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Phase separation of a repulsive two-component Fermi gas at the two- to three-dimensional crossover
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We present a theoretical analysis of phase separations between two repulsively interacting components in an
ultracold fermionic gas, occurring at the dimensional crossover in a harmonic trap with varying aspect ratios.
A tailored kinetic energy functional is derived and combined with a density-potential functional approach to
develop a framework that is benchmarked with the orbital-based method. We investigate the changes in the
density profile of the phase-separated gas under different interaction strengths and geometries. The analysis
reveals the existence of small, partially polarized domains in certain parameter regimes, which is similar to
the purely two-dimensional limit. However, the density profile is further enriched by a shell structure found in
anisotropic traps. We also track the transitions that can be driven by a change in either interaction strength or trap
geometry. The developed framework is noted to have applications for other systems with repulsive interactions
that combine continuous and discrete degrees of freedom.
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I. INTRODUCTION

Reduced-dimensional systems are of great interest in
condensed-matter and statistical physics due to the enhanced
influence of quantum fluctuations. Such systems are crucial in
experimental and technological applications, with examples
spanning, e.g., high-temperature superconductors, layered
semiconductors, and graphene. Recent advancements in trap-
ping ultracold atomic gases in quasi-two-dimensional geome-
tries [1,2] have enabled the measurement of zero-temperature
effects [3–5] and finite-temperature effects [6–10]. This is
usually achieved through strongly anisotropic trapping poten-
tials and one-dimensional optical lattices, which allow for the
experimental realization of quasi-two-dimensional quantum
gases and dimensional crossovers [11–17].

Dimensional crossovers provide access to additional de-
grees of freedom, leading to the emergence of new quantum
states with discrete energies. In quasi-two-dimensional Fermi
gases, where the transverse confinement energy is comparable
to the Fermi energy, the occupation of new transverse states
results in a shell structure [11]. This, in turn, causes steps
in the density profile, chemical potential, and specific heat to
appear as the system size increases due to the Pauli exclusion
principle [11,18–21].

Most of the theoretical and experimental efforts have
focused mostly on various many-body effects in two-
dimensional Fermi gases, including crossover from Bose-
Einstein condensate to Bardeen-Cooper-Schrieffer superfluid
[14,22–29], or pairing pseudogap [10,30–32]. As in realistic
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experimental scenarios, the anisotropy of confining potentials
does not usually allow for a purely two-dimensional regime;
therefore, the analysis of dimensional crossovers has been of
particular interest [5,11–15,33–37]. Such transitions happen
close to the ground state of the considered system and mani-
fest the underlying bonding mechanism in a Fermi gas.

However, when excited, the spin components of a Fermi
gas, i.e., given by two chosen hyperfine states, may exhibit
repulsive correlations, being brought to the so-called repulsive
branch. In the case of a gas trapped in a harmonic poten-
tial, that repulsion may lead to a metastable phase separation
between the components, an ultracold analog of celebrated
Stoner instability in Coulomb-interacting electronic gas [38].
Experimentally elusive in both three and two dimensions
due to the eventual decay to the ground state, this itinerant
ferromagnetic state has been widely researched both theo-
retically [39–62] and experimentally [63–73], and also in
different mixtures [74–76].

We focus on previously unexplored crossover of the Stoner
instability between two and three dimensions, analyzing the
purely repulsive system of two fermionic components trapped
in an anisotropic trap with varying aspect ratios and interac-
tion strengths. In the three-dimensional limit, the repulsive
gas in a radially symmetric trap exhibits both partially and
fully polarized phases, whose density profiles remain highly
regular, either in a ring structure, with one of the compo-
nents dominating in the center of the trap, or in two halves
separated by a single domain wall [51]. In contrast, in two
dimensions, contact-interacting gas can form a plethora of
partially polarized states manifesting many small domains,
due to a lack of scaling of critical interaction strength with
respect to the density of gas in the leading order [59]. In each
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of these cases, refined treatment of the kinetic energy, going
beyond the usual Thomas-Fermi approach, is necessary, as the
competition between the kinetic, interaction, and correlation
energies drives the exact shape of the density profile.

To take that into account and to describe systems of
sizes reaching usual experimental scenarios of large Fermi
clouds, we utilize orbital-free density-potential functional the-
ory (DPFT), which has been proven to accurately determine
the complex phases of interacting Fermi gases [77–85]. It
achieves this by simplifying the many-body problem to two
self-consistent equations: one for the single-particle density
and another for an effective potential that accounts for the in-
teractions. DPFT is particularly useful for simulating trapped
quantum gases, especially in two-dimensional configurations.
Conventional density-functional theory (DFT) techniques are
unable to match DPFT’s capabilities in this regard, as they
are either limited to small particle numbers [86,87] and pe-
riodic confinement [88] or rely on ad hoc parametrizations
of the kinetic energy [89,90]. Although systematic gradient
corrections in two dimensions are available for electronic
systems [91], DPFT offers a scalable approach that can be
systematically expanded beyond the Thomas-Fermi approx-
imation across one-, two-, and three-dimensional geometries.

In this work we examine phase transitions from para-
to ferromagnetic states in a binary Fermi gas, involving
two- to three-dimensional crossover using density-potential
functional theory and Hartree-Fock methods. To this end,
we derive a tailored kinetic energy functional for a dimen-
sional crossover of the Fermi gas and combine it with the
density-potential functional approach to allow the description
of large particle numbers. We use the Hartree-Fock method
to benchmark our results in the low-atom-number limit. Our
findings indicate highly degenerate ground-state profiles dur-
ing the transition, featuring various shapes like isotropic and
anisotropic separations, ring-shaped polarization, and central
splits within a shell structure. These profiles can be manipu-
lated by adjusting particle number, interaction strength, and
trapping aspect ratio, offering a versatile exploration of inter-
acting quantum mixtures.

