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Interaction-induced thermal conductivity of the unitary Fermi superfluids
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In recent experimental investigations of unitary Fermi gases, it has been observed that the thermal conductivity
κ approaches the quantum limit under the phase transition temperature Tc. While relevant theoretical calculations
have been conducted for this phenomenon, the interactions among particles within the heat current were
neglected, violating conservation laws and revealing a significant disparity between computed results and
experimental data. This paper addresses this issue by incorporating particle interactions within the heat current in
Feynman diagrams, based on the Ward identity. We derive a modified Kubo-based expression for κ that accounts
for the interaction. We also consider the anomalous thermal conductivity from current transfer via Cooper pairs
for the theory completeness. Our computations reveal that near Tc, the fluctuations in the t-matrix paradigm
are characterized by the pseudogap order and bosonic excitations contribute significantly to κ , leading to a
conspicuous peak in addition to the critical universal scaling laws. Our results align well with the experiment
near Tc.
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I. INTRODUCTION

In recent years, the development of experiments involv-
ing ultracold atomic gases has injected new vitality into
the fields of atomic and molecular physics, as well as
condensed matter physics. Particularly, significant progress
has been made in understanding quantum fluid behavior.
Local transport measurement experiments conducted under
nearly uniform density conditions [1–3] have provided robust
support for direct comparisons between theory and exper-
iment. By measuring density responses, researchers have
successfully extracted the sound diffusion coefficient in the
fluid [1,4,5], revealing contributions from various transport
quantities. These experiments have not only deepened our un-
derstanding of the fundamental properties of ultracold atomic
gases but have also taken an important step in theoretical val-
idation, allowing for more precise verification and refinement
of existing physical models.

Using the framework of two-fluid hydrodynamics [6], a
description of two sound waves associated with the general
transport coefficients has been formulated [7–10]. Despite
these remarkable achievements, significant limitations persist
in the study of thermal conductivity κ in unitary Fermi gases,
particularly within superfluids below the phase transition tem-
perature Tc. Existing research mainly focuses on the kinetic
level of the Boltzmann equation. While kinetic theory can
accurately calculate κ under certain conditions, such as the
high-temperature extrapolation of Boltzmann results [10,11]
or the low-temperature calculations by phonons [9], it fails
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below the pseudogap temperature T ∗ of strong correlation due
to the presence of uncondensed fermion pairs [12,13]. Current
research has employed t-matrix formalisms [14–19] and lin-
ear response theory [20] in the BCS-BEC crossover regime
to calculate κ of ultracold Fermi gases [21]. These studies
have not considered the interaction term in the heat current,
and such vertex corrections do not guarantee conservation
laws [22,23]. As the temperature approaches Tc, the contribu-
tion of bosonic pairs due to the interactions to κ will become
significant. A simple calculation on low-temperature κ with
the mean-field approximation has been reported [24] using
the linear response theory and Kubo formulas without consid-
ering the atom interactions in the heat current. In particular,
the work in Ref. [25] has reported the successful prediction
of isothermal compressibility using the t matrix within the
thermodynamical approaches, that is, a step discontinuity in
the compressibility at Tc for finite damping ratio γ . They take
γ /TF = α′T/Tc, and a large value of α′ � 1.0 appears for
a large step discontinuity of the compressibility at Tc. How-
ever, we calculate γ as a function of (T/Tc, 1/kF as), opening
all channels of particle-particle scattering progress based on
three-particle hydrodynamics [39], where nb0 is the density of
condensed pairs. The numerical results show α′ = 0.48. The
full quantum theoretic frameworks for this issue have been
presented [25–27], but the density-density correlation func-
tion has been used to only study the compressibility [25], the
current-current correlation function is too complex to compute
κ below Tc [26], and the relative theoretical work is above
Tc [27]. It needs to extend our previous work [21] to general
cases.

