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Particle-imbalanced weakly interacting quantum droplets in one dimension
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We explore the formation of one-dimensional two-component quantum droplets with intercomponent particle
imbalance using an ab initio many-body method. It is shown that for moderate particle imbalance each
component maintains its droplet flat-top or Gaussian-type character depending on the intercomponent attraction.
Importantly, large particle imbalance leads to a flat-top shape of the majority component with the minority
exhibiting spatially localized configurations. The latter imprint modulations on the majority component which
become more pronounced for increasing interspecies attraction. The same holds for larger mass or increasing
repulsion of the minority species. Such structural transitions are also evident in the underlying two-body
correlation functions. To interpret the origin and characteristics of these droplet states we derive an effective
model based on the established Lee-Huang-Yang theory providing adequate qualitative analytical predictions
even away from its expected parametric region of validity. In contrast, the droplet character is found to vanish
in the presence of fermionic minority atoms. Our results pave the way for unveiling complex droplet phases of
matter.
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I. INTRODUCTION

Correlated quantum many-body states can be nowadays
designed and experimentally prepared within ultracold atom
platforms [1]. Prototypical examples are self-bound quantum
droplets [2–6] and quasiparticles such as polarons [7,8]. The
experimental observation of Bose [9–13] and Fermi polarons
[14–16] verified the crucial role of correlations in these set-
tings. In turn, significant theoretical attention [17,18] has
been devoted towards the study of correlation effects in the
stationary [19–23] and the far less explored nonequilibrium
dynamics [24–27] of polarons.

Higher-order correlations are similarly integral in the
formation of quantum droplets. The latter can appear in
short-range interacting bosonic mixtures [28–30] but also in
single-component [3,31,32] and mixtures [33,34] of dipolar
gases. Droplet states manifest when quantum fluctuations,
commonly accounted for by the Lee-Huang-Yang (LHY) cor-
rection term [35], stabilize the gas against collapse originating
from mean-field interaction effects [2,4–6]. Interestingly,
other theory proposals for droplets suggest their occurrence
in the presence of three-body interactions [36,37] but also
in Bose-Fermi mixtures with [38] and without spin-orbit
coupling [39,40]. Quantum droplets exhibit features of a
dilute liquidlike state [2], manifesting, for example, in the
development of a flat-top (FT) profile in their spatial den-
sity configuration. In three dimensions, the quantum liquid
character of droplets can be unveiled in terms of their sur-
face tension [2,41] and incompressibility [42]. However, the
study of three-dimensional (3D) droplets is hindered by their

characteristic self-evaporation process [2,43]. The latter is ab-
sent in one-dimensional (1D) systems [44], which emerge as
ideal settings for studying long-lived (due to lower densities)
and stable quantum droplets, where correlation effects are
naturally enhanced.

The majority of the quantum droplet investigations focused
on imposing the fixed density ratio condition between the two
components determined by their intracomponent interaction
strengths. In this regime, droplets are expected to be more
stable and in fact the two-component setting is reduced to an
effective single-component one [2,45]. Recently, some atten-
tion has been placed on exploring the genuine two-component
nature of the system by employing either mass imbalance or
different intracomponent interactions [30,46,47]. These stud-
ies indicated that quantum droplets can also remain stable
when the fixed density ratio is violated. This has been further
explored in three dimensions [48–50] within the context of the
LHY theory. Similar conclusions were drawn in 1D systems
of strongly interacting lattice trapped particle-imbalanced
bosonic mixtures using the density-matrix renormalization-
group method [51] and in a ring geometry focusing on the
rotational properties of droplets within LHY theory [52].
Therefore, the stability region of droplets has been extended
to a wider range of density ratios relying on small intercompo-
nent particle imbalances. However, considering larger particle
imbalances shares the premise of constructing effective meth-
ods, through which analytical predictions can be made, but
also enhances interparticle correlations (beyond LHY) since
one of the components can be even reduced to a few-body
sample. Note, also, that the works mentioned above [49–52]
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explored the scenario of mass balanced mixtures featuring
equal intraspecies interactions, leaving the number of particles
per component as the only source of intercomponent imbal-
ance.

For these reasons, we focus on two-component short-range
weakly interacting bosonic mixtures in one dimension aiming
to understand the interplay of particle, intracomponent inter-
action, and mass imbalance on the droplet formation. In this
context, one component (majority) consists of a significantly
larger number of atoms than the second (minority). We derive
an effective model based on the coupled system of extended-
Gross-Pitaevskii equations (eGPEs) [2,53] which allows for
analytical insights into the two-component droplet formation.
For instance, it predicts a decoupling of the two-component
system into a quantum droplet for the majority component and
a localized bright-soliton structure for the minority one in the
case of extreme atom imbalance. The results obtained from
this effective theory are verified utilizing the ab initio multi-
layer multiconfiguration time-dependent Hartree method for
atomic mixtures (ML-MCTDHX) [54–58]. Furthermore, the
impact of increasing the involved interaction strengths or the
mass of the minority atoms is revealed. It predominantly re-
sults in spatial modulations of the majority component which
maintains a FT droplet profile. Next, it is shown that the
droplet character of the majority bosonic subsystem vanishes
in the presence of fermionic minority atoms, which in turn
delocalize and spread over the former. Our results illustrate
the surprising effectiveness of the LHY theory in capturing
droplet formation even far from its expected validity region.

This paper is structured in the following way. In Sec. II, we
describe the two-component attractively interacting bosonic
mixture supporting droplet solutions. Section III briefly intro-
duces the underlying LHY theory as well as the nonperturba-
tive ML-MCTDHX approach deployed for the investigation
of quantum droplets. Section IV is devoted to the derivation
and solution of the effective eGPEs in the limit of large
intercomponent particle imbalance. It is used, later on, as
an interpretation tool for the two-component droplet con-
figurations. The phenomenology provided by the eGPEs is
confirmed by comparing to the predictions of the ab ini-
tio ML-MCTDHX method in both the one- (Sec. V) and
two-particle (Sec. VI) level. Droplet structures appearing in
heteronuclear (Bose-Bose or Bose-Fermi) mixtures are briefly
addressed in Sec. VII. Conclusions and possible future re-
search directions are offered in Sec. VIII. In Appendix A,
we compare the droplet density profiles extracted from the
many-body method, the complete system of eGPEs, and the
effective model. For completeness, the predictions of the ef-
fective model and the eGPE approaches in the absence of an
external trap are exemplarily compared in Appendix B.

