ¢{W(c) = 0. These two
equations can be cast in the form of a matrix eigenvalue
problem with zero eigenvalue [31],

D (in)(C) D ““)(_C) a(in)
On ol ~
(DQLin)(_C) DQLin)(C) )(,B(in)> =0. (13)

Demanding that the determinant of the matrix be zero, we
end up with the following relation for the energy levels €™
[32-35]:

D7y (€) = Dpyon (=€) = 0. (14)

For the other two symmetric regions it suffices to solve
the relative Hamiltonian in only one of them. This is due
to the fact that H, is invariant under spatial inversion I1,
even for infinite interactions (see also Sec. II). As a result,
the energy levels in regions I and III coincide, denoted as
€1 Focusing on region 111, for example, the wave functions
read x 1D (x) = oz("““HI)DQ(vom) (x), where QW = lou)
1/2. The superscript denotes that both particles are located
outside of the interaction-center interval (—c, c¢), in particu-
lar in region III. Note that we are interested in bound-state
solutions, and thus, only a single parabolic cylinder func-
tion is considered since D yow (—x) diverges exponentially as
x — 0o [28,29]. Imposing the hard-wall boundary condition
at x = c, the energy levels € "V are determined [32]:

DQ(VOH[)(C) =0. (15)

The associated energy eigenstates x °*“')(x) are not eigen-
states of the transformations Il and X since they are
mapped to interval I, e.g., £ (x) = x D (x). Simul-
taneous eigenstates of the relative Hamiltonian and kinematic
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6glout)

FIG. 1. (a) Energy levels at g = +o0 versus the displacement c.
The positions of the exact crossings between the doubly degenerate
€9 and nondegenerate €™ levels designate three regions, the ex-
clusion (E), crossover (C), and truncation (T) regions.

symmetries can be constructed:
1
E[X‘Eout,l)(x) _|_ (_l)nxlgout,lll)(x)} (16)
2v+60[(n mod v) — 1/2],
O[n —1/2],

(out) (x) —

n

v >0,
v=20,

a7

where 6(-) is the Heaviside step function. The ¢,(,°“t)(x) wave
functions now span the entire region outside of the interval
(—c, ¢). Moreover, according to Eq. (17), every quantum
number v corresponds to a pair of adjacent even and odd
quantum numbers n = 2v and n = 2v + 1. In this way, the
" (x) eigenstates can be classified as even or odd parity
under the action of the spatial inversion and particle permu-
tation operations, similar to finite g. The energies of even-
and odd-parity states with adjacent quantum numbers 2v and
2v + 1 are degenerate and both equal to €(*".

From the above analysis it becomes clear that the bosonic
and fermionic levels €Y are doubly degenerate and that
particles occupying these eigenstates are localized outside
of the interval (—c, c¢). On the other hand, the two particles
are strictly found within (—c, ¢) when the ¢{IV eigenstates
are populated. In this case the bosonic and fermionic levels
are distinct [Eq. (14)], and they are nondegenerate. Varying
the displacement ¢ is equivalent to moving the hard walls
and thus shifting the energy levels €™ and €'V (Fig. 1).
These two kinds of eigenstates correspond to different Hamil-
tonians, and thus, there are only exact crossings between
them. The positions of these crossings correspond to roots
of Hermite polynomials, where the noninteracting eigenstates
vanish [Eq. (12)]. For these values of c, there are therefore
dark eigenstates of the relative Hamiltonian that have nodes
exactly where the interaction lies. Therefore, these dark states
indicate special points where there is a triple degeneracy.

The energy levels at g = 400 (Fig. 1) help us to neatly
classify the density profiles of the two-particle system, de-

pending on the value of c. In particular, €™ and €\’

delineate three regimes. On the left of e(()‘“), for c « 1, all
eigenstates are doubly degenerate, and particles are excluded
from the interval (—c, ¢). Adjacent bosonic and fermionic
energy levels cluster together in a way reminiscent of the

Tonks-Girardeau regime, manifested in systems with strongly
repulsive short-range interactions [17,36,37]. In that regime,
bosons turn into hardcore particles avoiding each other, and
their energy levels become degenerate with those of non-
interacting fermions. By analogy, we call this displacement
parameter range the exclusion regime.