The diagram calculations under the t-matrix methods con-
sider the fluctuations that dominate the critical phenomenon
during the phase transitions, willing to provide more accurate
results for judging the system’s physics. However, as shown
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by Taylor [28], the critical region of ultracold Fermi gases
near Tc is large (of the order unity). In this critical region,
the fluctuations of the order parameter are particularly sig-
nificant, rendering thermodynamic quantities computed by
any method intrinsically unreliable. Instead, critical univer-
sal scaling laws prevail. In the context of the BCS-BEC
crossover, the critical exponents in the vicinity of the
phase transition region are the same as those of the three-
dimensional (3D) XY model [12]. Based on this model,
in the 4He system [29] and the BCS-BEC crossover sys-
tem [30], the specific heat with a λ-type phase transition
exhibits identical critical exponents, cV ∼ |τ |−α , where the
reduced temperature τ = 1 − T/Tc, α � −0.012, and the
critical exponent for the coherence length ν = (2 − α)/
3 � 0.6707. The thermal conductivity κ of the unitary gas of
interest also exhibits a λ-type divergence at Tc [11], specifi-
cally κ ∼ |τ |−ν/2 ∼ |τ |−1/3 [27,31].

Building upon the existing theory (in our previous
work [21], the theoretical value of κ is much less than the
experimental data [5]), further considering the influence of
particle interactions on κ will contribute to a more com-
prehensive understanding of its behavior in ultracold Fermi
gases near and below Tc with a simple expression on κ . In
this paper, we first provide a brief overview of microscopic
theoretical research on thermal conductivity, and then address
the above limitations in previous theories. Since we do not
take the Nambu representation in the superfluid phase [26],
we consider the anomalous thermal conductivity from current
transfer via Cooper pairs [32]. Including the interaction term
in the heat current, our computational results show that it
is just the substantial contributions to thermal conductivity
near Tc, and the critical universal scaling laws guarantee the
divergence of κ at Tc.

The plan of the paper is as follows. In Sec. II, we briefly
review the study of thermal conductivity in ultracold Fermi
gases using the Kubo formula based on a current-current
correlation. Then we introduced the basic physical quanti-
ties of the BCS-BEC crossover region and the calculation of
the currents and vertex functions. We employ the t-matrix
approximation in the pseudogap model under the (GG0)G0

scheme. We provide the Kubo expression for κ and correct
it in Sec. III by incorporating heat current interactions. We
show the calculation results for the complete thermal con-
ductivity, compare them with previous calculations and recent
experiments, and reveal the physical pictures of enhancing κ

due to the pseudogap order near Tc. Our main findings are
summarized in the concluding Sec. IV.

II. THEORY FORMULATION

A. Kubo formula

We first review the Kubo formula for thermal conductivity
based on the linear response theory. The Fermi system con-
sists of a particle current and heat current. In physics, each
type of current can be defined as the gradient of a scalar
field. Here, the particle current is related to the concentration,
while the heat current is related to the temperature field. The
generation of gradients can be thought of as the external
forces applied to the system. Under the assumption of linear
response, the system’s response is proportional to the external

driving forces, given by Ji = ∑2
j=1 Li jX j , where Li j are the

second-order tensor elements referred to as the response coef-
ficients. For systems that exhibit time-reversal symmetry, the
response coefficients of the normal particle currents have the
Onsager relation, L12 = L21. Since the experimental measure-
ments of thermal conductivity are typically conducted under
conditions where J1 = 0, κ is usually defined as J2 = −κ∇T .
For the external forces, we choose the concentration gradient
X1 = −∇ μ

T and the temperature gradient X2 = −∇ 1
T , which

leads to the Kubo formula

κ = 1

T 2

(
L22 − L12L21

L11

)
. (1)

According to the linear response theory, the response
coefficients are expressed as the current-current correlation
function. During the heat transfer process, the change in en-
tropy can be viewed as a linear perturbation. We denote the
energy associated with the system’s response as H ′, such that
∂S
∂t = ∑

i Ji · Xi. The quantity Ĥ ′ can be obtained through in-
tegration as Ĥ ′(t ) = iT

	