II. PARTICLE-IMBALANCED BOSONIC MIXTURE

We employ a highly particle-imbalanced bosonic mixture
containing NA < NB atoms of mass mσ (σ = A, B) and being
confined in a weak 1D harmonic trap. Such a setting can be
readily prepared via the technique of radio-frequency spec-
troscopy utilizing a two-photon Raman transition, where a
portion of the atoms initial prepared in a single hyperfine
state (e.g., |F = 1, mF = −1〉 of 39K) is transferred to another

hyperfine state (e.g., |F = 1, mF = 0〉 of 39K). Consequently,
the percentage of atoms in each state can be controlled
through the amplitude and Rabi frequency of the applied pulse
[28,29,45,59]. The mixture is at cold temperatures where s-
wave scattering is the predominant scattering process [60]
and thus interactions are modeled by contact potentials. The
interparticle interactions are characterized by effective repul-
sive intra- (gA > 0, gB > 0) and attractive intercomponent
(gAB < 0) coupling strengths. These coefficients can be exper-
imentally tuned through Feshbach resonances [61,62] via an
external homogeneous magnetic field or confinement induced
resonances [60] by means of manipulating the transversal
trapping frequency.

The resulting many-body Hamiltonian has the form

H =
∑

σ=A,B

Nσ∑
i=1

[
− h̄2

2mσ

(
∂2

∂xσ
i

2

)
+ 1

2
mω2

(
xσ

i

)2

]

+
∑

σ=A,B

gσ

Nσ∑
i< j

δ
(
xσ

i − xσ
j

) + gAB

NA∑
i=1

NB∑
j=1

δ
(
xA

i − xB
j

)
.

(1)

In order to ensure the 1D nature of the ensuing dynamics we
consider a fixed and adequately large aspect ratio between the
longitudinal (ωx) and the transverse (ω⊥) trapping frequen-
cies. Specifically, ω = ωx/ω⊥ = 0.01 which is typical in 1D
experiments [63,64]. Moreover, the chemical potential (μ) of
the total system should be smaller than the transverse trap
energy-level spacing, i.e., μ < h̄ω⊥. The above conditions
prevent excitations along the transverse directions [63,65].
Finally, for computational convenience we rescale the above
Hamiltonian with respect to h̄ω⊥. Hence, the length, time, and
interaction strengths are given in units of a⊥ = √

h̄/(mω⊥),
1/ω⊥, and

√
h̄3ω⊥/m respectively.

III. MANY-BODY DESCRIPTION

A. Extended Gross-Pitaevskii equations

Two-component, homonuclear (mA = mB ≡ m), 1D quan-
tum droplets in the presence of the first-order quantum
correction (LHY contribution) are described, in the weakly
interacting regime, by the following coupled eGPEs [53,66]:

ih̄
∂�A(x, t )

∂t
=

[
− h̄2

2m

∂2

∂x2
+ GA|�A|2

−(1 − G)g|�B|2 + V (x)

−gA
√

m

π h̄

√
gA|�A|2 + gB|�B|2

]
�A(x, t ),

(2a)

ih̄
∂�B(x, t )

∂t
=

[
− h̄2

2m

∂2

∂x2
+ GB|�B|2

−(1 − G)g|�A|2 + V (x)

−gB
√

m

π h̄

√
gA|�A|2 + gB|�B|2

]
�B(x, t ). (2b)
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In these expressions, GA = gA + GgB, GB = gB + GgA, and
G = 2gδg/(gA + gB)2. The average mean-field repulsion is
g = √

gAgB, and the distance from the mean-field balance
point is given by δg = g + gAB. Also, V (x) represents the
external trapping potential which we consider herein to be a
harmonic trap as in the many-body Hamiltonian of Eq. (1).
For our simulations, we use the normalization condition∫ |�σ |2dx = Nσ , where �σ (x, t ) represents the 1D wave
function of the σ = A, B component and nσ = |�σ |2 is the
respective density normalized to the atom number. Notice
that for a balanced mixture, i.e., |�A|2√gB = |�B|2√gA, it
is known that the two-component system is reduced to an
effective single-component one [53], where both components
behave identically. In this case, a transition of the droplet
density from a Gaussian to a FT configuration takes place
for either increasing particle number (N = NA + NB) or de-
creasing intercomponent attraction (|gAB|) with 0 < −gAB <

g [53]. Interestingly, due to the droplet incompressibility,
the emergent FT structures exhibit a saturation peak den-
sity at n0 = 8g/(9π2δg2) [53]. However, it is not a priori
expected that these droplet properties are retained in the
particle-imbalanced two-component setting. This is one of the
questions that we address below.

It is also important at this point to explicate the valid-
ity of the eGPEs (2). This framework in principle holds for
macroscopic systems, in free space and close to the mean-field
balance point δg ≈ 0 [53]. However, several works relying on
nonperturbative methods have demonstrated that the eGPEs
can provide accurate predictions, at least on the qualitative
level, even for mesoscopic systems and for nonvanishing δg
[46,67,68] but also in the presence of a shallow (ωx � ω⊥)
external trap [47]. Therefore, the eGPE framework has been
shown to provide an accurate phenomenological description
of quantum droplets, even for certain systems which it is not
designed for. Throughout this paper we study the crossover
from particle-balanced droplet configurations to strong inter-
component imbalance where the minority component tends to
the impurity limit. As such, we explore parametric regimes
lying far outside the expected validity region of the eGPEs
framework. We showcase, however, by comparing with ab
initio calculations, that the eGPEs provide surprisingly valu-
able insights on the rich phenomenology exhibited close to the
impurity limit (NA � NB).

B. Many-body variational approach

As discussed above, in order to judge the parametric re-
gions of validity of the eGPEs for mesoscopic mixtures but
also identify the impact of beyond LHY correlations on the
formation of particle-imbalanced droplets we independently
rely on the ab initio ML-MCTDHX method [54–56]. Within
this approach the full many-body wave function is expressed
in a multilayer structure. The latter utilizes a variationally op-
timized time-dependent basis set in order to numerically solve
the corresponding many-body Schrödinger equation [57,58].
Accordingly, the relevant Hilbert space is spanned efficiently
and interparticle correlations are captured.

