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Ground-state phase diagram of the SU(4) Heisenberg model on a plaquette lattice
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We investigate the ground state of the SU(4) Heisenberg model on a square lattice with spatial anisotropy on
each plaquette bond using the tensor-network method based on infinite projected entangled pair states. We find
that the SU(4) singlet ground state appears in the strongly anisotropic limit, whereas Néel and valence-bond
crystal orders coexist in the nearly isotropic limit. By examining the intermediate parameter region, we identify
a phase transition between these phases. The nature of the phase transition is likely to be of first order, and the
transition point is estimated to be around J ′/J ≈ 0.85(5), where J and J ′ are the interaction strengths of intra-
and interplaquette bonds, respectively. We also calculate the anisotropy dependence of singlet correlations on a
plaquette bond, which will be useful for future experiments of ultracold atoms in optical lattices.
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I. INTRODUCTION

Lattice models with SU(N ) symmetry, where N > 2, have
recently attracted significant interest owing to the potential
emergence of novel quantum states not found in the Hubbard
and Heisenberg models with conventional SU(2) symmetry
[1–6]. About a dozen years ago, such SU(N > 2) systems
were experimentally realized with ultracold atoms in opti-
cal lattices using 173Yb [7], which is a fermionic isotope of
alkaline-earth-like atoms. In contrast to other realistic plat-
forms of SU(N > 2) systems, such as antiferromagnets with
coupled spin and orbital degrees of freedom [8–14], ultracold
atoms in optical lattices are highly controllable.

Observing antiferromagnetic correlations in optical-lattice
systems has long been a central issue in ultracold-atom experi-
ments [15–19] and recent advances in cooling techniques have
enabled the observation of antiferromagnetic correlations in
SU(N ) systems for large N [20]. Remarkably, antiferromag-
netic correlations are more enhanced for SU(6) systems than
for SU(2) systems, thanks to strong Pomeranchuk cooling ef-
fects [20]. This finding further stimulates research on quantum
phase transitions caused by antiferromagnetic order in SU(N )
systems with much larger N . On the other hand, antiferromag-
netic correlations in SU(N ) systems for rather small N = 2
and 4 can also be experimentally investigated on a cubic lattice
with a spatial anisotropy in the hopping amplitudes favoring
dimerization [18].

The physics of SU(N > 2) systems is drastically different
from that of SU(2) systems, even for a relatively small N ,
because of intertwined spin and orbital degrees of freedom.
For example, the ground states of the SU(3) Heisenberg
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models exhibit a variety of exotic phases depending on the
lattice geometry and the strength of the interactions. Spin
nematic order emerges on a triangular lattice [21–23], uncon-
ventional stripe order appears on a square lattice [24], and
plaquette valence-bond crystal (VBC) orders or related com-
peting orders are found on honeycomb [25–27] and kagome
[28,29] lattices.

However, the numerical investigation of quantum many-
body states in SU(N ) systems becomes significantly challeng-
ing when N increases [30–41]. Even for the SU(4) Heisenberg
model on a simple lattice, the ground state is still under
debate. For instance, cluster mean-field and spin-wave ap-
proximations have been used to investigate the ground state
of the SU(4) Heisenberg model on a plaquette lattice, i.e., a
square lattice with spatial anisotropy on plaquette bonds (see
Fig. 1) [30,31]. These studies found that the SU(4) singlet
ground state is favored in the strongly anisotropic regime.
In the opposite limit, a prior tensor-network study suggested
that the ground state should exhibit coexisting Néel and VBC
order in the nearly isotropic region [32], although there would
be many competing ground-state candidate states [33–37].
These findings imply a phase transition or other phases in the
intermediate anisotropy region.

To understand the interplay between lattice spatial
anisotropy and the spontaneous breaking of spin rotational
and lattice translational symmetries in a simple SU(N )
system, we investigate the ground states of the SU(4) Heisen-
berg model on a plaquette lattice using a two-dimensional
tensor-network method based on infinite projected entangled
pair states (iPEPS) [42–49] or infinite tensor product states
[50–54]. We successfully reproduce the SU(4) singlet ground
state in the strongly anisotropic limit and the Néel-VBC coex-
isting ground state in the nearly isotropic limit. By examining
the intermediate parameter region, we identify a phase tran-
sition between these phases, which will be relevant to future
experimental investigations.
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FIG. 1. Square lattice with spatial anisotropy on plaquette bonds.
The interaction strength of intra- and interplaquette bonds is denoted
by J (thick red lines) and J ′ (thin black lines), respectively. When
J ′/J = 0 and J/J ′ = 0, the system decouples into isolated four-site
chains.