∑
i

∫
drJi(r) · Xi(r), with r = (r, t ),

Xi(r) = ∫
d	X(r,	)e−i	t e0+t , and excited spectrum 	. The

measurable current Ji(r, t ) is obtained by calculating the ex-
pectation value Ji(r) = T

	

∑
j

∫
dr′
(t − t ′)〈[ĵi(r), ĵ j (r′)]〉 ·

X j (r′). The step function 
(t − t ′) here ensures causality, and←→
L i j (r, r′, τ ) = i〈T̂τ ĵi(r, τ )ĵ j (r′, 0)〉 is precisely the retarded

current-current correlation function at the equilibrium state
for τ = t − t ′ with time order operator T̂τ . In the Matsubara
frequency space,

Ji(r, i	m)

= T

i	m

∑
j

∫
dq′〈[ĵi(r, i	m), ĵ j (−q′, 0)]〉 · X j (q′, i	m).

(2)

This is the general expression on the measurable current
Ji(r, i	m) within the generalized linear response theory [33].
When the external field is a single-mode excitation, we take
X j (q′, i	m) = X j (q, i	m)δq′,q, and then have

←→
L i j (q, i	m) = 〈[ĵi(q, i	m), ĵ j (−q, 0)]〉. (3)

Here, we have employed the Matsubara formalism in mo-
mentum space for convenience in calculation. Thus the static
response coefficients can be obtained by taking the limit after
the analytical continuation i	m → 	 + i0+:

Li j = lim
	→0

T

	
lim
q→0

Im

(
q · ←→

L i j (q,	) · q
q2

)
. (4)

Substituting the response coefficients into the definition of
thermal conductivity equation (1), we obtain the Kubo expres-
sion for κ in a generalized form.

B. Current operators and vertex functions

In the BCS-BEC crossover region, the ultracold Fermi
gases can be described by a Hamiltonian with zero-range
interactions,

Ĥ =
∑
kσ

ξkĉ†
kσ ĉkσ + g

2

∑
kk′qσσ ′

ĉ†
k+qσ ĉ†

k′−qσ ′ ĉk′σ ′ ĉkσ , (5)
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where ξk = k2/2m − μ is the energy calculated from the
chemical potential μ, m is the atomic mass, ĉ†

kσ (ĉkσ ) are
the creation (annihilation) operators for fermions, and g is
the bare s-wave interaction strength related to the adjustable
s-wave scattering length as through the regulation relation
1
g = m

4πas
− ∑

k
m
k2 . The dimensionless interaction strength

y = 1/kF as vanishes in the unitary limit. The imaginary-time
Green’s function is defined as G(k, τ ) = −〈T̂τ ĉkσ (τ )ĉ†

kσ (0)〉.
The Fermi current operators can be expressed as [6,27,34]

j1(q, t ) = 1

2m

∑
kσ

(2k + q)ĉ†
kσ

(t )ĉk+qσ (t ), (6)

j2(q, t ) = 1

2m

∑
kσ

[kξk+q + (k + q)ξk]ĉ†
kσ (t )ĉk+qσ (t )

+ g
∑
kk′q′

q′

m
ĉ†

k+q+q′↑(t )ĉ†
k′−q′↓(t )ĉk′↓(t )ĉk↑(t ). (7)

Equation (3) involves a total of four correlation functions,
each of which can be expressed as a combination of two
single-particle propagator lines GG forming a bubble dia-
gram and a full vertex function � j , which can be represented
as [26,35]

←→
L i j (q) = −

∑
k

�0
i (k, k + q)G(k)G(k + q)� j (k + q, k).

(8)
Here, the bare vertex factors are denoted as �0

1 (k, k + q) =
(2k + q)/2m, and �0

2 (k, k + q) = [kξk+q + (k + q)ξk]/2m,
while the dressed vertex function can be expressed through
an integral equation as [26,35,36]

�i(k + q, k) = �0
i (k + q, k) +

∑
p

�(k, q, p)

× G(p − k)G(p − k − q)

× �i(p − k − q, p − k). (9)

�(k, q, p) represents all irreducible representations of the
interaction between two Green’s functions. For the short no-
tations, q = (q, i	n) and p = (p, iνn) are Bose indices, while
k = (k, iωn) is a Fermi index. The summation includes both
frequency summation and integration over three-dimensional
momenta, i.e.,

∑
p = T

∑
iνn

∫ dp
(2π )3 , and so on.