On the right of e(()f’?t), ¢ > 1, all eigenstates are nonde-
generate. Particles are localized within the interaction-center
interval (—c, c¢), and the energy levels saturate to their non-
interacting values at large c. In this region, the interaction
centers are located at the edges of the harmonic trap, and the
two particles barely feel any interaction. The oscillator length
is the only relevant length scale, dictating the exponential
decay of the eigenstates at large separations. Since the energy
spectrum resembles that of an harmonic oscillator, truncated
at the edges due to the interaction centers, the regime of
large interaction displacement is called the truncation region.
Between these two regions, nondegenerate and doubly de-
generate eigenstates coexist, denoting the crossover regime.
When ¢ coincides with the roots of Hermite polynomials,
triple degeneracy occurs, as €°"Y match €V,

B. Symmetries

For finite g and c, all energy levels of the relative sub-
Hamiltonian are nondegenerate, as is true for any solutions
to the 1D Schrodinger equation defined on a path-connected
interval. More generally, any system whose maximal kine-
matic symmetry is Abelian should only be nondegenerate.
How, then, can we understand the additional double and triple
degeneracies that occur in the g — oo limit?

These can be understood by recognizing that the domain of
the relative coordinate x becomes effectively disconnected for
infinite g. The three domains, I = (—o0, —c), Il = (—c¢, ¢),
and III = (¢, 00), act like an independent quantum system,
each experiencing independent time evolution. Energy eigen-
states are localized in each of these three distinct regions
in the g — oo limit. To see this, note that the relative sub-
Hamiltonian H, (g, ¢) can be reexpressed as the direct sum of
three Hamiltonians:

glirgo H,(g, c) = Hi @ Hy @ H, (18)

where Hp, is the 1D harmonic oscillator Hamiltonian restricted
to region R € {I, II, III}. These restricted Hamiltonians com-
mute, so instead of one time-translation symmetry parame-
terized by t € T; ~ R, there are now three parameterized by
(t1, t, tr) € T3 ~ R3 and represented by products of the
three unitary operators Ug(tz) = exp(—iHgtz). Equivalently,
the phase difference between disjoint regions in the g — 0o
limit is not an observable quantity [25]. Only when g is finite
is there coupling between adjacent regions that locks their
relative phase.

However, this additional symmetry of tripled time evolu-
tion is still an Abelian kinematic symmetry and therefore not
enough to explain the systematic double and triple degenera-
cies that occur for the g — oo limit of H (g, c¢). If regions I,
II, and III were all intervals with inequivalent domains, then
the spectrum would be nondegenerate except for so-called ac-
cidental degeneracies where two states (or, even more rarely,
three states) would coincide in energy. For our system, regions
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I and IIT are equivalent intervals exchanged by relative parity
%. Therefore, the spectra of Hy and Hyyp coincide, and the out
states x °UtD and x ©utID are doubly degenerate pairs that can
be symmetrized into bosonic states or antisymmetrized into
fermionic states ¢{°"Y.

The kinematic symmetry group that incorporates the equiv-
alence of regions I and III is formed from the time evolution
operators Uy (1) and Um (ti) (which commute) and the relative
parity operator ¥, which satisfies

SUi(h) = Um(tm) . (19)

Because 3. does not commute with the time translations, this
kinematic symmetry group is not the direct product 7,*? x S,
and must be expressed as the semidirect product 7,** x Ss,
where (71, tip) € T,X2 ~ RZ is the time-translation group gen-
erated by Hy and Hyy, S; is the group generated by X that
permutes the two identical systems, and x indicates that S,
acts as a nontrivial automorphism on 7,*?. This specific form
of the semidirect product is also known as the wreath product
T; ¢ S; [25,38,39]. The kinematic symmetry group 7; : S, is
non-Abelian, and one can show that it has two-dimensional
unitary irreducible representations that explain the double de-
generacy of the out states for g — oo and any c.

Further, triple degeneracies occur when states in the spec-
trum of region II have energies that coincide with states
of the outer regions I and IIl. These spectral “accidents”
occur precisely when the displacements £c align with the nth
Hermite polynomial root, Hn(c/ﬁ) = 0. When n is even,
the state in region II is even, and the triply degenerate state
comprises two bosonic states (one inside and one outside
the central region) and one fermionic state. When » is odd,
triple degeneracy occurs between two fermionic states and one
bosonic state. Understanding these accidental degeneracies as
the result of dark states provides an interesting perspective on
an old subject [40—44], but not all accidental degeneracies can
be understood this way.