This paper is organized as follows: In Sec. II, we intro-
duce the SU(4) Heisenberg model on a plaquette lattice and
the tensor-network method used in this study. In Sec. III,
we present the results of the ground-state calculations and
discuss the phase diagram of the model. We also calculate
the anisotropy dependence of singlet correlations on plaquette
bonds that can be measured in future experiments with ul-
tracold atoms in optical lattices. Finally, we summarize our
findings and discuss future prospects in Sec. IV. We set the
reduced Planck constant as h̄ = 1 and a lattice constant as
a = 1 throughout this paper.

II. MODEL AND METHOD

We consider the SU(4) antiferromagnetic Heisenberg
model [32],

H0 = J
∑

〈i j〉intra

P̂i j + J ′ ∑

〈i j〉inter

P̂i j, (1)

on a plaquette lattice [30] (see Fig. 1). Here, P̂i j is a transposi-
tion operator which exchanges flavors at sites i and j, namely,
P̂i j |αiβ j〉 = |βiα j〉 (αi, βi ∈ {0, 1, 2, 3}). The symbols 〈i j〉intra

and 〈i j〉inter denote nearest-neighbor sites within a plaquette
and between neighboring plaquettes, respectively. The inter-
action strengths for intra- and interbonds are denoted by J and
J ′, respectively. Using the flavor-changing operator Ŝβ

α (i) =
|αi〉〈βi|, the Hamiltonian can be written as

H0 = J
∑

〈i j〉intra

∑

αβ

Ŝβ
α (i)Ŝα

β ( j) + J ′ ∑

〈i j〉inter

∑

αβ

Ŝβ
α (i)Ŝα

β ( j). (2)

Since the model with J > J ′ and that with J < J ′ are equiva-
lent by interchanging the interaction strengths, we investigate
the ground state of the model by controlling J ′/J ∈ [0, 1].

At J ′/J = 0, the system decouples into four-site chains,
and the ground state is an SU(4) singlet on each plaquette
bond [30,31]. On the other hand, at J ′/J = 1, the ground
state is likely to be a Néel-VBC coexisting state [32]. Be-
cause both states are expected to have nonzero excitation gaps
(of tetramer and dimer orders), these states would be robust
against small perturbations. Then, the ground state would

FIG. 2. Schematic representation of the iPEPS structure. Here
we take a 2 × 2 sublattice structure as an example. The correspond-
ing tensors A and B are rank-five tensors denoted by the circles. The
tensors are connected with the physical (thick lines) and virtual (thin
lines) bonds. The bond dimensions for the physical and virtual bond
are denoted by Dphys(= 4) and D, respectively.

be a tetramerized state for 0 < J ′/J � 1, whereas it would
still be the VBC state for 0 < 1 − J ′/J � 1. However, to the
best of our knowledge, the nature of the ground state in the
intermediate region (0 < J ′/J < 1) has not been clarified yet.

One needs to take into account the effect of quantum fluc-
tuations more accurately to investigate the stability of such
crystal states beyond the mean-field-level approximations.
To this end, we apply the two-dimensional tensor-network
method based on iPEPS [42–54]. We illustrate the schematic
structure of iPEPS in Fig. 2. The physical bond dimension is
chosen as Dphys = 4, corresponding to the four flavors α =
0, 1, 2, 3.

The ground-state candidate state for J ′/J � 1, namely, the
SU(4) singlet state, can be represented by the iPEPS with
the bond dimension D = 7. On the other hand, for J ′/J ≈ 1,
the ground state is expected to be a Néel-VBC coexisting
state, which is found to be prepared after optimizing the
dimerized initial state in iPEPS calculations for the bond di-
mension D � 3. For the details of the initial state preparation,
see the Appendix.

We take the aforementioned SU(4) singlet and dimerized
states as initial states and optimize these wave functions under
several sublattice structures via imaginary-time evolution, as
shown in Fig. 3. The 2 × 2 sublattice structure is suitable for
representing the SU(4) singlet state, while the 4 × 1 sublattice
structure is required for the Néel-VBC coexisting state. The
4 × 2 sublattice structure includes both 2 × 2 and 4 × 1 sub-
lattice structures and allows for representing both ground-state
candidate states and their coexistence, if any. To carefully take
into account the effect of quantum fluctuations and investigate
the possibility of other complicated ordered states, we also
consider the 4 × 4 sublattice structure, which includes the
4 × 2 sublattice structure. Moreover, we use several random
initial states when the SU(4) singlet and Néel-VBC coexisting
states are competing for D = 7. After the optimization, we
have always found that the random initial state converges to
the Néel-VBC coexisting state. Therefore, we mainly opti-
mize the SU(4) singlet and Néel-VBC coexisting states for
bond dimensions D > 7.