The paper is structured as follows. Section II out-
lines the derivations of the kinetic and interaction energy
functionals for the dimensional crossover, with the analysis
of the accuracy given in Appendix A, along with the presen-
tation of the DPFT and Hartree-Fock methods. Section III
provides a description of the results we have obtained, in-
cluding interaction- and aspect-ratio-driven phase transitions,
comparison between two methods, and analysis of the large-
particle-number limit. We conclude the paper in Sec. IV,
providing a summary and outlook for the future.

II. METHODS

A. Density-functional approach for a Fermi gas at a two- to
three-dimensional crossover

Let us consider a noninteracting, polarized Fermi gas of N
atoms with mass m at zero temperature that is (i) confined in
the x-y plane in an area S and (ii) harmonically trapped in the
z direction with frequency ωz. The Hamiltonian of this system

reads

Ĥ =
N∑

i=1

Ĥi, (1)

where Ĥi is the single-body Hamiltonian that reads

Ĥi = p̂2
i

2m
+ 1

2
mω2

z ẑ2
i − 1

2
h̄ωz, (2)

with the two-dimensional momentum operator p̂i in the x-y
plane, and with the zero-point energy removed. The energy of
a single-particle eigenstate reads

E|k, j〉 = h̄2k2

2m
+ jh̄ωz, (3)

where state |k, j〉 is described through teh two-dimensional
(2D) wave vector k and the oscillator state number j ∈
{0, 1, . . . }. The energy manifolds are degenerate due to both
k2 energy dependence and multiple possible oscillator states.
As such, the density of states ρ(E ) of the gas can be rewritten
as a sum:

ρ(E ) =
∑

j

ρ j (E ) =
∑

j

mS

2π h̄2 θ (E − jh̄ωz ), (4)

where θ (·) is a Heaviside step function, summation is per-
formed over available oscillator states, and we have used
the expression for two-dimensional density of states ρ2D =
mS/2π h̄2. We can then immediately write the total number of
atoms as a function of the Fermi energy EF,

N =
∫ EF

0
ρ(E ) dE = mS

2π h̄2 (l + 1)

(
EF − 1

2
h̄ωzl

)
, (5)

where the highest occupied oscillator state number l is intro-
duced through

l = �EF/h̄ωz�, (6)

where �·� is the floor function. Similarly one gets the total
energy,

ET =
∫ EF

0
ρ(E )E dE

= mS

4π h̄2 (l + 1)

[
E2

F − 1

3
h̄2ω2

z l

(
l + 1

2

)]
. (7)

Now, combining Eqs. (5) and (7), one can arrive at the
Thomas-Fermi energy functional,

ε[n2D] = π h̄2

(l + 1)m
n2

2D + 1

2
l h̄ωzn2D − l (l + 1)(l + 2)mω2

z

48π
,

(8)

where we have introduced the two-dimensional density n2D =
N/S. As we have gotten rid of EF from the expression, now l
needs to be computed as a solution to⌊

2π h̄2

(l + 1)mh̄ωz
n2D + 1

2
l

⌋
= l. (9)

Let us now construct the following auxiliary density,

nz(z, n2D) =
∑

j

p j (n2D)n j (z), (10)
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which we will use both for comparison of our framework
with full three-dimensional density and for derivation of the
mean-field energy functional. Here, the densities of oscillator
eigenstates,

n j (z) = 1

2 j j!

√
mωz

π h̄
e− mωz z2

h̄ H2
j

(√
mωz

h̄
z

)
, (11)

are weighted by the total number of atoms in a given oscillator
state,

p j (n2D) =
∫ EF

0 ρ j (E )dE∫ EF

0 ρ(E )dE
= 1

l + 1
+ mωz

4π h̄n2D
(l − 2 j), (12)

where Hj (x) is the jth Hermite polynomial. The density nz is
normalized,

∫
nz(z, n2D)dz = 1.

Let us now consider an additional, slowly varying trap-
ping in the x-y plane, V (x, y), such that the two-dimensional
density becomes nonuniform, n2D = n2D(x, y). Then, we
approximate the real three-dimensional density n(x, y, z)
through

n(x, y, z) = n2D(x, y)nz[z, n2D(x, y)], (13)

where
∫

n(x, y, z)dxdydz = N .
Note that l = l (x, y) now also becomes a position-

dependent quantity. We analyze the accuracy of the func-
tional (8) in Appendix A. We show that, at the dimensional
crossover in an anisotropic harmonic trap, it outperforms
the usual three-dimensional Thomas-Fermi energy functional,
both for total energy estimation and predicting the density
profile.

Next, we consider a binary mixture of two spin-polarized
Fermi gases with densities n1(x, y, z) and n2(x, y, z). Let us
introduce the total contact interaction energy,

Eint = g
∫

n1(x, y, z)n2(x, y, z)dxdydz, (14)

where g is a three-dimensional coupling constant. Then, we
can write

Eint =
∫

εint[n1(x, y), n2(x, y)]dxdy, (15)

where εint[n1(x, y), n2(x, y)] is a two-dimensional interaction
energy functional and we dropped the subscript 2D for clarity.
Using Eq. (13), the functional can be written as

εint[n1(x, y), n2(x, y)]

= g

√
mωz

h̄
n1n2η1(l1, l2) + g

√
mωz

h̄

mωz

2π h̄
n1η2(l1, l2)

+ g

√
mωz

h̄

mωz

2π h̄
n2η2(l2, l1) + g

√
mωz

h̄

m2ω2
z

4π2h̄2 η3(l1, l2),

(16)

with

η1(l1, l2)

= 1

(l1 + 1)(l2 + 1)

√
h̄

mωz

l1,l2∑
j1, j2

∫
n j1 (z)n j2 (z)dz,

η2(la, lb)

= 1

la + 1

√
h̄

mωz

l1,l2∑
j1, j2

(
lb
2

− jb

)∫
n ja (z)n jb (z)dz,

η3(l1, l2)

=
√

h̄

mωz

l1,l2∑
j1, j2

(
l1
2

− j1

)(
l2
2

− j2

)∫
n j1 (z)n j2 (z)dz.