IV. GENERIC INTERACTION STRENGTH

In this section, we provide expressions for the solutions
¢n(x) of the relative sub-Hamiltonian H (g, ¢) when the in-
teraction strength g is finite. We will also identify two critical
features of the model: (1) the role played by dark states,
i.e., states of the noninteracting Hamiltonian whose wave-
function nodes coincide with the interaction displacement ¢
and thus remain unperturbed, and (2) the transitions occurring
around the displacement ¢ where triple degeneracy manifests
at g = oo.

A. Solutions of the relative sub-Hamiltonian

The first step towards finding the eigenspectrum of the rela-
tive sub-Hamiltonian (5) for generic g is to divide the relative
x coordinate into three regions, I = (—o0, —c), Il = (—c, ¢)
and III = (c, 00), similar to the case where g = co. The so-
lutions in these intervals are linear combinations of parabolic

cylinder functions Dy (x) [28-30],

epPx), xel
() = 1M x), xell,
oM (x), xelll,

¢\ (x) = @iDy, (x) + BiDo, (—x),

where O, = €, — 1/2 and the coefficients have yet to be de-
termined.

Since we are interested in bound-state solutions due
to the harmonic trap, we demand that the eigenstates
vanish at x — Foo. From the asymptotic expansions
[28,29] Dy, (x — 00) ~ e */*x% and Dy, (x — —00) ~
V27 JT(=Q,)e" x~ 1= we infer that o = By = 0.

To determine the remaining coefficients and the energy
levels, boundary conditions are imposed at the interval in-
tersections, namely, at x = F=c. These consist of continuity
conditions for the wave functions and discontinuity conditions
for the first derivatives due to the § interaction potentials [45],

i=LILIL (20)

(=) =g (=0 (2la)
o) =" (),  (21b)
do' do®
¢’;x(X) - ¢le(X) ’x:_c — opP(—c),  (2lo)
(I11) an
d¢ndx (x) - d¢2x(X) _ = ™). (21d)

Apart from the above boundary conditions, one needs
to take into account the symmetry of the relative sub-
Hamiltonian under particle exchange, i.e., the X operation.
The wave functions can be either even or odd upon particle
exchange, ﬁ?d)n(x) = (—1)"¢n(x), describing identical bosons
or fermions, respectively. Therefore, an additional condition
can be imposed for the coefficients, namely, o = (—1)"8;.

Having at hand the above boundary conditions and con-
straints, one can determine the energy levels and coefficients
up to a normalization constant. The discontinuity conditions
(21c) and (21d) can be simplified by employing the recurrence
relations that the parabolic cylinder functions enjoy [28],

dDgy, (£x) 1
T = ExDQ” (:i:x) F DQn+l (:l:x) (22)

Applying these conditions and properties, the following tran-
scendental equation for the energy levels €, is established:

Dy, (¢)Dg,+1(—c¢) Dy, (—c)Dg, +1(c)
Dg,(=¢) + (=1)"Dg,(¢) = Dg,(—¢) + (=1)"Dg,(c)

= —¢gDy,(¢). (23)

Note that the above relation is general and the energy levels
€, = O, + 1/2 are determined for arbitrary finite interaction
strength g. The equation holds also for arbitrary displacement
¢ except in the special cases where Dy, (£c) = 0, which are
treated separately. These occur whenever Q, is an integer,
and the zeros correspond to the roots of Hermite polynomi-
als [Eq. (12)] and hence to noninteracting eigenstates ¢S(x).
These states do not “feel” the interaction; i.e., they are dark
states. This behavior is similar to that of fermionic states,
which do not feel a zero-range contact interaction (see below).
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FIG. 2. (a) Energy levels ¢, corresponding to even- (n =0, 2, ...) and odd- (n = 1, 3, ...) parity eigenstates for ¢ = 0.75. The panels on
the right depict the wave functions of the (b) ground bosonic and (c) fermionic states at various interaction strengths, as indicated in the legend.

We will see evidence of these dark states in the spectrum
below.

Note that irrespective of the interaction strength, high-lying
excited states always exist which are barely affected by the §
potentials since the interaction energy is small. In our analysis,
however, they are not taken into account, and the dark states
always refer to low-lying energy eigenstates.

Apart from the energy levels, the coefficients are also deter-
mined from the boundary conditions. An analytical expression
is thus established for the eigenstates,

BiDg,(—x), x el
() = { g Pon(©)[Dg, (+(=17Dg, ()] 24
$nX) =1 g, By —or g > *EIL 24)
(=1)*BiDg, (x), x € III,

where fB; is a normalization constant. As predicted from
the symmetry analysis above, the description of bosons
(fermions) requires an even (odd) quantum number n. Note
that the eigenstates related to a particular relative parity form
an orthonormal basis.