We adopt the TeNeS library [55–57] and calculate the
ground-state candidates up to D = 12 using the simple
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(a) (b)

(c) (d)

FIG. 3. Sublattice structures for the iPEPS calculation. We
choose (a) 2 × 2 sublattice, (b) 4 × 1 sublattice, (c) 4 × 2 sublattice,
and (d) 4 × 4 sublattice structures.

update algorithm [46,58]. We calculate physical quantities
in the thermodynamic limit using the corner transfer matrix
renormalization group (CTMRG) method [47–49,51,59–65].
To ensure the convergence of the physical quantities, we
choose the bond dimension of the environment tensors as
χ = �D2/2	. The ground state at each J ′/J for each bond di-
mension is determined by comparing the energies of candidate
states and taking the lowest-energy state.

III. RESULTS

A. Energetics

We first investigate the ground-state candidate states of
the model for several sublattice structures by fixing the bond
dimension as D = 7 (see Fig. 4).

When the SU(4) singlet state is the initial state for the
ground-state optimization process, the optimized state shows
monotonically increasing energy as J ′/J increases. The en-
ergy is nearly the same irrespective of the sublattice structure.
This result indicates that the 2 × 2 sublattice structure is
suitable for representing the SU(4) singletlike state, even for
larger J ′/J .

By contrast, when using the dimerized initial state, the
energy of the optimized state exhibits a sublattice dependence
significantly, in particular, for smaller J ′/J . The energy ob-
tained by the 4 × 1 sublattice structure is much higher than
that obtained by the other sublattice structures, whereas the
energies obtained by the 4 × 2 and 4 × 4 sublattice struc-
tures are nearly the same. This observation suggests that at
least the 4 × 2 sublattice structure is required for effectively

FIG. 4. Sublattice structure dependence of the energy per site as
a function of J ′/J for the bond dimension D = 7. Squares represent
the SU(4) singlet state and circles represent the Néel-VBC coexisting
state. The dash-dotted line represents the transition point.

representing the Néel-VBC coexistinglike state for smaller
J ′/J , while the energy is well converged by choosing the 4 × 2
sublattice structure.

As we will see in more detail later, for each finite bond
dimension, the state obtained after optimizing the SU(4) sin-
glet state still exhibits the SU(4) singletlike tetramer order and
a small antiferromagnetic order (color order) even for larger
J ′/J [see Fig. 5(a)]. This state nearly keeps the Z4 lattice ro-
tational symmetry. On the other hand, the state obtained after
optimizing the dimerized state for 4 × 2 or 4 × 4 sublattice
structures exhibits both dimer and antiferromagnetic order up
to smaller J ′/J [see Fig. 5(b)]; on one dimer bond, two out
of four flavors are dominantly occupied, whereas on the other
dimer bond, the other two flavors are dominantly occupied.
This dimerized (Néel-VBC coexisting) state spontaneously
breaks the lattice rotational symmetry.

We do not observe other ground-state candidate states
as lowest-energy states in the intermediate parameter region
(0 < J ′/J < 1) up to the largest 4 × 4 sublattice structure at
the bond dimension D = 7. Therefore, we mainly investigate
the competition between the SU(4) singlet and dimerized

(a) (b)

FIG. 5. Schematic pictures of the optimized states. (a) SU(4) sin-
glet state for J ′/J ≈ 0. (b) Néel-VBC coexisting state for J ′/J ≈ 1.
Each circle represents a site and the thickness of the line represents
the strength of the bond correlation 〈P̂i j〉 between sites i and j. Four
colors in each circle represent the four flavors α = 0, 1, 2, 3, and the
area of arc represents the ratio of the flavor occupation 〈Ŝα

α (i)〉 at
site i. In the absence of antiferromagnetic order (color order), 〈Ŝα

α 〉’s
are equal for all flavors α = 0, 1, 2, 3, and they become 1/4 since∑

α〈Ŝα
α 〉 = 1. Color order appears when they deviate from 1/4.
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FIG. 6. Bond dimension dependence of the energy per site as a
function of J ′/J for the 4 × 2 sublattice structure. Squares represent
the SU(4) singlet state and circles represent the Néel-VBC coexisting
state. The energy obtained by a larger bond dimension is shown by
a larger symbol. The dash-dotted line represents the transition point.
Inset: The transition point as a function of the bond dimension.

states by increasing bond dimensions. Because the choice of
the 4 × 2 and 4 × 4 sublattice structures does not significantly
change the optimized states, hereafter we focus on the result
on the 4 × 2 sublattice structure to reduce the computational
cost.