C. t-matrix approximation

Past work in the literature has addressed the main features
of the t-matrix approximation in the broken-symmetry phase.
The (GG0)G0 scheme [19] is one of the best schemes in
the calculation of the fundamental physical quantities in the
BCS-BEC crossover region of the ultracold Fermi superfluids.
In this scheme, there exists an approximate relationship [16]
given by �(k, q, p) ≈ t (p), where the t matrix is defined as

1
t (q) = 1

g + ∑
k G(k)G0(q − k), and the self-energy is �(k) =∑

q t (q)G0(q − k). The bare propagator is given as G0(k) =
1/(ξk − iωn). The full Green’s function satisfies the Dyson
equation G−1(k) = G−1

0 (k) − �(k). This is a closed form of
the fundamental equations.

For the modified vertex �i in Eqs. (8) and (9), it exhibits
five dominant contributions within the (GG0)G0 scheme,

which can be seen in Fig. 1 (these Feynman diagrams are
visually depicted in Fig. 1 of Ref. [22]).

These contributions are the vertex function expressed
by [22,23]

�i = �0
i + �MT

i + �AL1
i + �AL2

i + �Int
i . (10)

Here the so-called Maki-Thompson (MT) contribution and
two versions of the Aslamazov-Larkin (AL) contributions
have been presented as the specific expressions,

�MT
i (k + q, k) =

∑
p

t (p)G0(p − k)G0(p − k − q)

× �i(p − k, p − k − q), (11)

�AL1
i (k + q, k) = −

∑
p,l

G0(l + q)G(p − l )t (p + l )

× G0(p − k)t (p)G0(l )�0
i (l + q, l ), (12)

�AL2
i (k + q, k) = −

∑
p,l

G(l + q)G0(l )t (p − l )

× G0(p − k)t (p)G(l )�i(l + q, l ). (13)

The interaction-induced �Int
i is related to (25) below. Based on

the t-matrix approximation, �i = �i(sc) + �i(pg), decomposing
as superfluid and pseudogap components. The many-body
vertex �AL

i calculation is very hard. Fortunately, at the q → 0
limit (within the linear response theory, we address in this
case), one has [23]

�i = �0
i − �MT

i + �Int
i . (14)

For convenience, we note the single-particle energies of
bosons and fermions εb = p2

2M∗ − μpair, ε f = (p−k)2

2m − μ, and
the difference δ = εb − ε f . nb( f ) is the Bose (Fermi) dis-
tribution function. In the pseudogap model [37], the en-
ergy gap � can be also divided into two parts, �2 =
�2

sc + �2
pg. Then t (q) = −�2

scδ(q)/T + tpg(q) with t−1
pg (q) =

Z (	 − q2/2M∗ + μpair ) in the small q approximation. The
physical quantities appearing here, namely, μpair, Z , and M∗,
can all be obtained in Ref. [37].

D. κ expression

In Ref. [21], it is mentioned that by considering only the
contributions from the first four terms of Eq. (10), an expres-
sion for the static coefficient L(0)

i j in the absence of interactions
in q → 0 can be obtained as

L(0)
i j = T

3π2m2

∫ ∞

0
dkk4ξ

i+ j−2
k

∫ ∞

−∞

dε

4π

(
−∂n f (ε)

∂ε

)

× [
A2(k, ε) + B2

sc(k, ε) − B2
pg(k, ε)

]
. (15)

Here, the spectral functions A(k, ε) = −2 Im G(k, ε) and
Bsc(pg)(k, ε) = −2 Im Fsc(pg)(k, ε) are respectively for the nor-
mal and anomalous Green’s functions. The former is