B. Competition between scales

Now we analyze how a finite interaction strength affects
the energy spectrum and the resulting eigenstates, especially
close to the triple-degeneracy points identified at g = oo.

First, consider the displacement ¢ = 0.75 < 1, inside the
exclusion regime (Fig. 1). The corresponding energy-level
structure is presented in Fig. 2. As expected due to the nonzero
displacement, fermionic energy levels are also affected by
the interactions [dashed lines in Fig. 2(a)], contrary to the
case of zero-range interactions [7,46]. There is, however, one
energy level (n = 4) which barely depends on the interaction
strength, i.e., a dark state. This occurs because the first root
of the corresponding Hermite polynomial Hy(x/+/2) lies very
close to the displacement ¢ [47]. As g — 00, the energy levels
of the adjacent bosonic (n = 2) and fermionic (n = 3) states

tend asymptotically to the energy of the dark state, signaling a
triple degeneracy, as seen also from Fig. 1. The latter is present
at attractive interactions as well, where the n = 4 dark state
now clusters with the n = 5, n = 6 levels. Except for the triple
degeneracy induced by the dark state, all other low energy
levels are doubly degenerate as g — oo, given that this is the
exclusion regime.

The exclusion from the (—c, ¢) interval is demonstrated in
the transition of the profiles of the first bosonic and fermionic
eigenstates (n = 0, 1) from attractive to strongly repulsive in-
teractions [Figs. 2(b) and 2(c)]. The two particles tend to avoid
the narrow region Il and delocalize away from their interaction
centers in regions I and III. For strong repulsion (g = 20), the
probability to find the two particles inside the interval (—c, c¢)
is very small for both the bosonic and fermionic states. Note
that as the interactions become even more repulsive (g = 100),
the corresponding probability tends to zero. This behavior oc-
curs because the wave functions start to resemble the ¢ "V (x)
eigenstates occurring at g = 0o, which are supported only
outside of the (—c, ¢) interval.

On the attractive side (g = —1), the two particles tend to
bunch in both the bosonic and fermionic states. In fact, when
g — —o0, the energies of these two levels tend to —oo, corre-
sponding to two deeply bound two-body bound states [48-50].
This feature that the lowest two states when g — —oo are
the symmetric and antisymmetric combinations of identical
bound states is independent of c.

We now consider the energy levels for ¢ = 1.5 > 1, span-
ning both the crossover and truncation regions [Fig. 3(a)]. The
absence of any triple degeneracy in the displayed energy range
is attributed to the fact that no roots of low-lying Hermite
polynomials exist close to ¢ = 1.5, and therefore, dark states
are not present for the low energy levels. High-level states
with zeros near ¢ = 1.5 certainly exist and would be dark (or
nearly dark) to this interaction, but we do not depict them.

Aside from the two-level clustering exhibited by a few
eigenstates (e.g., n = 1, 2), some low-energy levels are non-
degenerate (e.g., n = 0, 3 for g > 0). When a nondegenerate
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FIG. 3. (a) Energy levels €, corresponding to even- (n = 0,2, ...) and odd- (n = 1, 3, ...) parity eigenstates for ¢ = 1.5. The panels on

the right depict the wave functions of the (b) ground bosonic and (c) fermionic eigenstates at various interaction strengths, as indicated in the

legend.

eigenstate is occupied, the two particles exhibit a bunching
behavior inside the interval (—c, ¢), becoming even more
pronounced at strong interaction. A characteristic example is
the ground bosonic state [Fig. 3(b)]. For very strong interac-
tion (g = 100), the two particles are almost entirely localized
within the interval (—c, ¢). In this regime, the nondegenerate
eigenstates are similar to ¢{!V(x), which are exclusively sup-
ported within the interaction center interval. However, when
the particles reside in bosonic or fermionic states becoming
doubly degenerate at large g, they display the opposite be-
havior. Namely, they are expelled farther away from region II
as g further increases [first fermionic state in Fig. 3(c)]. This
pattern is consistent with the one already encountered in the
doubly degenerate eigenstates at ¢ < 1 [Figs. 2(b) and 2(c)].