The intercomponent correlations (entanglement) of the
bosonic mixture are taken into account through a trun-
cated Schmidt decomposition [69]. This way, D different

orthonormal species functions, |�σ
k (t )〉, are used for each

component σ = A, B and the many-body wave function reads

|�(t )〉 =
D∑

k=1

√
λk (t )

∣∣�A
k (t )

〉 ∣∣�B
k (t )

〉
. (3)

Here, the eigenvalues of the species reduced density ma-
trix [56,70] are the time-dependent Schmidt weights

√
λk (t )

which determine the degree of intercomponent correlations.
Namely, if at least two distinct λk’s are finite the many-body
wave function is in a superposition and the system may be
considered entangled [57,69]. However, in the case of λ1(t ) =
1 and λk>1(t ) = 0, the many-body ansatz is simply a product
(nonentangled) state.

As a next step, intracomponent correlations are included by
expanding each species function in terms of a linear superpo-
sition of time-dependent number states |nk

σ 〉:
∣∣�σ

k (t )
〉 =

∑
nσ

k |Nk

Aσ
nk

(t )
∣∣nσ

k

〉
, (4)

with time-dependent expansion coefficients Aσ
nk

(t ). These
number states |nσ

k 〉 correspond to the full set of permanents
constructed by dσ time-dependent variationally optimized
single-particle functions |	σ

i 〉 with occupation numbers n =
(n1, . . . , ndσ

). In turn, the dσ time-dependent single-particle
functions evolve in the single-particle Hilbert space spanned
by the time-independent (primitive) basis {|rk

j 〉}Mj=1. In this pa-
per, the latter refers to a M-dimensional discrete variable rep-
resentation with M = 1000 grid points. Finally, the resulting
equations of motion for the coefficients of the ML-MCTDHX
wave-function ansatz describing the many-body Hamiltonian
of Eq. (1) are found, for instance, by using the Dirac-Frenkel
variational principle [56,71], 〈δ�|(ih̄∂t − Ĥ )|�〉 = 0.

Concluding, we note in passing that the ML-MCTDHX
wave-function ansatz easily reduces to the usual mean-
field one that neglects all correlations [72], |�MF(t )〉 =∏NA

i=1 |	A
i (t )〉∏NB

i=1 |	B
i (t )〉, by using D = dA = dB = 1. Then

the variational principle recovers the well-known coupled set
of Gross-Pitaevskii equations for the bosonic mixture [65,72].
However, the eGPEs (2) take into account correlations in a
perturbative manner and thus do not follow directly from the
ML-MCTDHX ansatz. The latter incorporates beyond LHY
correlations and therefore allows one to determine whether
the eGPE description is sufficient to capture the participating
correlation effects, to a good approximation, or if higher-order
ones become significant.

IV. EFFECTIVE DESCRIPTION IN THE LARGE
PARTICLE IMBALANCE LIMIT

We consider a two-component mixture in free space
[V (x) = 0], with attractive intercomponent interactions, fea-
turing extreme particle imbalance between the two macro-
scopically occupied components, i.e., NB 	 NA 	 1. In this
case, we may keep in the eGPE description [Eq. (2)] only
terms scaling at least as

√
NB (

√
NA) in the majority (minority)

component equation but ignore contributions O(NA/NB) and
O(NA), respectively (see also the discussion below). Then,
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FIG. 1. (a) Density profiles for fixed NB = 3903, gB = 0.05, gA = 0.049, and gAB = −0.149 obtained from the analytical (8) and the
numerical solutions of the reduced eGPEs (5) for various particle numbers in the minority component (see legend). The minority component
densities among the two approaches are in near perfect agreement. The inset of panel (a) depicts the droplet density of the majority component
as predicted by Eq. (7). Upon increasing the particle number of the minority component NA, its density maximum becomes comparable to
the droplet saturation density, in spite of the large particle difference, for all values of NB which result in a FT configuration (see main text).
(b) The effective potential experienced by the minority component for different NB. The inset of panel (b) illustrates the first four eigenstates
of the effective potential of Eq. (6) for NB = 3903 (see legend).

assuming
√

NB 	 NA, the genuine two-component system of
eGPEs (2a) and (2b) reduces to

ih̄
∂�A

∂t
=

[
− h̄2

2m

∂2

∂x2
+ Veff (|�B|) + GA|�A|2

]
�A, (5a)

ih̄
∂�B

∂t
=

[
− h̄2

2m

∂2

∂x2
+ GB|�B|2 − gB

√
mgB

π h̄
|�B|

]
�B. (5b)

Apparently, in this limit, the minority component experiences
an effective potential created by the majority species of the
form

Veff (|�B|) = −(1 − G)g|�B|2 − gA
√

mgB

π h̄
|�B|. (6)

It turns out that the majority component decouples from the
minority and obeys a reduced single-component eGPE [53].
The latter contains modified effective nonlinear interaction
parameters determined by the presence of the minority com-
ponent, i.e., δ̃g = GB and g̃ = gB/21/3. This indicates that the
presence of the minority component induces a global effect on
the majority one, i.e., extending beyond their overlap region.
In this sense, the creation and structural configurations of
dropletlike states in the majority component depend strongly
on the characteristics of the minority one. According to the
above, it is possible to control the saturation density and hence
the overall behavior of the majority species, via tuning the
interaction strengths associated with the minority component
(gA, gAB), and therefore also GB.

The majority component equation (5b) has the well-known
1D droplet solution [53,66] (setting h̄ = m = 1)

�B(x, t ) =
√

ñ0(μ̃/μ̃0)e−iμ̃t

1 + √
1 − μ̃/μ̃0 cosh

√−2mμ̃x
, (7)

where μ̃0 = −δ̃gñ0/2 represents the minimum value of
the chemical potential μ̃ above which droplet solutions exist
[44,53]. For sufficiently large particle number, Eq. (7) predicts
a self-bound droplet with FT density profile at the droplet
saturation density ñ0 = 8g̃3/(9π2δ̃g2). The latter uniform
solution (�B = ñ0) is shown in Fig. 1(a) with the thick blue
line, while the finite FT droplet configuration as captured by
Eq. (7) is depicted in the inset of Fig. 1(a). Using the droplet
solution of Eq. (7) we provide characteristic examples of the
effective potential, Veff (|�B|), experienced by the minority
component for various atom numbers (NB) in the majority
component [see Fig. 1(b)]. For completeness, we remark that
the exact particle number of the majority component—NB =
2
√

ñ0/δ̃g[ln (1 + √
μ̃/μ̃0)/

√
1 − μ̃/μ̃0 − √

μ̃/μ̃0]—which
is obtained by fixing the chemical potential μ̃ [53], does not
significantly affect the qualitative behavior of the minority
subsystem illustrated in Fig. 1, as long as we remain in the FT
regime.