(17)

Here, analogously to Eq. (9), l1 and l2 need to be self-
consistently solved through⌊

2π h̄2

[ls(x, y) + 1]mh̄ωz
ns(x, y) + 1

2
ls(x, y)

⌋
= ls(x, y), (18)

with s ∈ {1, 2}. With these formulas, we are equipped to con-
struct a density-potential functional theory framework for the
dimensional crossover of a Fermi gas that will allow us to
include a semilocal kinetic energy description.

B. Density-potential functional theory

The exact DFT energy functional can be rephrased as
a bifunctional of the two-dimensional densities n (here,
n = {ns} = (n1, n2) for fermion species s = 1 and 2 and
from now on we drop the 2D subscript unless stated oth-
erwise) and effective potential energies {Vs} that combine
the interaction effects with the external potential energies
V ext

s [59,82,83,85,92–96]. We find the ground-state densities
n1 and n2 among the stationary points of this bifunctional by
self-consistently solving

ns[Vs − μs](r) = δE1[Vs − μs]

δVs(r)
(19)

and

Vs[n](r) = V ext
s (r) + δEint[n]

δns(r)
. (20)

Here, E1[Vs − μs] is the Legendre transform of the kinetic
energy functional Ekin[ns], μs is the chemical potential for
species s, and the interaction energy Eint[n] generally couples
all densities. For the general formalism and many applica-
tions of this DPFT we refer to Refs. [59,82,83,85,92–96] and
references therein. In particular, we deploy the exact same
machinery for two-component interacting fermion gases as
in Ref. [59], with the twist of transferring the kinetic energy
contribution that stems from the transversal direction to the
interaction energy. This augmentation of the DPFT framework
allows us to predict the properties of 3D systems at the cost of
2D calculations.

Specifically, by adding and subtracting the TF kinetic en-
ergy density εTF,2D

kin = π h̄2n2/m for spin-polarized fermions in
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2D, we write the full energy density (8) as

ε[n] = εTF,2D
kin + ε2D3D

int . (21)

Here, the effective interaction energy density

ε2D3D
int = −π h̄2

m

l

l + 1
n2 + 1

2
h̄ l n ωz − mω2

z

48π
l (l + 1)(l + 2)

(22)

compensates for the introduction of the 2D TF kinetic energy
in Eq. (21). Since l (n) is piecewise constant, the functional
derivative of the energy E2D3D

int [n] = ∫
dr ε2D3D

int is

δE2D3D
int [n]

δn(r)
= −2π h̄2 n(r) l

m(l + 1)
+ h̄ ωz l

2
, (23)

which we incorporate into the effective interaction potential in
Eq. (20), such that we can execute the self-consistent program
of Eqs. (19) and (20) in a pure 2D setting.

Finally, we may replace the quasiclassical TF kinetic
energy ETF,2D

kin by semiclassical approximations of the
(Legendre-transformed) kinetic energy functional, viz., ap-
proximations of E1[V − μ]; all details of the numerical
procedures are discussed in Ref. [59]. Accordingly, we deploy
the nonlocal quantum-corrected successor

n3′ (r) =
∫

(dr′)
(

k3′

2πr′

)D

JD(2r′ k3′ ) (24)

of the local TF density for D dimensions (see Refs. [59,84]),
with the Bessel function JD( ) of order D and the effective
Fermi wave number

k3′ = 1

h̄
{2m[μ − V (r + r′)]}1/2

+ , (25)

where [z]+ = z 	(z), and 	( ) is the Heaviside step function.
The approximate DPFT framework introduced here can

be applied in situations where the qualitatively different
treatment of Eint [with the quasiclassical TF approximation,
Eq. (22)] and Ekin [with the semiclassical n3′ density formula,
Eq. (24)] is acceptable. We determine to which extent this
holds true by benchmarking n3′ -based DPFT densities against
Hartree-Fock (HF) results.

C. Orbital approach

To perform this benchmark, we use time-dependent HF
equations,

ih̄
∂

∂t
ϕ

(s)
i (r, t ) =

[
− h̄2

2m
∇2 + V ext

s (r, t )
δEint[n]

δns(r, t )

]
ϕ

(s)
i (r, t ),

(26)

for the two-component spin mixture (s ∈ {1, 2}). The deriva-
tion of these equations is shown in Appendix B. Here,
ϕ

(1)
i (r, t ) and ϕ

(2)
i (r, t ), with i = 1, . . . , N/2, are spatial or-

bitals of the first and the second spin component, respectively.
The interaction terms δEint[n]

δn1/2(r,t ) are defined below through
Eq. (14). The one-particle densities

ns(r, t ) =
N/2∑
i=1

∣∣ϕ(s)
i (r, t )

∣∣2 (27)

associated with the spin components s sum to the total one-
particle density n(r, t ) = n1(r, t ) + n2(r, t ).

We are looking for the ground-state densities. We are solv-
ing the set of Eqs. (26) by the imaginary time propagation
technique [97] where real time is replaced by imaginary time
t → −iτ . After that, the evolution operator is no longer a
unitary operator. Both the norm and the orthogonality are
lost during the imaginary time propagation. To keep the or-
thogonality and the norm of the spatial orbitals we use the
Gram-Schmidt orthonormalization technique. This way, by
propagating N spatial orbitals we obtain the ground state of
N particles.