To further understand the transition between exclusion,
crossover, and truncation regimes, the energy spectrum is
investigated for variable displacement ¢ while keeping the in-
teraction strength fixed at a large value, g = 10 (Fig. 4). When
¢ < 1, bosonic and fermionic states with adjacent quantum
numbers are doubly degenerate (exclusion regime). Their en-
ergies tend to the levels of noninteracting fermions at ¢ = 0
(blue dash-dotted lines on the left of Fig. 4). For slightly
larger ¢, the doubly degenerate energy levels increase since
the particles are pushed away from the interaction centers to
the edges of the harmonic trap [Figs. 2(b) and 2(c)], where the
potential energy is higher.

As c further increases, there are particular points where the
energy levels of bosonic states with quantum numbers n and
n + 2 approach the energy of a fermionic eigenstate with num-
ber n + 1 (e.g., dashed circle in Fig. 4). These points mark a
triple degeneracy, which will clearly manifest as g — oo (see
Fig. 1). The corresponding ¢ values lie very close to the first
root of even Hermite polynomials, thus further establishing
the link between triple degeneracy and dark states. When the
displacement is tuned a bit further away from these points,
the energy levels of the adjacent bosonic states anticross, and
one of them becomes nondegenerate (e.g.,n =0 atc 2> 1 or

n = 2atc < 1). This implies that dark states mark the onset of
nondegenerate eigenstates. Moreover, they set the boundaries
between single and double degeneracy.

Apart from bosonic eigenstates, the energy levels of
fermionic states can also be nondegenerate. The transition
from double to single degeneracy takes place close to the
roots of odd Hermite polynomials (e.g., dash-dotted circle in
Fig. 4). At these values, two adjacent fermionic levels with
quantum numbers n and n + 2 become degenerate with a
bosonic state corresponding to n 4 1.

Close to the triple-degeneracy points, doubly and nonde-
generate energy levels coexist in what we call the crossover
regime. As the displacement ¢, however, is further tuned
to higher values, nondegenerate eigenstates outnumber any
other kind at low energies. Similar to the g = co scenario

FIG. 4. Energy spectrum for varying displacement ¢ at g = 10.
The energy levels correspond to even- (n =0, 2, ...) and odd- (n =
1,3, ...) parity solutions. The dash and dash-dotted circles mark
the onset of triple degeneracy and the existence of bosonic and
fermionic dark states, respectively. The horizontal blue dash-dotted
lines on the left correspond to the noninteracting fermionic energy
levels. The respective lines on the right-hand side correspond to the
noninteracting energy spectrum.
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FIG. 5. Spatial extents (x2) of the first two bosonic eigenstates
(n=0,2) and the fermionic ground state (n = 1) with respect to
the displacement ¢ at g = 4+10. The dash and dash-dotted circles
mark the onset of triple-degeneracy points (Fig. 4). The horizontal
dash-dotted lines correspond to the widths of the noninteracting
eigenstates (x2) = (2n + 1).

(Fig. 1), these levels tend towards the noninteracting bosonic
and fermionic values as ¢ >> 1 (blue dash-dotted lines on the
right of Fig. 4).

Despite the smooth double-to-no-degeneracy transition of
the energy levels (Fig. 4), the two particles display completely
different structures when residing in a doubly degenerate or
nondegenerate eigenstate [Figs. 2(b) and 3(b)]. What is the
connection between these two different patterns? To answer
that question, we probe the widths of the eigenstates, (x2) =
f dx x?|¢,(x)|?, with respect to the displacement c. Focusing
on the first bosonic and fermionic eigenstates (n =0, 1 in
Fig. 5), we observe that their extents are almost identical
for ¢ < 1. This is a manifestation of the double degeneracy,
where the exclusion of the particles inside the interval (—c, c)
results in identical density patterns for adjacent bosonic and
fermionic states [Figs. 2(b) and 2(c)].

Close to the triple-degeneracy mark, however (dashed cir-
cle in Fig. 5), small variations in the displacement c result in a
substantial drop of the spatial extent of the ground bosonic
state, almost an order of magnitude. The particles are now
found at very small separations, a manifestation of the bunch-
ing effect for nondegenerate eigenstates [see also Fig. 3(b)].
As c is tuned to even larger values, the extent of the ground
state asymptotes to the noninteracting width, (x%) =1 [51]
(horizontal blue dash-dotted line in Fig. 5). Note that (x%)
approaches unity from below, indicating that the bunching is
strong, and the particles localize within smaller distances than
the oscillator length. The same abrupt drop occurs in the spa-
tial extent of the ground fermionic state as well, in the vicinity
of the first root of the n = 3 Hermite polynomial (dash-dotted
circle in Fig. 5). From this point on, this fermionic state
becomes nondegenerate, and subsequently, (xf) saturates to
the noninteracting value, 3 (black dash-dotted horizontal line
in Fig. 5).