As expected, Veff (|�B|) exhibits an inverse droplet pro-
file being reminiscent of a square well with a pronounced
flat potential minimum at large majority atom numbers, NB,
and transits towards a bell shaped inverted profile for de-
creasing NB. The first four eigenstates of Veff (|�B|), obtained
numerically via diagonalization, when the droplet solution is
deep in the FT regime (NB = 3903) are provided in the inset
of Fig. 1(b). Evidently, they are reminiscent of the eigen-
states of a square well, featuring sinusoidal profiles, with
a hierarchy in terms of their nodes for higher-lying ones,
inside the FT region and rapidly decaying at the tails of the
droplet. Importantly, as we explicate below, the spatial local-
ization of the minority component does not mainly originate
from the presence of this effective potential. It is primarily
a result of the induced self-attraction of the minority atoms
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mediated by the majority component [see in particular the
∼GA nonlinear term in the effective Eq. (5a)]. As such, the
spatial width of the minority component (�A) is significantly
smaller than the characteristic length scale of the effective po-
tential [Veff (|�B|)]. Interestingly, the aforementioned induced
self-attraction is inherently related to the presence of the LHY
contribution and it would be otherwise absent.

Since we consider NB 	 NA 	 1, i.e., operate close to the
thermodynamic limit, it is natural to assume that the majority
component is deep in the FT regime. Accordingly, its density
profile acquires the constant saturation value |�B(x)|2 ≈ ñ0

away from the edges of the atomic cloud, and hence also in
the comparatively much smaller spatial overlap region with
the minority component. The latter then may be well ap-
proximated by a bright soliton solution of the form �A(x) ≈
Asech(λx)e−iμAt where μA is the chemical potential of the
minority species. By substituting this solution into Eq. (5a)
and assuming a uniform density distribution for the majority
component, i.e., |�B(x)|2 ≈ ñ0, we find

λ2 = −2m

[
(1 − G)gñ0 + gA

√
mgB

π

√
ñ0 + μA

]
,

|A|2 = −λ2

m(gA + GgB)
. (8)

Notice that even the constant [when assuming |�B(x)|2 ≈ ñ0]
energy shift provided by the effective potential of Eq. (6)
plays an important role in determining the soliton solution.
This solution, �A(x), determined through Eq. (8) predicts that
the minority component becomes gradually more localized
in space and features an increased amplitude for larger NA

and fixed interaction coefficients as shown by the solid lines
in Fig. 1(a). Hence, in spite of the pronounced intercom-
ponent particle imbalance, there is a critical minority atom
number at which |A|2 ≈ ñ0. In this limit, the assumption
of decoupled components ceases to be valid [see, e.g., the
light-blue or yellow lines depicted in Fig. 1(a)]. Namely,
using the normalization condition

∫ |�A|2dx = NA together
with Eq. (8) we find the critical chemical potential μcrit

A =
Veff (

√
ñ0) + GAñ0/2 and critical number of particles in the

minority component Ncrit
A =

√
− 4ñ0

GAm , e.g., Ncrit
A ≈ 174 for the

parameter values used in Fig. 1. Note also that Ncrit
A is in-

dependent of NB. Beyond this point (i.e., for NA > Ncrit
A ) the

majority component is expected to exhibit density modula-
tions, on top of the FT, which are located at the overlap region
with the minority component. To confirm the validity of the
analytical soliton solution for the minority component in
the case of a highly particle-imbalanced system we provide
the ground-state densities of the minority species [Eq. (8); see
dashed lines of Fig. 1(a)], obtained from the simulation of the
reduced single-component Eq. (5a) assuming the FT solution
of Eq. (7) for the majority component [see inset of Fig. 1(a)].
A comparison of the wave forms depicted in Fig. 1(a) reveals
an almost perfect agreement between the two approaches (see
also Appendices A and B for comparisons of the effective
model with the full set of eGPEs).

To shed light on these density undulations of the ma-
jority component, we deploy the next-order correction to
the one used for obtaining the reduced Eqs. (5a) and (5b).
It stems from the nonvanishing intercomponent particle

number ratio NA/NB �= 0. This next-order correction, scaling
as NA/

√
NB, originates from the LHY term and it is given

by −gA[B]
gA|�A|2

2
√

gB|�B|�A[B] for each component respectively. Ev-
idently, this term manifests a direct coupling among the
components and it is responsible for the aforementioned den-
sity modulations on the FT profile of the majority component.
These modulations are predominantly enhanced for increasing
either NA or gA. The same holds for larger gB or smaller NB

but in a “slower” manner since the underlying scaling is of
square-root type.

For completeness, we note that the next higher-order cor-
rection term (scaling as NA) to the majority species Eq. (5b)
stems from the direct coupling to the minority component, i.e.,
−(1 − G)g|�A|2�B, and it apparently also directly depends
on gA and NA. This term also depends on the interspecies
interaction gAB, and increasing gAB for fixed gA indeed re-
sults in enhanced modulations of the density of the majority
component. However, as we shall explicate below, the im-
pact of gAB appears to be less prominent as compared to the
effect following an increase of gA. Hence, gA is the most
important interaction parameter for probing deviations with
respect to the intercomponent decoupled limit characterized
by Eqs. (5a) and (5b). Finally, it should be emphasized that
the effective description of Eqs. (5a) and (5b) should not
be considered as an exact quantitative model especially so
for finite systems and far from the overlap region between
the components. It is, however, a rather qualitative model in
the thermodynamic limit, predicting that the majority species
can maintain its finite droplet character while highlighting
the main sources of deviations from a FT droplet profile
through the higher-order perturbative corrections. The use-
fulness of this model is further exposed below, where we
explore imbalanced droplet configurations with the ab initio
many-body ML-MCTDHX method in the presence of a weak
harmonic trap. It is showcased that the insights of the effective
model aid in the interpretation of the obtained many-body
configurations.

V. MANY-BODY GROUND STATE

Naturally, the striking two-component droplet behavior
predicted within the effective eGPE framework [Eqs. (5a) and
(5b)] needs to be verified by explicit many-body calculations
especially so away from the thermodynamic limit. Moreover,
it is worth mentioning that we operate in a regime, where the
condition nA/nB ≈ √

gB/gA is violated, and thus it lays out-
side the commonly considered parameter region of symmetric
droplets [48–51].