III. RESULTS

Our focus lies predominantly on analyzing phase transi-
tions in a binary Fermi gas, dependent on three key physical
parameters: the number of particles N , the aspect ratio λ, and
the strength of three-dimensional interactions g. Specifically,
we consider a balanced two-component Fermi gas at zero
temperature; each component consisting of N1 = N2 = N/2
atoms and trapped in the anisotropic harmonic potential with
aspect ratio λ = ωz/ω,

V (x, y, z) = 1
2 mω2(x2 + y2 + λ2z2). (28)

Both species interact via contact repulsion given by three-
dimensional pairwise delta interaction characterized by the
coupling constant g = 4πah̄2/m, where a is the scattering
length. Here, we focus only on a mean-field contribu-
tion (14) coming from this interaction, hence neglecting
quantum contributions that stem from the exact, many-body
ground state. In the case of the repulsive binary Fermi
mixture, such an omission shifts the critical values of in-
teraction strengths at which phase transitions happen, in
both the two-dimensional geometry [59] and the three-
dimensional geometry [76]; however, qualitative features
are left unchanged for nonuniform mixtures. The refine-
ment of the energy spectrum of repulsive Fermi gas beyond
the mean field has been performed via many different ap-
proaches, including perturbation theory [41,98,99], quantum
Monte Carlo simulations [43,45,46,100–104], lowest-order
constraint variational calculation [105], nonperturbative lad-
der approximation [106], large-N expansion, dimensional
ε-expansion [107], and the polaronic approach [108,109].
However, most efforts have focused on either the purely two-
dimensional limit or the purely three-dimensional limit, while
dimensional crossover has been analyzed only for attractive
mixtures [5,11–15,33–37]. As such, we focus on the mean-
field description of interaction and leave further refinement as
an outlook.

The transitions we consider manifest as distinct phase
separations in the ground-state densities of the gas compo-
nents. Past research has highlighted that in radially symmetric
harmonic trapping, transitions occur from uniform density
profiles of the two fermion species to both isotropic and
anisotropic separations. Furthermore, within a purely two-
dimensional configuration with bare contact interaction, an
analogous transition arises [59]. This transition shifts from a
paramagnetic state at low repulsive interactions to ferromag-
netic density profiles at higher interaction strengths. However,
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FIG. 1. The density profiles for a two-component repulsive Fermi gas across interaction-driven phase transitions. The top (bottom) plots
in each panel present the ground-state (metastable, closely matched in energy) profiles. The density profiles are plotted either as scaled density
differences �n = (n1 − n2) / maxr|n1(r) − n2(r)|, which are presented as contour plots in a square box with edge lengths of 6 (we use harmonic
oscillator units h̄ = m = ω = 1; the color legend applies to all the contour plots), or as density cross sections at y = 0. (a)–(f) Ground-state
density profiles for a fixed aspect ratio of the harmonic trap (λ = 5) and a constant total number of particles (N1 = N2 = 55). These profiles
vary with the three-dimensional repulsive coupling constant between the two species, denoted as g, and their absolute density differences can be
characterized through a global polarization P [defined through Eq. (29) and displayed in the bottom right corner of each of the plots]. Notably,
two distinct phase transitions are observable: one from a paramagnetic to an isotropic, partially polarized phase (marked by blue arrows),
followed by a transition to a two-hemisphere state (red arrows). The findings are obtained using a density-potential functional approach. (g)–(l)
Similarly presented are ground-state density profiles for a higher aspect ratio of the trap (λ = 10). (m)–(r) The results in this row are analogous
to those in the second row; however, they are computed using the Hartree-Fock approach. Although the weak- and large-interaction limits
yield comparable outcomes, disparities become evident within the phase transition regime (green arrows). See Table I for details of each panel,
including interaction strength, scaling factor, energy, polarization, and transverse excitations.

intricate particle-number-dependent phases emerge between
these limits. Moreover, a range of metastable configurations
with energy levels comparable to ground-state density profiles
have been identified within the transitional regime. These con-
figurations are likely to be observed in experimental settings.
Hence, our analysis seeks to uncover the crossover between
these two scenarios, achievable by transitioning dimension-
ally through adjustments in the trap’s aspect ratio. For the
analysis of spatial separation at the crossover, we utilize a total
polarization P of the trapped mixture:

P =
∫

dr|n1(r) − n2(r)|
N

. (29)

A. Interaction-driven phase transitions

We begin by examining a specific scenario where we vary
interaction strengths while keeping the aspect ratio λ = 5
and the particle count N1 = N2 = 55 constant. We present
it in Figs. 1(a)–1(f). At low interaction strengths, a para-
magnetic phase is observed, where nearly identical density
profiles with accordingly small energy differences make it
difficult to distinguish the ground state from metastable states.
Although overall polarization remains low, as we increase
the interaction strength to around g = 3.5, slight polarization
modulations emerge near the center due to a relative decrease
in interaction energy at the expense of kinetic energy. At
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g = 3.5 this trade-off between the energy components be-
gins to favor ground-state profiles with isotropic separations.
This transition is characterized by visible domains without
breaking radial symmetry. We identify states in close energy
proximity that break radial symmetry and possess nonzero
polarization. These states bear a resemblance to findings in
purely 2D scenarios. Further along, as the interaction strength
reaches g = 5, the gas segregates into two hemispheres, mir-
roring the analogous behavior observed in both 2D and 3D.

Subsequently, we compare these results with those from an
altered aspect ratio, λ = 10 [refer to Figs. 1(g)–1(l)]. We ob-
serve analogous behavior; however, the initial transition from
no separation to isotropic separation is more pronounced,
lacking an easily distinguishable transitional regime charac-
terized by minor polarization modulations. This transition
occurs at g = 4.65 and is followed by a mirror-symmetric
separation at g = 5.15 that grows into an almost complete split
separation at g = 10. Again, we find metastable states across
the transitions, which show competition between different
types of splittings. However, for this particular aspect ratio
and atom number, the competition is mainly between isotropic
and anisotropic separation states.

These findings are consistent with both two- and three-
dimensional cases; however, they indicate that the fine
structure of coexisting metastable states strongly depends
on the perpendicular excitation structure. Symmetry-breaking
partially polarized profiles are unveiled for lower aspect ratios
when the perpendicular degree of freedom is more intensely
excited, in contrast to the higher aspect ratio case where such
structures are not easily discernible (cf. Table I). This show-
cases nontrivial behavior, similar to the scenario in the limit of
pure two-dimensional geometry where these metastable states
are present.