G(k, ω) =
(

ω − ξk + iγ − �2
pg

ω + ξk + iγ
− �2

sc

ω + ξk

)−1

,

(16)
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FIG. 1. (a) The polarization bubble, and (b) the schematic diagram of the vertex function used to calculate the response function. The wavy
line represents the t matrix, the open (solid) arrow represents the bare (dressed) Green’s function, the dashed line represents the external stress
tensor field and the small black dot represents the zeroth-order bare vertex �0, the solid open circle represents the full vertex � and the dashed
open circle represents the first-order bare vertex �Int.

and the latter are

Fsc(k, ω) = −�sc

ω + ξk + i0+
1

ω − ξk − �2

ω+ξk
+ i0+ , (17)

Fpg(k, ω) = −�pg

ω + ξk + iγ
G(k, ω), (18)

the same as those of the pseudogap model and some high Tc

literature [38,39]. It includes γ = 1/2τ the damping ratio and
τ the relaxation time. Opening all channels of particle-particle
collisions [i.e., (n f , n f ), (n f , nb), (n f , nb0 ), and (nb, nb0 ) scat-
tering progress], we have calculated τ as a function of
(T/Tc, 1/kF as) based on three-particle hydrodynamics [40],
where nb0 is the density of condensed pairs. The numerical
results show that γ /TF = α′T/Tc is correct near Tc for unitary
Fermi gases but with α′ � 0.48 (see Fig. 3 in Ref. [40]).
The fermion-boson scattering channel dominates in all chan-
nels, resulting in the departure from Fermi-liquid theory
and a similar temperature dependence with the Planck time
τP. Across a wide range of strongly correlated systems, the
phenomenological dimensionless constant is 0.45 < α′ < 1.1
in the anomalous transport regimes [41], which shows the
dramatic universality of the unitary Fermi gases due to the
pseudogap effects.

The blue line in Fig. 1 shows κ vs T/Tc without interactions
in heat current operators [21]. The numerical results show
that κ (0) � L(0)

22 /T 2, and that the normal spectral function
A(k, ε) = −2 Im G(k, ε) is the main contribution to κ (0) ∝
[−2 Im G(k, ε)]2 of the integrable function. Since the pseu-
dogap order (fluctuations) has modified G(k, ε) both by γ and
by �pg, we need to check which one is the core contribution
to κ (0). In any case, the blue line of κ (0) in Fig. 1 is much
less than the experimental data [5] (red circles) for fixed γ .
We need to modify �pg and consider the anomalous thermal
conductivity.

For the theory completeness, we now calculate the
anomalous thermal conductivity using the Kubo formula
under the t-matrix approximation by considering the

Cooper pair current operators [32] as j′1(q, t ) = 1
2m

∑
k[(q −

k)ĉk↓(t )ĉq−k↑(t ) − kĉ†
k↑(t )ĉ†

−q−k↓(t )], and their heat current

operators as j′2(q, t ) = 1
2m

∑
k[−kξq−kĉk↓(t )ĉq−k↑(t ) + (k +

q)ξkĉ†
k↑(t )ĉ†

−q−k↓(t )]. Letting k′ = k + q for short notations,
the corresponding correlation functions are

←→
L ′

11(q) = − 1

4m2

∑
k

[k′k′Ḡ(k)G(k′) + kkG(k)Ḡ(k′)],

(19)

←→
L ′

22(q) = 1

4m2

∑
k

[
kkξ 2

k′Ḡ(k)G(k′) + k′k′ξ 2
k G(k)Ḡ(k′)

− 2kk′ξkξk′F (k)F (k′)
]
. (20)

Especially, in the symmetry-broken superfluid phase, the an-
tisymmetry correlation functions are

←→
L ′

12(q) = −←→
L ′

21(q)

= 1

4m2

∑
k

{[kkξk′ − k′k′ξk]F (k)F (k′)

+ kk′[ξk′Ḡ(k)G(k′) − ξkG(k)Ḡ(k′)]}. (21)