For this reason, we employ the ab initio ML-MCTDHX
method [46,47,56] which allows one to quantify the many-
body properties of the system; see also Appendix A for a
comparison with the full eGPE [Eq. (2)] predictions. To render
this setup numerically tractable with an ab initio method,
we constrain the size of the majority component to meso-
scopic [here NB = 40 presented in Fig. 2 and NB = 20 (not
shown for brevity)]. Also, a weak harmonic trap, which is
an experimentally common situation [63], characterized by
ω = 0.01 is applied. Both of these restrictions result in droplet
configurations having comparatively smaller FT density
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FIG. 2. Density profiles of the two-component bosonic droplet many-body ground-state configurations for different intercomponent
attractions gAB (see legends) and (a) NA = 19 or (b) NA = 2. (c), (d) Ground-state densities of the (c) minority and (d) majority component
for NA = 4 and δg = 0.01, while tuning the intracomponent repulsion of the minority species gA (see legends). For sufficiently small ratios
NA/NB the majority component maintains its droplet configuration, while modulations upon the FT profile arise with increasing intercomponent
attraction or intracomponent repulsion of the minority species. In all cases, the remaining system parameters NB = 40 and gA = gB = 0.1 are
kept fixed (unless stated otherwise), while a shallow harmonic trap, ω = 0.01, is used.

signatures (from their free-space counterparts) located around
the trap center as it was demonstrated, for instance, in
Refs. [47,68]. However, as we shall explicate below, a close
inspection of the corresponding density profiles ρσ (x) =
〈�|�̂†

σ (x)�̂σ (x)|�〉 (normalized to unity), as well as the in-
tracomponent two-body correlation functions (see Sec. VI),
allows us to identify the dropletlike character (being either
FT or Gaussian shaped) of the majority component in the
resulting many-body configurations. Also, we remark that all
configurations to be presented below possess an energy per
particle that is below the first trapped state, i.e., EMB/(NA +
NB) < h̄ω/2, thus further confirming the bound-state charac-
ter of the ensuing many-body state.

First, we assume small particle imbalance, i.e., NB = 40
and NA = 19, and study the underlying ground-state con-
figurations for different intercomponent attractions gAB [see
Fig. 2(a)]. It becomes evident that due to the increasing attrac-
tion the component densities deform from spatially extended
FT droplet structures to highly localized, soliton-type, profiles
[see, e.g., the green solid and dashed lines in Fig. 2(a)]. The
aforementioned transition behavior is also known to occur
in the case of particle-balanced mixtures and will eventually
lead the system to collapse1 for sufficiently strong intercom-
ponent attraction [46,53,72]. Nevertheless, the densities of
both components closely follow each other with the majority
species showing presignatures of extended tails that become
pronounced for larger particle number ratios as we show-
case below. In three dimensions it has been recently shown
[48–50] that in the case of moderate particle imbalance, such

1By collapse in one dimension we refer here to the increasing
spatial localization, until the width of the density in the elongated
direction becomes comparable to the transverse length scale, a⊥. In
this latter regime the assumption of the 1D setting is invalidated [72].

as the one portrayed in Fig. 2(a), the ground state of the
system is characterized by either a bound imbalanced droplet
or droplet-gas coexistence for varying particle number ratios.
The existence of such ground-state configurations can be re-
lated to the well-known particle emission (or self-evaporation)
mechanism of 3D droplets. This mechanism dictates that a
fully bound droplet is not always the lowest-energy config-
uration of the attractive 3D mixture [2] and dynamically it
can expedite the decay of droplet states [45]. This instability
mechanism, however, is absent in one dimension [53,73] at
least within the weakly interaction regime. Hence, we observe
the majority component maintaining its droplet character for
all particle imbalances and as we shall argue later on also in
terms of their two-body correlation patterns (see Sec. VI).

In sharp contrast, we observe that upon further decreas-
ing the atom number in the minority subsystem (e.g., NB =
40, NA = 2), the majority component largely retains its FT
droplet configuration which is distorted only within the spatial
overlap region of the components, as long as gAB �= 0 [see
Fig. 2(b)]. On the other hand, the density of the minority com-
ponent exhibits a soliton-type structure, exhibiting increased
spatial localization for larger attractions. This behavior reaf-
firms the predictions of the reduced system of the eGPEs
[Eqs. (5a) and (5b) in Sec. IV] indicating that sufficiently large
particle imbalance, i.e., NB/NA 	 1, prevents or at least delays
the 1D collapse taking place for increasing attraction. This is
a quite interesting mechanism that should be also testified in
the quasi-1D system and it is thus a fruitful perspective for
future investigations. Additionally, the majority component
retains its FT droplet configuration (for large particle num-
bers NB 	 1), while the minority species develops a solitonic
profile as dictated by Eq. (5).

As a next step, we focus on the above-discussed large
particle-imbalanced system and explore its dependence on
the minority species repulsion, gA. Notice that previous
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works considering particle-imbalanced droplets mainly as-
sumed gA = gB [49–52]. Hence, the understanding of the
interplay between different sources of intercomponent imbal-
ance is far from complete. Here, we address the impact of
interaction imbalance, while in Sec. VII we discuss the ef-
fect of intercomponent mass imbalance in particle-imbalanced
droplets.

Recall that in Sec. IV we argued that the correction to
the majority species equation, originating from the LHY
term, is −√

gBgA
|�A|2
2|�B|�B and it enforces coupling among the

components. This implies that the spatial undulations of the
majority component in its overlap region with the minority
one strongly depend on gA. Figures 2(c) and 2(d) present the
density configurations of both the minority and the majority
components respectively for various gA values. The minority
component has a Gaussian density configuration [Fig. 2(c)]
becoming gradually more localized and tending towards a
solitonic structure for increasing repulsion [74,75]. Simul-
taneously, the majority component shows a modulated FT
droplet structure for all values of gA and features more promi-
nent modulations in the vicinity of the minority species for
larger gA [Fig. 2(d)]. Surprisingly, this behavior for increasing
gA is in qualitative agreement with the predictions of the
reduced eGPE model in the limit of large particle imbalance,
despite the fact that the present setting lies outside the validity
region of the eGPEs (5a) and (5b). Notice also that the density
modulations of the majority component on top of its FT profile
essentially vanish for gA = 0. In particular, for gA = 0 and
NA = 4 [see the dashed-green lines in Figs. 2(c) and 2(d)],
the majority component features a clear FT density profile
with no visible modulation even within the overlap region.
This is in accordance with the decoupled scenario described
by Eq. (5) and presented in Fig. 1(a). Moreover, we observe
that tuning the intraspecies interaction strength gA (for fixed
δg) has a more significant impact on the density profile of the
majority component, as compared to adjusting the interspecies
attraction gAB (for fixed gA). This becomes evident by the rela-
tively enhanced density modulations of the majority shown in
Figs. 2(c) and 2(d) when contrasted to the ones in Fig. 2(b). It
is also consistent with the conclusions of the effective model,
since both the correction originating from the LHY term
(i.e., −√

gBgA
|�A|2
2|�B|�B) and the one stemming from the direct

coupling to the minority species, i.e., −(1 − G)g|�A|2�B, ex-
plicitly depend on gA. They also vanish for gA = 0, while gAB

enters explicitly only on the latter. In particular, the prefactor
of the latter, i.e., −(1 − G)g, is reduced by a factor of 2 upon
tuning the interspecies interaction strength from gAB = −0.02
to −0.14 (for fixed gA), while the former scales linearly with
gA.