We then investigate the energetics of these two ground-
state candidate states for the 4 × 2 sublattice structure by
varying the bond dimension D. As shown in Fig. 6, the energy
of the SU(4) singlet state gradually decreases as the bond di-
mension increases. As the bond dimension increases, the J ′/J
dependence of energy becomes weaker for J ′/J ∈ [0.6, 1]. In
a similar manner, the energy of the Néel-VBC coexisting state
moderately decreases as the bond dimension increases. For a
fixed bond dimension, the energy of the Néel-VBC coexisting
state signals a peak around J ′/J ≈ 0.65 and monotonically
decreases as J ′/J increases. Its curvature does not signifi-
cantly change for all bond dimensions D � 7.

At each bond dimension, the energy of the SU(4) singlet
state and that of the Néel-VBC coexisting state cross each
other around J ′/J ≈ 0.83. With increasing bond dimensions,
the transition point is gradually shifted to larger J ′/J for
D ∈ [7, 9], while it is nearly converged for D � 10. We es-
timate the transition point via the linear extrapolation of the
crossing points for smaller D = 7, 8, 9 and those for larger
D = 10, 11, 12. From these results, we conclude that the tran-
sition point is around 0.85(5) (see the inset of Fig. 6).

Within the range of bond dimensions, D ∈ [7, 12], that we
have investigated, the nature of the transition is likely to be
of first order. There are always metastable states of the SU(4)
singlet state and the Néel-VBC coexisting state near the transi-
tion point, and a level crossing of these two states is observed
for any bond dimensions. Although we cannot completely
exclude the possibility of a continuous transition in the infinite
bond dimension limit, investigating the nature of the transition

FIG. 7. Bond dimension dependence of the color order parameter
for the SU(4) singlet (red squares) and Néel-VBC coexisting (blue
circles) states in the 4 × 2 sublattice structure. The Néel-VBC coex-
isting state exhibits a sizable color order, whereas the SU(4) singlet
state shows a small color order.

for larger bond dimensions is extremely challenging and we
leave it for future study.

B. Physical properties

Having confirmed the phase transition between the SU(4)
singlet and Néel-VBC coexisting states, we investigate the
detailed physical properties that one would observe in experi-
ments.

We calculate the color order parameter [32],

M = 1

Nsub

∑

i

∑

α

∣∣∣∣
〈
Ŝα

α (i)
〉 − 1

4

∣∣∣∣, (3)

where Nsub is the number of the sublattice sites. Here the
summation is taken over all sublattice sites i and all fla-
vors α = 0, 1, 2, 3. In the ideal SU(4) singlet state at J ′/J =
0, the color order parameter is zero because all flavors
are equally occupied (〈Ŝα

α 〉 = 1/4). On the other hand, in
the Néel-VBC coexisting state at J ′/J = 1, the color order
parameter is nonzero [32]. Note that in practical iPEPS calcu-
lations, the direction of the SU(4) symmetry breaking in the
space of four flavors is explicitly chosen by the initial state
preparation [32].

Figure 7 shows the color order parameter as a function
of bond dimension D for the SU(4) singlet and Néel-VBC
coexisting states near the transition point J ′/J ≈ 0.85. The
Néel-VBC coexisting state exhibits a sizable color order and
its value gradually decreases as the bond dimension increases.
On the other hand, the SU(4) singlet state shows a much
smaller color order than the Néel-VBC coexisting state. Al-
though it is difficult to estimate color order parameters of
both states in the infinite bond dimension limit, it is likely that
the color order parameter for the SU(4) singlet state becomes
nearly zero in the infinite bond dimension limit.

We also examine the bond energies,

Eb = 1

Nb

∑

〈i j〉∈b

〈P̂i j〉, (4)

where the symbol
∑

〈i j〉∈b denotes the sum over bonds b, and
Nb is the number of corresponding bonds in the unit cell. We
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FIG. 8. Name of each bond. We calculate the bond energies
along the H1, H2, V1, and V2 bonds in the 4 × 2 sublattice structure.

specifically focus on the bonds H1, H2, V1, and V2 (see Fig. 8)
to distinguish the SU(4) singlet and Néel-VBC coexisting
states.