The spatial extent of higher excited states features a very
interesting pattern. For the first excited bosonic state, for
example, (x3) goes through a series of sudden drops and
increases (n = 2 in Fig. 5) as ¢ tends to larger values. These
abrupt changes occur near triple-degeneracy points (see also
Fig. 4). The two drops (c ~~ 0.75, 2.3) are associated with the

absence of any degeneracy and hence with the bunching ef-
fect. The one increase in between (c = 1) takes place because
from this point on the n = 2 eigenstate becomes doubly de-
generate with the n = 1 fermionic state. Due to these series of
abrupt transitions, the spatial extent (x3) assumes its asymp-
totic value of 5 (yellow dash-dotted horizontal line) at a larger
displacement in comparison to the other two eigenstates. Let
us also note that for even stronger repulsions, the changes
in (x,zl) near the triple-degeneracy points grow increasingly
abrupt.

V. SUMMARY AND CONCLUSIONS

We investigated the stationary properties of two harmoni-
cally trapped particles interacting via contact potentials with
a displacement c¢. Depending on the value of the latter, the
energy spectra are classified into three regimes. In the ex-
clusion regime ¢ is smaller than the oscillator length, and
the energy levels of adjacent bosonic and fermionic states
cluster together as g — oco. The two particles are found at
large separations, and they are expelled from the interval
dictated by the interaction centers, (—c, ¢). In the truncation
regime occurring at ¢ larger than the oscillator length, all en-
ergy levels are nondegenerate as ¢ — oo. The corresponding
relative wave functions have nonzero support only at short
interparticle distances, signaling a bunching effect. This is
understood in terms of the stationary properties at infinite
interactions, where the relative Hamiltonian in the interval
(—c, ¢) is equivalent to that of a box potential superimposed
with a harmonic oscillator. In the crossover regime, as the
name suggests, both singly and doubly degenerate eigenstates
coexist.

The boundary between these two kinds of eigenstates is
set by dark states. The latter occur whenever the interaction
displacement c lies close to a root of a Hermite polynomial.
Whenever such eigenstates are occupied, the two particles do
not experience any interaction. At finite interaction strengths,
there is a transition between singly and doubly degenerate
eigenstates, manifested as avoided crossings in the energy
spectra when ¢ coincides with Hermite polynomial roots.
At g = 400, such a transition is prohibited since the rela-
tive Hamiltonian partitions into three disjoint regions. Due
to the extra symmetries that this decomposition introduces,
the avoided crossings become exact. The doubly degenerate
adjacent bosonic and fermionic eigenstates cluster with a dark
state; i.e., triple degeneracy occurs.

Apart from the two-atom problem considered here, the
few-body and many-body aspects of such off-centered inter-
actions are certainly intriguing. The displacement ¢ introduces
an additional length scale that competes with the scales
present in a many-body setup. Such a competition may lead to
novel phases, as in dipolar gases [52,53], for instance. More-
over, it is interesting to investigate which degeneracies occur
when considering external trapping potentials apart from the
harmonic oscillator. Dark states depend critically on trap
shape and the number of particles, leading to rearrangement
of the energy levels.

Ultracold atoms trapped within optical tweezers [54,55]
may offer an experimental scheme for realizing such a
model Hamiltonian. In particular, the relative Hamiltonian is

023327-8



IMPACT OF DARK STATES ON THE STATIONARY ...

PHYSICAL REVIEW A 110, 023327 (2024)

equivalent to the Born-Oppenheimer description of a sin-
gle trapped impurity interacting with two noninteracting
atoms, fixed at positions ¢ from the impurity. Capitaliz-
ing on optical tweezers, the displacement can be adjusted,
realizing the different regimes described above. In that
regard, the density profile of the impurity could be engi-
neered, and induced interactions can occur between the two
fixed atoms.

The fact that the interactions among particles occur when
they are a distance c¢ apart could be considered a decentered
interaction. Indeed, such decentered interactions are encoun-
tered for atoms in the presence of perpendicular strong electric
and magnetic fields [56,57]. The action at a given distance
leads to so-called giant dipole states in crossed fields in the
case of the attractive Coulomb potential.