It is worth noting here that the opposite limit of strong
intra- and intercomponent interactions (such that δg is rela-
tively small) and moderate particle imbalance was recently
studied in Ref. [51] utilizing an optical lattice. Under these
conditions, the system was found to feature imbalanced
droplets at the overlap region between the two components,
while excess particles remained in a gas or a super-Tonks-
Girardeau gas phase [51]. Similarly, a droplet-gas coexistence
was identified for a sufficiently strongly interacting mixture
in a rotating ring geometry, within the LHY approximation

[52]. This behavior in the overlap region appears to be already
consistent with our effective model analysis. Apparently, for
strong interactions the coupling terms discussed above dom-
inate (instead of providing perturbative corrections as in the
limit of weak interactions considered here). Hence, we expect
the droplet or gas character of the mixture to be primarily
characterized by the behavior at the overlap region between
the two components [51,52]. However, we note that in this
limit of strong interactions the perturbative LHY theory does
not apply and droplet formation is interpreted in terms of
the formation of dimers [67,76] and larger polymers [77–79].
As such, both the stationary and the excitation properties of
weakly and strongly interacting droplets are expected to be
different and are not directly comparable with each other. A
systematic study focused on the crossover between the two
regimes would be intriguing. However, this exploration would
require elaborated many-body methods that can successfully
operate in the crossover region. Such a task lies beyond the
scope of the current paper.

VI. TWO-BODY DROPLET CONFIGURATIONS

To further probe the superposition nature of the two-
component droplet many-body states we examine the in-
tracomponent two-body coherence functions Cσσ (x1, x2) =
ρ (2)

σσ (x1, x2)/[ρσ (x1)ρσ (x2)] [57,70]. They are defined in terms
of the respective intracomponent two-body reduced densities:

ρ (2)
σσ (x1, x2) =〈�|�̂†

σ (x1)�̂†
σ (x2)�̂σ (x1)�̂σ (x2)|�〉, (9)

where �̂σ (xi ) [�̂†
σ (xi )] refers to the bosonic field opera-

tor annihilating [creating] a σ -species atom at position xi.
ρ

(2)
σσ ′ (x1, x2) is the probability of simultaneously detecting a

σ -species boson located at x1 and another one at x2 [80,81].
In this sense, two σ -species bosons show a bunching [anti-
bunching] behavior if Cσσ (x1, x2; t ) > 1 [Cσσ (x1, x2; t ) < 1],
and they are two-body uncorrelated for Cσσ (x1, x2; t ) = 1.

The two-body correlation function, in the case of large par-
ticle imbalance, i.e., NA/NB = 1/20, is provided in Fig. 3 both
for the majority and the minority components at two different
intercomponent attractions. These are chosen such that the
majority component has a FT shape and the minority exhibits
a Gaussian profile. For weak attractions (gAB = −0.02) the
components are almost decoupled, while for stronger ones
(gAB = −0.142) they are coupled and therefore the density
of the majority is modulated within their overlap region. It
can be seen that for increasing attraction the minority species
features a transition from a two-body anticorrelated behavior
(at the same position x1 = x2) indicative of quantum droplets
[46,47,68] to a correlated pattern characteristic of solitonlike
structures [82–85] [compare in particular the main diagonal
in Figs. 3(a) and 3(c)]. This observation is further supported
by the off-diagonal correlation behavior where for gAB =
−0.02 (gAB = −0.142) two minority species atoms show an
antibunching (bunching) tendency. This modified two-body
correlation behavior is suggestive of a transition from a bright-
droplet [44,86] to a bright-soliton [72,75] character for the
minority component, as it is also indicated by Eq. (8) of
our effective model. Elaborating further on the presence and
properties of this transition is an intriguing prospect for future
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(a) (b)

(d)(c)

FIG. 3. Two-body coherence function of (a), (c) the minority
component A and (b), (d) the majority component B for (a), (b)
weak (gAB = −0.02) and (c), (d) strong (gAB = −0.142) attraction.
The remaining parameters are gA = gB = 0.1, NA = 2, and NB = 40.
The minority component exhibits a transition from dropletlike to
solitonlike correlation patterns. Surprisingly, the majority component
maintains its droplet character in all cases.

investigations. In contrast to the above, the majority com-
ponent experiences an antibunching at the same location in
both cases [see the diagonal in Figs. 3(b) and 3(d)], while
two bosons placed symmetrically with respect to the FT are
bunched. This correlation pattern further confirms our ar-
gument regarding the persistence of the underlying droplet
character of these structures for large particle number ratios.

In contrast to the above behavior, for moderate particle
number ratio, e.g., NA/NB ≈ 1/2, both components undergo
a progressive transition towards a localized solitonic structure
characterized by a correlated behavior upon increasing attrac-
tion (not shown). This is in agreement with the expectation
that for systems close to particle balance, sufficiently strong
intercomponent attraction gradually favors the collapse of the
system [53,65,72].

VII. IMBALANCED DROPLETS
IN HETERONUCLEAR MIXTURES

Having described the peculiar ground-state droplet many-
body configurations appearing in homonuclear particle-
imbalanced bosonic mixtures we next move to the investi-
gation of heteronuclear (either bosonic or Bose-Fermi) ones.
Specifically, we consider the same bosonic majority com-
ponent as above but minority atoms composed of either a
different bosonic element or fermionic isotope. Admittedly,
the experimental preparation of such settings is more involved
compared to the homonuclear mixtures. However, heteronu-
clear settings, e.g., of 41K, or 23Na and 87Rb isotopes have
been experimentally realized [30,87] and importantly they
offer the premise to unveil valuable insights on mechanisms
that are absent in their single-component counterparts such
as intercomponent mixing, rich many-body phases, and exci-
tation processes [46,47]. Below, we solely rely on many-body
ML-MCTDHX simulations since the eGPEs for heteronuclear
1D mixtures have not yet been constructed; rather they are
known in three dimensions [30,41].