Figure 9 shows the bond energies along the H1, H2, V1,
and V2 bonds for the SU(4) singlet and Néel-VBC coexisting
states near the transition point J ′/J ≈ 0.85. The SU(4) singlet
state exhibits nearly the same bond energies along the H1 and

FIG. 9. Bond dimension dependence of each bond energy for
(a) the SU(4) singlet and (b) Néel-VBC coexisting states in the 4 × 2
sublattice structure. The bond energies are calculated along the H1

(red squares), H2 (green diamonds), V1 (blue up-pointing triangles),
and V2 (orange down-pointing triangles) bonds. Even near the tran-
sition point J ′/J ≈ 0.85, the SU(4) singlet state satisfies EH1 ≈ EV1

and EH2 ≈ EV2 , indicating the stable tetramerization. On the other
hand, the Néel-VBC coexisting state exhibits the stable dimerization
(|EH1 | > |EV1 |, |EV2 |, |EH2 |).

FIG. 10. Anisotropy dependence of the bond energy on intrapla-
quette bonds for the 4 × 2 sublattice structure. Squares represent the
SU(4) singlet state and circles represent the Néel-VBC coexisting
state. The data obtained by a larger bond dimension are shown by a
larger symbol. The dash-dotted line represents the transition point.

V1, as well as nearly the same bond energies along the H2 and
V2 bonds. This observation indicates that the SU(4) singlet
state satisfies the stable tetramerization even near the transi-
tion point. Considering the fact that the SU(4) singlet state
shows a nearly zero color order parameter, the ground state at
J ′/J = 0 appears to persist rather close to the isotropic limit
J ′/J = 1. On the other hand, the Néel-VBC coexisting state
exhibits the stable dimerization (|EH1 | > |EV1 |, |EV2 |, |EH2 |).
Remarkably, the bond energy along the V1 bond is somewhere
in between the largest bond energy along the H1 bond and the
smallest bond energy along the H2 and V2 bonds. In this sense,
the Néel-VBC coexisting state gradually becomes the SU(4)
singletlike state as J ′/J decreases, although the color order
parameter is nonzero and the lattice rotational symmetry is
not fully recovered even at J ′/J = 0 (not shown).

In SU(N ) systems realized with ultracold atoms in optical
lattices, one multimerizes the system along specific directions
and observes an excess of singlets compared with triplets. By
optically inducing a singlet-triplet oscillation [66], one can
measure antiferromagnetic correlations [7,18,20]. To directly
compare with such quantities accessible in experiments, we
also calculate the bond energy only on intraplaquette bonds,
which is defined as

Eintra = − 1

Nintrabond

∑

〈i j〉intra

〈P̂i j〉 = −EH1 + EV1

2
. (5)

Here, Nintrabond is the number of the intraplaquette bonds in the
unit cell, and Nintrabond = 8 is for the 4 × 2 sublattice structure.
It takes the value Eintra = 1 when the ground state is the SU(4)
singlet state and, in general, measures the intensity of singlet
correlations along the intraplaquette bonds.

We illustrate the anisotropy dependence of the bond energy
on intraplaquette bonds as shown in Fig. 10. For a smaller
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J ′/J � 0.83, the ground state is the SU(4) singlet state and
its bond energy is nearly saturated. This observation indicates
that the stable tetramerization persists even for large J ′/J
close to the isotropic limit. For J ′/J � 0.83, the ground state
becomes the Néel-VBC coexisting state and its bond energy is
smaller than that of the SU(4) singlet state. As J ′/J increases,
the dimerization becomes stronger and the bond energy along
the vertical bonds V1 and that along the horizontal bond H1

deviate from each other. The bond energy on intraplaquette
bonds jumps around J ′/J ≈ 0.83, which might be detected
in future experiments of ultracold atoms in optical lattices by
utilizing singlet-triplet oscillations.

IV. SUMMARY AND OUTLOOK

In conclusion, we investigated the ground state of the
SU(4) Heisenberg model on a plaquette lattice using
the two-dimensional tensor-network method based on iPEPS.
We analyzed two competing ground-state candidate states: the
SU(4) singlet state and the Néel-VBC coexisting state. We
showed that the former is the ground state in the strongly
anisotropic limit, whereas the latter is the ground state in the
nearly isotropic limit. By examining the intermediate parame-
ter region, we identified a first-order phase transition between
these phases. The transition point was estimated to be around
J ′/J ≈ 0.85(5), where J and J ′ are the interaction strengths
of the intra- and interplaquette bonds, respectively.