B. Benchmarking DPFT against Hartree-Fock

We now move on to validate the previously described
low-atom-number outcomes using the orbital approach. We
compare density profiles throughout the interaction-induced
phase transition for λ = 10 and N1 = N2 = 55, as displayed
in Figs. 1(m)–1(r). While we observe that within the weak-
interaction limit, the paramagnetic, identical density profiles
of both clouds are consistent across both methods, a slight
discrepancy emerges at the onset of the phase transition. The
isotropic transition is not evident, but instead, the ground
state just above the transition assumes a partially polarized,
symmetry-breaking configuration. It is worth noting that the
density structure of this state bears a resemblance to cer-
tain profiles of metastable states identified using the DPFT
method. This observation suggests that the ground state at the
transition is nearly degenerate, with various density profiles
being realized by states with minute energy differences. We
hypothesize that the divergence between the methods regard-
ing the true ground state arises from the proximity of these
states. Importantly, in Hartree-Fock calculations, the subse-
quent phase transition to a two-hemisphere state occurs at a
similar value of the interaction strength as observed in the
DPFT method. In the scenario of a large-interaction limit,
density profiles between the two methods align remarkably
well.

To conduct a more comprehensive analysis of this com-
parison, we present in Fig. 2 the comparison between the
two methods across both interaction and aspect ratio varia-
tions. We employ the total energy, the total polarization, and
the ratio between interaction and kinetic energies as metrics
for assessment. First, we find that energies match very well
across both transitions, suggesting consistency between both
methods. As for the total polarization and the energy ratio, the
behavior across the transition is qualitatively captured with a
good quantitative match in the strong-coupling regime. This
slight quantitative mismatch suggests that the total polariza-
tion is a sensitive probe for specifying which state is realized
experimentally. Importantly, comparing the cuts through the
density profiles, we find that the slopes of the density profiles
match in both methods, implying a mutually consistent de-
scription of the interplay of kinetic and interaction energies in
both methods. Such a behavior is of particular interest as the
domain-wall density profile determines, e.g., dimer formation
rates in ultracold gases.

C. Large-atom-number limit

We now proceed to analyze large-atom-number setups
that go beyond the manageability of the Hartree-Fock ap-
proach due to numerical cost. In Fig. 3 we present two cases,
N1 = N2 = 500 and N1 = N2 = 5000, both computed with the
DPFT approach. In these cases, the shell structure of the den-
sity profiles, usual in low-dimensional experimental setups,
i.e., sharp transitions in the densities due to discretized energy
spectrum in the transversal direction, becomes apparent. First,
we observe that the existence of these sharp density changes
makes the competition between kinetic and interaction energy
even more intricate. As we go through the interaction-induced
transition for N1 = N2 = 500, we find that partial polarization
may be favored at these density changes, revealing a ring-
shaped polarization pattern that might or might not preserve
radial symmetry. As the interaction strength increases above
g ≈ 1.4, the preferred density profile involves the anisotropic
split at the center of the trap and a shell structure at the
perimeter. With the further growing interaction, this central
split occupies more volume, becoming two fully separated
hemispheres in the strong-interaction regime. Notably, in this
case, no ground-state isotropic separation is observed. The
N1 = N2 = 5000 case exhibits similar behavior. Across the
phase transition toward a ferromagnetic state, one observes
the coexistence of both isotropic and anisotropic ring-shaped
polarization structures and the central anisotropic split, shown
in the lower-atom-number case.

D. Geometry-driven transitions

Up to now, we have analyzed a phase transition driven
by the varying interaction. Here, we would like to focus on
the case in which the ground-state density profile is altered
through the change of geometry via the aspect ratio of the
harmonic trap. In Fig. 4 we plot the transition for g = 5.5 and
N1 = N2 = 55, while the aspect ratio is changed from λ = 3
to λ = 15 [compare Fig. 2(h), where the total polarization is
plotted for this transition]. Such a sweep realizes a transi-
tion from a partially polarized anisotropic split to the fully
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FIG. 2. (a), (b) Total energy of a two-component Fermi gas throughout interaction and aspect ratio sweeps for two methods—density-
potential functional theory and Hartree-Fock. Both methods show similar predictions. (d), (e), (g), (h) The same but for the ratio between
interaction and kinetic energies (d), (e) and for the total polarization (g), (h). In these cases, the two methods match for strong interactions
and high aspect ratios, but otherwise they yield density profiles with quite different polarizations and energy ratios—a sign of near-degenerate
states across the transitions with respect to g and λ. (c), (f), (i) Comparison of density cross sections for both methods. The slopes of the
densities match very well for weakly and strongly interacting clouds, displaying some mismatch in the transitional regime. We use harmonic
oscillator units h̄ = m = ω = 1.

FIG. 3. (a)–(e) Ground-state density profiles for a two-component repulsive Fermi gas, with a fixed aspect ratio of the harmonic trap
(λ = 25) and a constant total number of particles (N1 = N2 = 500). These profiles vary with the three-dimensional repulsive coupling constant
between the two species, denoted as g. A richer density profile structure across the para- to ferromagnetic phase transition is visible, as
compared to the lower atom number case, exhibiting ring-shaped polarization and central-split patterns. (f)–(j) The same but for λ = 30 and
N1 = N2 = 5000. The density profile gets even more intricate, showing the coexistence of ring-shaped polarization and central-split patterns
for some values of interaction strength. The main plot and the top right inset in each panel present the ground-state profiles. In panels (a), (b),
(f), and (g), we also show metastable profiles. The scaled density differences �n = (n1 − n2)/maxr|n1(r) − n2(r)| are presented as contour
plots in a square box with edge lengths of 10 (15) for N1/2 = 500 (N1/2 = 5000); we use harmonic oscillator units h̄ = m = ω = 1 and the
color legend applies to all the contour plots. See Table II for details.
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FIG. 4. Ground-state density profiles for a two-component repulsive Fermi gas, with a fixed coupling constant between two fermionic
components (g = 5.5) and a constant total number of particles (N1 = N2 = 55). These profiles vary with the aspect ratio of the harmonic trap
λ, exhibiting a transition from a partially polarized state to a fully polarized state. The top (bottom) plots in each panel present the ground-state
(metastable) profiles. The scaled density differences �n = (n1 − n2) / maxr|n1(r) − n2(r)| are presented as contour plots in a square box with
edge lengths of 6; we use harmonic oscillator units h̄ = m = ω = 1 and the color legend applies to all the contour plots. See Table III for
details.