The case of NA = 2 heavy bosons immersed in a majority
species of light NB = 40 bosons is presented in Figs. 4(a)
and 4(b) for various mass ratios (rm = mA/mB = 1/2, 10)
and intercomponent attractions (gAB = −0.02, −0.14). As
expected, due to their larger mass, the minority atoms expe-
rience gradually enhanced spatial localization for increasing
mass ratio mA/mB and fixed gAB or larger attraction (gAB) and
constant mA/mB [see Fig. 4(a)]. As a consequence, the major-
ity component shows progressively more pronounced spatial
undulations in the vicinity of the minority species for either
increasing mass ratio mA/mB or attraction gAB. Accordingly,
the width of the majority cloud slightly shrinks but it overall
remains approximately the same. In that light we can deduce
that light minority species atoms coupled to the majority
component through weak attraction offer better candidates
to access the decoupled regime [see Eqs. (5a) and (5b) in
Sec. IV and Fig. 2(b)]. Recall, however, that in the presence
of mass imbalance Eqs. (2a) and (2b) are not valid. Inter-
estingly, the phenomenology obtained for the mass-balanced
and intercomponent particle-imbalanced settings holds also
for heteronuclear bosonic setups.

Next, we briefly address Bose-Fermi droplet settings where
fermionic minority atoms, e.g., NA = 3 and 5, are embedded
within a majority species containing NB = 30 bosons [see
Figs. 4(c) and 4(d)]. Our analysis relies on the many-body
ML-MCTDHX approach [72,88,89], in which the number
states used for the expansion of the wave function given
by Eq. (4) become Slater determinants of the dσ time-
dependent variationally optimized single-particle functions
(see also Sec. III B). As can be readily seen from Figs. 4(c)
and 4(d), the shape of the Bose-Fermi mixture is strik-
ingly different compared to the Bose-Bose one. Namely, the
fermionic component tends to be equally or more delocalized
than the bosonic majority species which is attributed to the
Pauli exclusion principle. Also, as expected, for increasing
intercomponent attraction both components become more lo-
calized. The energy per particle of the mixture is above the
lowest trap state. Clearly, the effective model presented in
Sec. IV was derived for a weakly interacting bosonic mixture
and thus it is not applicable for the Bose-Fermi setting.

It has been argued that, at least for 3D systems [38–40],
a highly imbalanced Bose-Fermi mixture, with the bosonic
component being the majority one, could accommodate
droplet structures. In Ref. [39], for example, it was expli-
cated that a mixture of potassium 41K − 40K with densities
nB ≈ 10nF (where nB,[F ] is the bosonic [fermionic] density,
normalized to the particle number in the respective compo-
nent) and interaction strength ratio |gBF |/gB � 0.25 would
result in a stable Bose-Fermi droplet in 3D free space. We
study the possibility of Bose-Fermi droplet formation in one
dimension. Our results indicate that the relevant parameter re-
gion for the realization of Bose-Fermi droplets is significantly
shifted in the 1D case as compared to the 3D one [38–40].
This could provide an interesting pathway for realizing 1D
quantum Bose-Fermi droplets, since their 3D counterparts
require large attractions and bosonic densities but also suf-
fer from significant three-body recombination rates [38–40].
The latter, being already suppressed in one dimension, could
potentially be further reduced if, as hinted by our results,
1D Bose-Fermi droplets prove to form in a parameter region
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FIG. 4. Ground-state droplet densities in heteronuclear Bose-Bose and Bose-Fermi mixtures within the many-body approach. (a), (b)
Profiles of (a) NA = 2 bosons and (b) a majority species with NB = 40 bosons for gA = gB = 0.1 and varying mass ratio rm = mA/mB and
intercomponent attraction gAB (see legend). (c), (d) Density configurations of (c) NA = 3 and (d) NA = 5 fermionic atoms within a majority
species of NB = 40 bosons featuring gB = 0.05 for different intercomponent attractions gAB (see legend). Evidently, heavier minority bosons
act against the FT droplet profile of the majority component, whereas droplet formation is suppressed in the presence of fermionic minority
atoms.

with lesser three-body losses. Such a systematic study of 1D
Bose-Fermi droplets is beyond the scope of our current paper,
however it would be intriguing to be pursued in the future.

We note in passing that in order to judge the degree
of correlations in the Bose-Fermi mixture we have also in-
spected the underlying orbital populations (not shown). It
turns out that there is an increasing occupation of higher-
lying species functions for larger attractions, while the bosons
mainly reside in the first orbital. This indicates an increase
of the intercomponent entanglement, accompanied by minor
intracomponent correlations for the bosonic species. Hence,
we find the opposite microscopic behavior for the Bose-
Fermi mixture as compared to the Bose-Bose one, where the
dropletlike states are characterized by significant intracom-
ponent (anti)correlations and relatively small intercomponent
ones [46,47,67,68]. This is consistent with the absence of
the signatures of the LHY phenomenology discussed above
(see Sec. IV) on the densities of the Bose-Fermi mixture in
Figs. 4(c) and 4(d), since the LHY theory primarily accounts
for the impact of intracomponent correlations in the form of
phonons [65,67,72,76].

VIII. SUMMARY AND PERSPECTIVES

We have studied the formation of two-component bosonic
droplet configurations with contact (intra-) intercomponent
(repulsion) attraction in the limit of large particle imbalance
among the components. It is argued that the majority compo-
nent can be arranged in a FT droplet shape exhibiting tunable
in amplitude and spatial extent localized modulations in the
vicinity of the minority atoms. These modulations become

more pronounced for either increasing intercomponent attrac-
tion or intracomponent repulsion of the minority component
as well as for larger mass of the latter. The intracompo-
nent repulsion of the minority subsystem appears to have
the stronger impact on the aforementioned undulations of the
majority component. For instance, they vanish in the limit of
noninteracting minority species. This qualitative behavior is
analytically predicted via a reduction of the established eGPEs
in the limit of large particle imbalance to a single-component
effective model. It is further verified using many-body ab
initio simulations within the ML-MCTDHX method.

This many-body method enabled us to also address droplet
formation in heteronuclear mixtures, where the correspond-
ing 1D eGPEs are not available. Specifically, for Bose-Bose
settings it is found that heavier atoms in minority species
enhance the localized undulations imprinted on the density
of the majority species. Turning to Bose-Fermi systems we
show that the FT signatures on the bosonic majority species
vanish in the presence of fermions in the other component.
This behavior supports the droplet suppression in Bose-Fermi
mixtures.