Compared to the SU(2) model on a plaquette lattice, where
the transition between the s-wave resonating-valence-bond
state [67,68] and the Néel state takes place around 0.5485(2)
[69], the SU(4) singlet ground state persists in the nearly
isotropic limit. Indeed, exact diagonalization calculations for
4 × 4 sites give the SU(4) singletlike (plaquette) ground state
on the isotropic square lattice [34], and such a state seems to
be a low-energy state (but not the ground state) in the thermo-
dynamic limit. This observation suggests that the spontaneous
multimerization is more easily realized in SU(N ) systems
with very large N . In this sense, investigating the ground state
of the SU(N ) model on an isotropic square lattice for larger N
will be an interesting future study.

In ultracold-atom experiments, one can measure antiferro-
magnetic correlations by optically inducing a singlet-triplet
oscillation [66]. We calculated the anisotropy dependence of
such correlations and found that it is nearly saturated even
for large J ′/J � 0.85(5). It eventually jumps around the tran-
sition point and takes a relatively large value (but smaller
than the saturated value) near the isotropic limit. These results
will be useful for future experiments with ultracold atoms in
optical lattices.

The effects of magnetic field and other perturbations will
enrich the phase diagram of the model [30,31]. It is also
interesting to investigate the ground state of the SU(4) model
in such situations using the tensor-network method, which we
leave for future study.
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APPENDIX: INITIAL STATE PREPARATION

In this section, we describe the initial state preparation for
the iPEPS calculation. We specifically focus on the SU(4)
singlet initial state and the dimerized initial state for the SU(4)
Heisenberg model on a plaquette lattice.

1. Tensor-network representation of the SU(N) singlet state

Here we show that the SU(N ) singlet state on an N-site
chain can be described by the matrix product state (MPS)
with the maximum virtual bond dimension DMPS = ( N

�N/2	
)
.

For simplicity, let us focus on the SU(N = 3) case, where the
required maximum bond dimension is DMPS = 3. The singlet
state is given by

|ψ〉 ∝ |012〉 − |021〉 − |102〉 + |120〉 + |201〉 − |210〉
(A1)

=
∑

i, j,k∈{0,1,2}
εi, j,k|i jk〉, (A2)

where εi, j,k denotes the Levi-Civita symbol. We will construct
the MPS at each site (0, 1, and 2) in a way such that the trace
of the product of the MPSs gives εi, j,k .

To this end, we first prepare the power set of a set
S = {0, 1, 2, . . . , N − 1}. For each subset containing n(∈
{0, 1, 2, . . . , N − 1, N}) elements, we define the function
ind(·) as shown in Table I. For example, to generate the
subset for #set = 2, we select the smallest number 0 as the
first element and then select the second smallest number 1 as
the second element, which gives the subset {0, 1}. To avoid
double counting, we enumerate the subsets in ascending order
so that the right element is always larger than the left ele-
ment. We assign the index 0 to this subset {0, 1}. Next, we

TABLE I. Power set of a set S = {0, 1, 2, . . . , N − 1} for N = 3
and the corresponding index for each subset. The symbol # denotes
the number of elements in each set. The index of the left or right
virtual bond takes the value of ind(set).

set #set ind(set)

{} 0 0
{0} 1 0
{1} 1 1
{2} 1 2

{0, 1} 2 0
{0, 2} 2 1
{1, 2} 2 2

{0, 1, 2} 3 0
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TABLE II. Nonzero tensor elements of the iPEPS representation
of the SU(4) singlet state. The sublattice sites A, B, C, and D of
the 2 × 2 sublattice structure defined in Fig. 3(a) are represented by
the site index (x, y) = (0, 0), (1,0), (0,1), and (1,1), respectively. The
index of the left, top, right, and bottom virtual bonds takes the value
0, 1, . . . , 6(= D − 1) with D = 7. The index of the physical bond
(color) 0,1,2,3 corresponds to the four flavors of the SU(4) model.
The value of the tensor Tleft,top,right,bottom,color is given by the appropri-
ate sign. This iPEPS representation on a plaquette corresponds to the
MPS representation on a four-site chain (connecting sites in order of
A, B, D, and C) with the bond dimension DMPS = 6 (corresponding
to the index of virtual bonds 1, 2, . . . , 6).