separated hemispheres. In the limiting cases, the phase sepa-
ration occurs at g ≈ 7 for λ = 1 [51] and at g ≈ 15.7/

√
λ for

the two-dimensional limit λ → ∞ [59] (which equals g = 5.0
and g = 4.1 for λ = 10 and λ = 15, respectively). It shows
how the geometry can be used to drive the phase transition,
similarly to experiment with, e.g., confinement-induced reso-
nances [110].

IV. CONCLUSIONS AND OUTLOOK

Summarizing, we have analyzed para- to ferromagnetic
phase transition in a binary zero-temperature repulsive Fermi
gas at a two- to three-dimensional crossover utilizing two dis-
tinctive methods—the density-potential functional theory and
Hartree-Fock methods. We have found out that in a quasi-two-
dimensional regime, the ground-state profile across the phase
transition is nearly degenerate and exhibits a variety of shapes,
including isotropic and anisotropic separations, ring-shaped
polarization patterns, and central-split patterns in the usual
shell structure. These density profiles can be tuned via means
of varying the particle number, the interaction strength, and
the aspect ratio of the external trapping, providing a versatile
playground for the physics of interacting quantum mixtures.

As argued above, we have omitted the quantum correc-
tions to the mean-field interaction that would shift the values
of the interaction strength at which the transitions happen.
The inclusion of these corrections will be a subject of fu-
ture work. Another limitation of the considered model comes
from the neglection of thermal excitations—in the context
of itinerant ferromagnetism and phase separations in ultra-
cold gases, finite-temperature effects have been considered for
Fermi-Fermi [49,55,60,111] and Bose-Fermi [76] mixtures
in two and three dimensions, repulsive polarons [49,112],
many-component mixtures [113], and dipolar gases [114].
Nonzero temperature results in the shift of the critical value of
the interaction strength towards higher values of the interac-
tion [49,55,60,69], it can change the order of transition [113],

and, if sufficiently large, thermal fluctuations make the phase
separation disappear [49]. In the case we consider, exhibiting a
plethora of fine-polarization patterns, finite temperature would
most likely additionally smear out small density fluctuations,
similar to what we observed in two dimensions [59]. However,
such an analysis is outside of the scope of this work and is left
out as an outlook for the future.

The experimental realizations of a two-component repul-
sive Fermi mixture in two and three dimensions, both single-
element and two-element, have been presented with many
different species, including lithium [11,65,69,70,73,115],
potassium [116–118], chromium [119], ytterbium [120], and
dysprosium [121]. These realizations provide a natural ex-
perimental testbed for fermionic phase separation due to
repulsion, also beyond the considerations of this work—
involving different mass ratios and mixtures with different
species—so that competing effects such as molecule for-
mation could be suppressed and ferromagnetic correlations
revealed. Another avenue for fermionic phase separation
involves repulsive Bose-Fermi mixtures that have recently
gained momentum, both theoretically [75,76,122,123] and ex-
perimentally [74,124].

As a concluding remark, it is worth noting that the mul-
tiparticle Hamiltonian governing the system in this paper
exhibits axial symmetry. This implies that, unless degenerate,
the ground state must also possess axial symmetry. However,
the observed symmetry-breaking single-particle patterns, de-
tailed in this study, are entirely physical as they accurately
describe individual experimental shots. This somewhat para-
doxical aspect of the density functional method was recently
highlighted in Ref. [125].
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APPENDIX A: TESTING THE ENERGY FUNCTIONAL IN
THE NONINTERACTING CASE

Let us consider a noninteracting spin-polarized Fermi gas
trapped in an anisotropic harmonic trap with an aspect ratio λ,

V (x, y, z) = 1
2 mω2(x2 + y2 + λ2z2). (A1)

The ground state of the gas is given by a Slater determinant of
N lowest-energy harmonic single-particle eigensolutions,

ψi jk (x, y, z) = ψi(x)ψ j (y)λ1/4ψk (λ1/2z),

ψi(x) = 1√
2ii!

(
mω

π h̄

)1/4

e− mωx2

2h̄ Hi

(√
mω

h̄

)
, (A2)

with a single-particle energy Ei jk = h̄ω(i + j + λk + 1),
where again we subtracted the zero-point energy of the z
mode. The total energy of the gas then reads

Eex =
N∑

n=1

En, (A3)

where En = Ei jk and the associated single-particle wave
function ψn = ψi jk are ordered such that En+1 � En. The
single-particle density nex(x, y, z) then can be expressed as

nex(x, y, z) =
N∑

n=1

|ψn(x, y, z)|2, (A4)

and we can additionally define a column density,

nex
2D(x, y) =

∫
dznex(x, y, z). (A5)

To get a closed expression for each of these quantities in the
large-N limit, one can resolve to utilize a Thomas-Fermi ap-
proximation along with the local density approximation. Here,
we compare the functional introduced in Sec. II A and the
usual approach involving a three-dimensional Thomas-Fermi
functional,

ETF[n, μ] = Ekin + Epot + μ

(
N −

∫
dxdydzn(x, y, z)

)
,

(A6)

with

Ekin[n, μ] = A
∫

dxdydzn5/3(x, y, z),

Epot[n, μ] =
∫

dxdydzn(x, y, z)V (x, y, z), (A7)

where A = 65/3h̄2π4/3/20m and μ is a chemical potential. The
minimization of Eq. (A6) yields the following Thomas-Fermi
equations:

3

5
An2/3(x, y, z) = μ − V (x, y, z). (A8)

They can be readily solved to obtain

nTF(x, y, z) =
(

3

5
A−1

)3/2

[μTF − V (x, y, z)]3/2,

μTF = 61/3h̄ωN1/3λ1/3,

nTF
2D(r) = m

4πωλh̄3

(
μTF − 1

2
mω2r2

)2

,

ETF = 34/32−5/3h̄ωN4/3λ1/3 − E0, (A9)

where r =
√

x2 + y2, ETF is a total energy with subtracted
zero-point contribution of the z mode, and E0 = 1

2 h̄ωNλ. Sim-
ilar minimization for Eq. (8) gives

n2D(r) = m

2π h̄2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ2D − 1
2 mω2r2, r1 < r < r0,

· · ·
( j + 1)

(
μ2D − 1

2 mω2r2 − 1
2 jλh̄ω

)
, r j+1 < r < r j,

· · ·
(lm + 1)

(
μ2D − 1

2 mω2r2 − 1
2 lmλh̄ω

)
, 0 < r < rlm ,

μ2D = h̄ω
3lm(lm + 1)λ +

√
72(lm + 1)N − 3lm(lm + 1)2(lm + 2)λ2

6(lm + 1)
,

E2D = h̄ω
lm + 1

24

⎡
⎢⎣l2

m(lm + 1)λ3 − 1

9

⎛
⎝3lmλ +

√
72N

lm + 1
− 3lm(lm + 2)λ2

⎞
⎠

2⎛
⎝1

2
lmλ − 1

3

√
72N

lm + 1
− 3lm(lm + 2)λ2

⎞
⎠
⎤
⎥⎦,

(A10)

where lm is given implicitly through

lm =
⎢⎢⎢⎣1

2
lm + 1

6λ

√
72N

lm + 1
− 3lm(lm + 2)λ2

⎥⎥⎥⎦. (A11)

One can find an asymptotic behavior,

lm
N/λ2→∞−−−−−→ 61/3N1/3λ−2/3, (A12)
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FIG. 5. (a) Comparison of energies obtained through minimiza-
tion of either functional (8) (label 2D, solid lines) or functional (A6)
(label 3D, dashed lines) with respect to the exact energy (A3) for dif-
ferent trap anisotropies λ and atom numbers N . The former function
provides more accurate results with the highest difference at large
anisotropies. (b) Comparison of the density profiles obtained through
two methods [given through Eqs. (A10) and (A9)] and the exact
profile (A5) for λ = 25 and N = 1000. The density profile exhibits
a sharp transition around r/

√
h̄/mω = 5.5 that is reproduced only

with the former method. Inset: Absolute density differences between
the two methods and the exact density value.

from which other asymptotics follow:

μ2D
N/λ2→∞−−−−−→ μTF,

E2D
N/λ2→∞−−−−−→ ETF + E0,

n2D(r j )
N/λ2→∞−−−−−→ nTF

2D(r j ), (A13)

showing that in the limit of a large number of atoms and low
trap anisotropy, the two approaches tend to the same solution.
If N is taken to be finite, then the two methods differ. We
present the comparison in Fig. 5, showing that the usual three-
dimensional Thomas-Fermi approach is less accurate for the
energy estimation and does not reproduce the sharp features of
the density profile appearing due to the change of transverse
states.

APPENDIX B: DERIVATION OF TIME-DEPENDENT
HARTREE-FOCK EQUATIONS

In HF approximation one assumes that N fermions are
described by the wave function in the following form:

� = 1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ1(2) . . . ψ1(N )
ψ2(1) ψ2(2) . . . ψ2(N )

. . . .

. . . .

. . . .

ψN (1) ψN (2) . . . ψN (N )

∣∣∣∣∣∣∣∣∣∣∣∣
, (B1)

where ψi( j) are spin orbitals. In general, the spin orbital can
be written as

ψi( j) =

⎡
⎢⎢⎣

ϕi(1, r j, t )
ϕi(2, r j, t )

. . .

ϕi(s, r j, t )

⎤
⎥⎥⎦, (B2)

where ϕi(s j, r j, t ) are spatial orbitals. The spin orbitals fulfill
the orthonormality condition

〈ψi|ψk〉 =
smax∑
s j=1

∫
ϕ∗

i (s j, r j, t )ϕk (s j, r j, t )dr j = δik , (B3)

TABLE I. Details for the density plots in Figs. 1(a)–1(r).

Panel λ g max
r

|n1(r) − n2(r)| E P (l1, l2)

0.0460 1159.34 0.0038 (1,1)
a 5 3 0.0389 1159.35 0.0028 (1,1)

1.7 × 10−5 1159.41 1.3 × 10−6 (1,1)
0.194 1168.62 0.0114 (1,1)

b 5 3.2 0.0455 1168.62 0.0034 (1,1)
1.6 × 10−5 1168.73 1.3 × 10−6 (1,1)

0.0652 1182.17 0.0078 (1,1)
c 5 3.5 1.1500 1182.20 0.0552 (1,1)

0.3417 1182.30 0.0380 (1,1)
1.3240 1204.50 0.1174 (1,1)

d 5 4
1.0176 1204.60 0.1086 (1,1)
3.9239 1242.91 0.4702 (1,2)

e 5 5
3.4668 1242.91 0.4773 (2,2)

f 5 5.1 3.6025 1245.63 0.5049 (2,2)
3.7670 1247.33 0.4700 (2,2)

g 10 4.6 1.8 × 10−5 1621.74 1.6 × 10−6 (0,0)
2.9592 1627.06 0.7875 (0,1)

h 10 4.8
3.0182 1629.09 0.6039 (1,1)
3.0595 1631.64 0.8156 (0,1)

i 10 5
3.0144 1633.82 0.8762 (1,1)
3.1148 1633.91 0.8254 (0,1)

j 10 5.1
3.0375 1634.71 0.8986 (1,1)
3.0632 1635.45 0.9083 (1,1)

k 10 5.2
3.1545 1636.47 0.8357 (0,1)

l 10 10 3.2809 1651.59 0.9644 (1,1)
m 10 4.6 0.2606 1601.00 0.0774 —
n 10 4.8 0.3432 1610.79 0.0995 —
o 10 5 0.4113 1620.26 0.1193 —
p 10 5.1 0.4524 1624.87 0.1281 —
q 10 5.2 3.0423 1626.40 0.9086 —
r 10 10 3.1390 1639.25 0.9755 —
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TABLE II. Details for the density plots in Figs. 3(a)–3(j).