Based on our results there is a multitude of future research
directions that can be pursued. A straightforward extension
is to study the dynamical response of the identified droplet
structures utilizing, for instance, quenches across the different
phases in order to analyze the emergent pattern formation
[90]. Moreover, characterizing the droplet structures in the
dimensional crossover and hence also exploring the paramet-
ric regions of validity of the 1D eGPE description is highly
desirable for both experiment and theory within [91–93]
and especially beyond the symmetric droplet settings. The
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FIG. 5. Ground-state droplet density profiles in homonuclear
Bose-Bose harmonically confined (ω = 0.01) mixtures within the
many-body (MB), the eGPE, and the effective model approaches
(see legends). The mixture contains NA = 4 and NB = 40 bosons and
features intercomponent attraction of strength (a) gAB = −0.02 and
(b) gAB = −0.14. In all cases the intracomponent repulsion is fixed
to gA = gB = 0.1. The eGPE and the effective model predictions are
in qualitative agreement with the many-body results. Within the first
two approaches a relatively smoother density profile occurs for the
majority component but the FT behavior is absent. Also, the spatial
undulations of the majority density at the overlap region with the
minority component are absent within the effective model

stability analysis of the two-component droplet configurations
as it was done for the symmetric setting [86] is another fruitful
prospect, while considering spin-orbit coupling would intro-
duce additional unstable modes [94]. The characterization of
such phases for strong interactions lying essentially beyond
the validity of the eGPE would require one to employ so-
phisticated many-body methods, such as the ML-MCTDHX
used herein or exact diagonalization [95], for capturing the
underlying excitation spectrum and impact of thermal effects.
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APPENDIX A: COMPARISON BETWEEN THE
MANY-BODY AND THE EGPE PREDICTIONS ON THE

DENSITY PROFILES

It is instructive to provide some additional insights on the
ability of the LHY theory to capture the highly imbalanced
two-component states discussed in the main text. For this

FIG. 6. Ground-state droplet density profiles of the (a) minority
and (b) majority components within the eGPEs and the effective
model approaches, in free space (see legends). The mixture is char-
acterized by NA = 2 and NB = 40 bosons, while the intercomponent
(intracomponent) attraction (repulsion) is gAB = −0.054 (gA = 0.01,
gB = 0.1). The predictions of the two methods are in near perfect
agreement for the selected parameters lying in the validity region of
the effective model.

reason, we present a brief comparison on the single-particle
density level obtained with the eGPEs, the effective model of
Eqs. (5a) and (5b), and the ab initio ML-MCTDHX method.

Paradigmatic ground-state density profiles of the two com-
ponent bosonic mixture with equal intraspecies repulsion
(gA = gB = 0.1) and NB = 40 (NA = 4) bosons in the major-
ity (minority) component are illustrated in Fig. 5 for different
interspecies attractions. The ground states are obtained nu-
merically through the imaginary-time propagation method
applied either to the full system eGPEs [Eqs. (2a) and (2b)]
or reduced eGPEs [Eqs. (5a) and (5b)] and the many-body
ML-MCTDHX approach (see also Sec. III B). The chosen
parameter values are such that a variation of the interspecies
attraction from weak [Fig. 5(a)] to stronger values [Fig. 5(b)]
takes place in the case of NA = 4 similarly to the results shown
in the main text [see also Fig. 2(b)]. A careful comparison
between the predictions of the many-body and the full set
of eGPEs reveals an adequate qualitative agreement of the
resulting one-body spatial configurations of each component.
Specifically, within the eGPE framework a slightly less (more)
localized density profile for the majority component is ob-
tained in the case of weak (stronger) attraction, as can be
readily seen from Fig. 5(a) [Fig. 5(b)]. Similarly, the effective
model of the reduced eGPEs [Eqs. (5a) and (5b)] leads to sig-
nificantly (slightly) less localized structures for the minority
(majority) component when compared to the predictions of
the other methods. Also, as expected, no modulations of the
majority density profile appear in the intercomponent overlap
region, since the two components are assumed to be decoupled
in the context of the effective model.

Furthermore, it is apparent that the density structures
within the full system of eGPEs and the effective model are
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consistently smoother when compared to the corresponding
many-body outcome, while the FT signatures present in the
first two approaches are absent. This behavior is consistent
with earlier predictions focusing on the symmetric mixture
or equivalently single droplet case [47,57,68] and attributing
the emergent deviations to residual beyond-LHY correlations.
Finally, it should be emphasized that despite the satisfac-
tory agreement among the two approaches observed on the
single-particle density level, the many-body method allows to
calculate higher-order observables such as correlation func-
tions which are inaccessible with the eGPEs. At the level
of these observables larger deviations are naturally expected
especially in the course of the evolution.

APPENDIX B: EFFECTIVE MODEL VS EGPE
DENSITIES IN FREE SPACE

As mentioned in the main text, the effective model of
Eqs. (5a) and (5b) is not expected to be in general quan-
titatively exact. Hence, it is primarily used for qualitative
predictions and to assist with the interpretation of the results
obtained via the ab initio ML-MCTDHX method. However,
there exist certain cases where the predictions of the effective

model are in fairly good agreement with those of the full set
of eGPEs [Eqs. (2a) and (2b)].

One such case is depicted in Fig. 6 for a bosonic mixture
with NA = 2 and NB = 40 short-range interacting bosons fea-
turing effective coupling strengths gAB = −0.054, gA = 0.01,
and gB = 0.1. The two methods are in near perfect qualita-
tive agreement for the selected parameters, which are taken
such that the validity assumptions of the effective model are
ensured. Namely, we have chosen NA � √

NB and gA � gB

(see the discussion in Sec. IV). This condition enforces the
minority density component to be significantly more localized
than the one of the majority component. This is indeed the
case as also predicted by the numerical simulations of the
eGPEs presented in Figs. 6(a) and 6(b); see in particular
the different scales along the x axis. For completeness, we
mention that the full set of eGPEs [Eqs. (2a) and (2b)] was
solved numerically via imaginary-time propagation, using the
fourth-order Runge-Kutta method and employing the solu-
tions of the effective model [Eqs. (5a) and (5b)] as an initial
ansatz. Naturally, when the above conditions are not fulfilled
and hence the effective model is not a priori valid, significant
deviations between the two approaches occur (not shown for
brevity).
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