Site Left Top Right Bottom Color Value

(0,0) 0 1 1 0 0 +1
(0,0) 0 1 2 0 1 +1
(0,0) 0 1 3 0 2 +1
(0,0) 0 1 4 0 3 +1
(1,0) 1 1 0 0 1 +1
(1,0) 1 2 0 0 2 +1
(1,0) 1 3 0 0 3 +1
(1,0) 2 1 0 0 0 −1
(1,0) 2 4 0 0 2 +1
(1,0) 2 5 0 0 3 +1
(1,0) 3 2 0 0 0 −1
(1,0) 3 4 0 0 1 −1
(1,0) 3 6 0 0 3 +1
(1,0) 4 3 0 0 0 −1
(1,0) 4 5 0 0 1 −1
(1,0) 4 6 0 0 2 −1
(1,1) 1 0 0 1 2 +1
(1,1) 2 0 0 1 3 +1
(1,1) 1 0 0 2 1 −1
(1,1) 3 0 0 2 3 +1
(1,1) 2 0 0 3 1 −1
(1,1) 3 0 0 3 2 −1
(1,1) 1 0 0 4 0 +1
(1,1) 4 0 0 4 3 +1
(1,1) 2 0 0 5 0 +1
(1,1) 4 0 0 5 2 −1
(1,1) 3 0 0 6 0 +1
(1,1) 4 0 0 6 1 +1
(0,1) 0 0 1 1 3 +1
(0,1) 0 0 2 1 2 −1
(0,1) 0 0 3 1 1 +1
(0,1) 0 0 4 1 0 −1

fix the first element 0 and select the next smallest number
2, which gives the subset {0, 2}. The index of this subset
is 1. We repeat this procedure by fixing the first element 1
and increasing the remaining elements until the last element
N − 1 is selected. We then select the second smallest number
1 as the first element and select the next smallest number
2 as the second element, which gives the subset {1, 2}. The
index of this subset is 2. Again, we fix the first element
and increase the remaining elements until the last element
N − 1 is selected. We repeat this procedure until we obtain the
last subset {N − n, . . . , N − 3, N − 2, N − 1} for #set = n in
general. (For N = 3 and n = 2, the subset {1, 2} is the last
subset.) Then, the maximum index is given by

(N
n

) − 1.

TABLE III. Nonzero tensor elements of the iPEPS representation
of the dimerized state. The sublattice sites A, B, C, and D of the
4 × 1 sublattice structure defined in Fig. 3(b) are represented by
the site index (x, y) = (0, 0), (1,0), (2,0), and (3,0), respectively. The
index of the left, top, right, and bottom virtual bonds takes the value
0, 1, 2(= D − 1) with D = 3. The index of the physical bond (color)
0,1,2,3 corresponds to the four flavors of the SU(4) model. The value
of the tensor Tleft,top,right,bottom,color is given by the appropriate sign.

Site Left Top Right Bottom Color Value

(0,0) 0 0 1 0 0 +1
(0,0) 0 0 2 0 1 +1
(1,0) 1 0 0 0 1 +1
(1,0) 2 0 0 0 0 −1
(2,0) 0 0 1 0 2 +1
(2,0) 0 0 2 0 3 +1
(3,0) 1 0 0 0 3 +1
(3,0) 2 0 0 0 2 −1

The index ind(set) will be used to label the left and right
virtual bonds. On the other hand, the physical bond takes
the flavor s = 0, 1, or 2, and so does its index. This choice

FIG. 11. Nonzero MPS elements at site 0 for the SU(N = 3)
singlet state. The index of the left or right virtual bond takes the
value of ind(set), which is defined in Table I. The value of the
tensor Tl,r,s is given by the sign of the permutation corresponding to a
sequence (s0, s1, . . . , s#setl −1, s), whose order matters. The sequence
is generated from the set at the left bond (setl = {s0, s1, . . . , s#setl −1})
and the color of the physical bond (s = 0, 1, or 2). At site 0, the set
at the left bond is the empty set and that at the right bond is a size-1
subset.
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FIG. 12. Nonzero MPS elements at site 1 for the SU(N = 3)
singlet state. The notation is the same as that in Fig. 11.

corresponds to providing s in ascending order from the ele-
ments of the set {0, 1, 2} satisfying #set = 1. As we will see
below, the element of the tensor Tl,r,s is chosen as the sign of
the permutation corresponding to a certain sequence, whose

FIG. 13. Nonzero MPS elements at site 2 for the SU(N = 3)
singlet state. The notation is the same as that in Fig. 11.

order matters, that is generated from the set at the left bond
and the color at the physical bond.