However, the primary motivation for considering this two-
body model is that it is analytically tractable, one which
exemplifies the role of an additional length scale mimicking
a finite interaction range. Such a length scale leads to rich
patterns in the energy spectrum and eigenstates, which can be
classified by means of the dark states present in the system.

ACKNOWLEDGMENTS

This work is supported by the Cluster of Excel-
lence “Advanced Imaging of Matter” of the Deutsche
Forschungsgemeinschaft (DFG) - EXC2056 - Project ID No.
390715994. N.L.H. additionally acknowledges the support of
the Deutscher Akademischer Austauschdienst and the U.S.
Fulbright Specialist Program.

[1] C. J. Pethick and H. Smith, Bose—Einstein Condensation in
Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge,
2008).

[2] 1. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[3] S. Mistakidis, A. Volosniev, R. Barfknecht, T. Fogarty, T.
Busch, A. Foerster, P. Schmelcher, and N. Zinner, Phys. Rep.
1042, 1 (2023).

[4] A. N. Wenz, G. Ziirn, S. Murmann, I. Brouzos, T. Lompe, and
S. Jochim, Science 342, 457 (2013).

[5] E. Serwane, G. Ziirn, T. Lompe, T. Ottenstein, A. Wenz, and S.
Jochim, Science 332, 336 (2011).

[6] T. Sowiriski and M. Angel Garcia-March, Rep. Prog. Phys. 82,
104401 (2019).

[7] T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens, Found.
Phys. 28, 549 (1998).

[8] A. Farrell and B. P. van Zyl, J. Phys. A 43, 015302 (2010).

[9] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).

[10] M. Gaudin, The Bethe Wavefunction (Cambridge University
Press, Cambridge, 2014).

[11] C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).

[12] M. Gaudin, Phys. Lett. A 24, 55 (1967).

[13] M. A. Garcia-March, B. Julid-Diaz, G. E. Astrakharchik, T.
Busch, J. Boronat, and A. Polls, New J. Phys. 16, 103004
(2014).

[14] N. L. Harshman, Few-Body Syst. 57, 11 (2016).

[15] N. L. Harshman, Few-Body Syst. 57, 45 (2016).

[16] B. Sutherland, Beautiful Models: 70 Years of Exactly Solved
Quantum Many-Body Problems (World Scientific, River Edge,
NIJ, 2004).

[17] M. Girardeau, J. Math. Phys. 1, 516 (1960).

[18] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden,

Solvable Models in  Quantum  Mechanics, softcover
reprint of the original 1Ist ed. 1988 (Springer, Berlin,
2012).

[19] T. Cheon and T. Shigehara, Phys. Lett. A 243, 111 (1998).

[20] T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536
(1999).

[21] E. Werner and Y. Castin, Phys. Rev. Lett. 97, 150401 (2006).

[22] F. Werner, Ph.D. thesis, Université Pierre et Marie Curie-Paris
VI, 2008.

[23] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

[24] R. Loudon, Am. J. Phys. 27, 649 (1959).

[25] N. L. Harshman, Phys. Rev. A 95, 053616 (2017).

[26] J. D. Louck, J. Math. Phys. 6, 1786 (1965).

[27] U. Niederer, Helv. Phys. Acta 46, 191 (1973).

[28] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
Vol. 55 (US Government Printing Office, Washington, DC,
1948).

[29] O. Aouadi, Y. Chargui, and M. S. Fayache, J. Math. Phys. 57,
023522 (2016).

[30] M. Avakian, G. Pogosyan, A. Sissakian, and V. Ter-Antonyan,
Phys. Lett. A 124, 233 (1987).

[31] A. Consortini and B. R. Frieden, Nuovo Cimento B 35, 153
(1976).

[32] C. Grosche, Ann. Phys. (Berlin, Ger.) 505, 557 (1993).

[33] E. Jafarov, S. Nagiyev, and A. Jafarova, Rep. Math. Phys. 86,
25 (2020).

[34] V. C. Aguilera-Navarro, E. L. Koo, and A. H. Zimerman, J.
Phys. A 13, 3585 (1980).

[35] N. Aquino and E. Cruz, Rev. Mex. Fis. 63, 580 (2017).

[36] L. Tonks, Phys. Rev. 50, 955 (1936).

[37] L. M. A. Kehrberger, V. J. Bolsinger, and P. Schmelcher, Phys.
Rev. A 97, 013606 (2018).