Panel N1 = N2 λ g max
r

|n1(r) − n2(r)| E P (l1, l2)

1.1999 37 245.5 0.0117 (1,1)
a 500 25 1.2

1.3325 37 246.0 0.0163 (1,1)
1.7187 37 816.0 0.0290 (1,1)

b 500 25 1.4
1.9441 38 817.2 0.0345 (1,1)

c 500 25 2 3.6595 39 427.4 0.0678 (1,1)
d 500 25 3 9.3638 41 337.5 0.6507 (1,1)
e 500 25 4 9.6879 41 493.9 0.9835 (1,1)

4.5722 863 299 0.0179 (2,2)
f 5000 30 1.2

7.2395 863 554 0.0608 (2,2)
5.8071 873 039 0.0219 (2,2)

g 5000 30 1.3
10.191 873 331 0.0996 (2,2)

h 5000 30 1.6 36.125 900 706 0.2781 (3,3)
i 5000 30 1.8 41.850 913 258 0.6588 (3,3)
j 5000 30 3 46.096 923 252 0.9944 (3,3)

where smax is the number of spin components. The wave
function can be used to construct the Lagrangian density:

L = ih̄

2
�† ∂�

∂t
− ih̄

2

(
∂�†

∂t

)
� − h̄2

2m

N∑
i=1

∇i�
†∇i�

−
N∑

i=1

�†Vext (ri )� −
∑
i< j

�†Vint (ri − r j )�. (B4)

Then one can build the Lagrangian

L =
∫

L dr1 dr2 · · · drN , (B5)

and finally the action

S =
∫ t2

t1

Ldt . (B6)

The principle of stationary action reads

0 = δS =
∑

i

[
∂S

∂ϕ∗
i (s j, r j, t )

δϕ∗
i (s j, r j, t )

+ ∂S

∂ϕi(s j, r j, t )
δϕi(s j, r j, t )

]
. (B7)

The variations over ϕ∗
i (s j, r j, t ) and ϕi(s j, r j, t ) are inde-

pendent. Taking the variation over ϕ∗
i (s j, r j, t ), one gets the

Euler-Lagrange equation for ϕi(s j, r j, t ). Here the Euler-
Lagrange equations are called the Hartree-Fock equations and
are the following:

ih̄
∂

∂t
ϕi(s, r, t )

=
[
− h̄2

2m
∇2 + Vext (r)

]
ϕi(s, r, t )

+
N∑

k=1

smax∑
s′=1

∫
d3r′[ϕi(s, r, t )Vint (r − r′)

×ϕ∗
k (s′, r′, t )ϕk (s′, r′, t )

−ϕk (s, r, t )Vint (r − r′)ϕ∗
k (s′, r′, t )ϕi(s

′, r′, t )] . (B8)

In our case s = 1, 2 or ↑,↓. Then we assume that[
ϕi(1, r, t )
ϕi(2, r, t )

]
≡
[
ϕ

(1)
i (r, t )

0

]
(B9)

for i = 1, . . . , N/2 and[
ϕi(1, r, t )
ϕi(2, r, t )

]
≡
[

0
ϕ

(2)
j (r, t )

]
(B10)

for i = N/2 + 1, . . . , N and j = 1, . . . , N/2. We consider
only low-energy collisions in the ↑↓ channel:

V ↑↓
int (r − r′) = gδ(r − r′). (B11)

Collisions in ↑↑ and ↓↓ channels are forbidden:

V ↑↑
int (r − r′) = V ↓↓

int (r − r′) = 0. (B12)

Finally, one obtains the following equations of motion:

ih̄
∂

∂t
ϕ

(s)
i (r, t )=

[
− h̄2

2m
∇2+Vext (r, t ) + δEint[n]

δns(r, t )

]
ϕ

(s)
i (r, t ) .

(B13)

APPENDIX C: DETAILS OF FIGURES

Tables I–III contain the details of Figs. 1, 3, and 4.

TABLE III. Details for the density plots in Figs. 4(a)–4(e).

Panel λ Method max
r

|n1(r) − n2(r)| E P (l1, l2)

DPFT 4.3868 1039.752 0.4630 (3,3)
a 3

HF 1.0436 1022.84 0.0983 —
DPFT 3.9943 1154.929 0.6109 (3,3)

b 4
HF 3.1287 1140.14 0.2008 —

DPFT 3.2480 1424.63 0.7200 (1,1)
c 7

HF 3.0663 1411.58 0.5317 —
DPFT 3.0962 1637.30 0.9255 (1,1)

d 10
HF 3.0997 1628.16 0.9332 —

DPFT 2.4198 1931.07 0.9463 (1,1)
e 15

HF 2.4210 1920.94 0.9565 —
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Rzążewski, Phys. Rev. Lett. 119, 215303 (2017).
[54] G. M. Koutentakis, S. I. Mistakidis, and P. Schmelcher, New

J. Phys. 21, 053005 (2019).
[55] J. Ryszkiewicz, M. Brewczyk, and T. Karpiuk, Phys. Rev. A

101, 013618 (2020).
[56] T. Karpiuk, P. T. Grochowski, M. Brewczyk, and K.
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