Next, we construct the MPS at site 0 (see Fig. 11). For the
left bond, we choose an empty set setl = {}. The maximum
dimension of the left bond is 1 at site 0, and the index of
the left bond can only take the value l = 0. For the physical
bond, the color can take the value s = 0, 1, or 2(= N − 1).
For the right bond, we choose a set depending on the color
at the physical bond, i.e., setr = {s}. The index of the right
bond takes the value r = ind(setr ) = s and the maximum
dimension of the right bond is 3 at site 0. The value of the
tensor element Tl,r,s at site 0 will be equivalent to T0,s,s. It is
chosen as +1 for all s because the permutation corresponding
to the sequence (s) is the identity.

Then, we construct the MPS at site 1 (see Fig. 12). For the
left bond, we choose a set corresponding to that for the right
bond at site 0. It is given as setl = {s0}, with s0 = 0, 1, or 2
being the color of the physical bond at site 0. The maximum
dimension of the left bond is 3 at site 1, and the index of the
left bond takes the value l = 0, 1, or 2. For the right bond,
we prepare a set setr = {s0, s}, which is constructed from the
element of setl = {s0} and the color at the physical bond s at
site 1. Since the index of the right bond takes the value r = 0,
1, or 2, the maximum dimension of the right bond is 3 at site
1. The tensor element Tl,r,s at site 1 is nonzero only when
#setr = 2. It will be obtained by the sign of the permutation
corresponding to a sequence (s0, s), whose order matters; it
is positive (negative) if the parity is even (odd). For example,
when we have a sequence (0,1), we generate the permutation
σ = (0 1

0 1) and assign its sign sgn(σ ) = +1 to Tl,r,s. On the
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other hand, when we have a sequence (1,0), we generate
the permutation σ = (0 1

1 0) and assign its sign sgn(σ ) = −1
to Tl,r,s.

Finally, we construct the MPS at site 2 (see Fig. 13). For the
left bond, we choose a set corresponding to that for the right
bond at site 1. It is given as setl = {s0, s1} = {0, 1}, {0, 2}, or
{1, 2}. The maximum dimension of the left bond is 3 at site 2,
and the index of the left bond takes the value l = 0, 1, or 2.
For the right bond, we prepare a set setr = {s0, s1, s}, which is
constructed from the element of setl = {s0, s1} and the color
at the physical bond s at site 2. This actually becomes setr ≡
{0, 1, 2}, and then the index of the right bond only takes the
value r = ind({0, 1, 2}) = 0. The corresponding maximum
dimension of the right bond is 1 at site 2. This dimension 1
is consistent with that of the left bond at site 0, which allows
us to safely calculate the trace of product of three tensors. The
tensor element Tl,r,s at site 2 is nonzero only when #setr = 3,
and it will again be obtained by the sign of the permutation
corresponding to a sequence (s0, s1, s).

From these three tensors T (i)
l,r,s at sites i = 0, 1, and 2, we

evaluate the trace of product of them. Easy calculations yield

Tr
i0,i1,i2

T (0)
i0,i1,s0

T (1)
i1,i2,s1

T (2)
i2,i0,s2

= εs0,s1,s2 . (A3)

Here the virtual bonds take the value i0 = 0, i1, i2 ∈
{0, 1, 2}, and the physical bond takes the value s0, s1, s2 ∈
{0, 1, 2}.

One can generalize this construction to the general SU(N )
case. In the iPEPS representation of the SU(N ) singlet
state, the required virtual bond dimension is increased
by 1 and given by D = DMPS + 1 = ( N

�N/2	) + 1. For N =
4, the required bond dimension is D = 7 and the corre-
sponding tensor elements of the iPEPS are summarized in
Table II.

2. Tensor-network representation of the dimerized state

We prepare the dimerized initial state by placing the singlet
pairs along the horizontal bonds connecting the sublattice sites
A and B and those connecting the sublattice sites C and D
in the 4 × 1 sublattice structure [see Fig. 3(b) and Fig. 5(b)].
For one singlet pair, we only use the physical bonds 0 and 1,
corresponding to two out of four flavors of the SU(4) model.
For the other singlet pair, we only use the physical bonds 2
and 3, corresponding to the remaining two flavors. Resulting
tensor elements of the iPEPS are summarized in Table III.
The required virtual bond dimension of this initial state in the
iPEPS representation is D = 3 [70,71].
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