[38] M. Bhattacharjee, D. Macpherson, R. G. Moller, and P. M.
Neumann, in Notes on Infinite Permutation Groups, Lecture
Notes in Mathematics (Springer, Berlin, 1998), pp. 67-76.

[39] N. L. Harshman, Few-Body Syst. 58, 41 (2017).

[40] J. M. Jauch and E. L. Hill, Phys. Rev. 57, 641 (1940).

[41] H. V. McIntosh, Am. J. Phys. 27, 620 (1959).

[42] J. D. Louck and N. Metropolis, Adv. Appl. Math. 2, 138 (1981).

[43] M. Moshinsky and C. Quesne, Ann. Phys. (NY) 148, 462
(1983).

[44] F. Leyvraz, A. Frank, R. Lemus, and M. V. Andrés, Am. J. Phys.
65, 1087 (1997).

[45] M. Belloni and R. W. Robinett, Phys. Rep. 540, 25 (2014).

[46] L. Budewig, S. Mistakidis, and P. Schmelcher, Mol. Phys. 117,
2043 (2019).

[47] H. Salzer, R. Zucker, and R. Capuano, J. Res. Natl. Bur. Stand.
(U.S.) 48, 111 (1952).

023327-9


https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1016/j.physrep.2023.10.004
https://doi.org/10.1126/science.1240516
https://doi.org/10.1126/science.1201351
https://doi.org/10.1088/1361-6633/ab3a80
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1088/1751-8113/43/1/015302
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1016/0375-9601(67)90193-4
https://doi.org/10.1088/1367-2630/16/10/103004
https://doi.org/10.1007/s00601-015-1024-6
https://doi.org/10.1007/s00601-015-1025-5
https://doi.org/10.1063/1.1703687
https://doi.org/10.1016/S0375-9601(98)00188-1
https://doi.org/10.1103/PhysRevLett.82.2536
https://doi.org/10.1103/PhysRevLett.97.150401
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1119/1.1934950
https://doi.org/10.1103/PhysRevA.95.053616
https://doi.org/10.1063/1.1704724
https://doi.org/10.5169/seals-114478
https://doi.org/10.1063/1.4942493
https://doi.org/10.1016/0375-9601(87)90627-X
https://doi.org/10.1007/BF02724052
https://doi.org/10.1002/andp.19935050606
https://doi.org/10.1016/S0034-4877(20)30055-0
https://doi.org/10.1088/0305-4470/13/12/008
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1103/PhysRevA.97.013606
https://doi.org/10.1007/s00601-017-1214-5
https://doi.org/10.1103/PhysRev.57.641
https://doi.org/10.1119/1.1934944
https://doi.org/10.1016/0196-8858(81)90002-6
https://doi.org/10.1016/0003-4916(83)90247-6
https://doi.org/10.1119/1.18734
https://doi.org/10.1016/j.physrep.2014.02.005
https://doi.org/10.1080/00268976.2019.1575995
https://doi.org/10.6028/jres.048.016

BOUGAS, HARSHMAN, AND SCHMELCHER

PHYSICAL REVIEW A 110, 023327 (2024)

[48] A. A. Frost, J. Chem. Phys. 22, 1613 (1954).

[49] A. A. Frost, J. Chem. Phys. 25, 1150 (1956).

[50] T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan, III,
J. Chem. Phys. 99, 2841 (1993).

[51] J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley,
Reading, MA, 1967).

[52] L. Chomaz, 1. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra,
B. L. Lev, and T. Pfau, Rep. Prog. Phys. 86, 026401 (2022).

[53] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,
Rep. Prog. Phys. 72, 126401 (2009).

[54] A. M. Kaufman and K.-K. Ni, Nat. Phys. 17, 1324 (2021).

[55] M. FE. Andersen, Adv. Phys.: X 7, 2064231 (2022).

[56] P. Schmelcher and L. S. Cederbaum, Chem. Phys. Lett. 208,
548 (1993).

[57] O. Dippel, P. Schmelcher, and L. S. Cederbaum, Phys. Rev. A
49, 4415 (1994).

023327-10


https://doi.org/10.1063/1.1740472
https://doi.org/10.1063/1.1743167
https://doi.org/10.1063/1.465193
https://doi.org/10.1088/1361-6633/aca814
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1038/s41567-021-01357-2
https://doi.org/10.1080/23746149.2022.2064231
https://doi.org/10.1016/0009-2614(93)87188-9
https://doi.org/10.1103/PhysRevA.49.4415