At the mean-field approximation for the interested limit of
q → 0, we find

←→
L ′

11(0) = − 1
2m2

∑
k kkG(k)Ḡ(k) �= 0 due

to the Cooper pair current, and
←→
L ′

12(q) = −←→
L ′

21(q) = 0

indeed. But
←→
L ′

22(0) = 1
2m2

∑
k kkξ 2

k [G(k)Ḡ(k) − F (k)F (k)]
does not seem to vanish. In fact, Im

∑
n T G(−k)G(k′) =∫ ∞

−∞
dε
2 [− ∂nF (ε)

∂ε
]A(−k,−ε)A(k′, ε + 	) leads to κ ′

MF =
L′

22
T 2 ∝ ∫ ∞

−∞
dε
2π

[B2(k, ε) − A(−k,−ε)A(k, ε)] = 0 in the
case of q → 0. Therefore according to the mean-field
calculations, the Cooper pairs do not contribute to the thermal
conductivity physically. We need to go beyond the mean-field
approximation for the heat current of the Cooper pairs.
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Within the t-matrix approximation,
←→
L ′

22(q) becomes

←→
L ′

22(q) = −
∑

k

�0
2 (k, k′)�2(k′, k)F (k)F (k′)

= −
∑

k

�0
2 (k, k′)�0

2 (k′, k)[F (k)F (k′)

− Fsc(k)Fsc(k′) + Fpg(k)Fpg(k′)]. (22)

Based on the above mean-field approximation calculation, it
simplifies to

←→
L ′

22(q) = −2
∑

k

�0
2 (k, k′)�0

2 (k′, k)Fpg(k)Fpg(k′). (23)

Therefore the quantum fluctuation in the thermal conductivity
is expressed on

κ ′ = 1

3π2m2T

∫ ∞

0
dkk4ξ 2

k

∫ ∞

−∞

dε

4π

[
−∂nF (ε)

∂ε

]
B2

pg(k, ε).

(24)
The green line in Fig. 1 shows this result. Although there is a
small hump near Tc, the value is less than the one with the blue
line. Therefore we need to consider the interactions within the
heat current operator.

III. THE INTERACTION-INDUCED THERMAL
CONDUCTIVITY AND NUMERICAL RESULTS

In the aforementioned calculations, the interaction terms
of Fermi particles within the heat current operator, i.e., �Int

j
in the Feynman diagrams (the superscript Int represents the
interaction), were not included. This simplification renders the
conservation laws invalid. On the other hand, in the vicinity
of the unitary limit, both bosonic and fermionic excitations
(corresponding to the vertex function and normal Green’s
function) are equally important. Therefore, a proper descrip-
tion of thermal conductivity must encompass the effects of
the interaction terms. These interaction terms within the heat
current include four fermionic operators, and transforming
them into two bosonic operators yields contributions from
bosonic excitations. Hence, it is appropriate to say that the
interaction terms involve contributions from bosons. Regard-
ing �Int

j in (10), its second-order tensor form is discussed in
Ref. [22], which is given as

�
i j
Int(k + q, k) = δi j

g

∑
p

tpg(p + q)tpg(p)G0(p − k) (25)

[see Eq. (49) in Ref. [22]]. For the vertex function in thermal
conductivity calculations, in comparison to Eq. (8), we pro-
vide the following expression,

←→
L Int

i j (q) = −
∑

k

�0
i (k, k + q)�0

j (k + q, k)G(k)

× G(k + q)
δi j

gT

∑
p

t (p)t (p + q)G0(p − k).

(26)

This is the interaction-dependent term within the heat current
operator.

To carry out the coefficient calculation, we denote L =
−T

∑
iωn

G(k)G(k + q)T
∑

iνn
t (p)t (p + q)G0(p − k). First,

we perform two frequency summations on L and then take
the limit of q approaching 0,

lim
q→0

Im L = nb(εb) + n f (ε f )

4πZ2

∫ ∞

−∞
dεA(k, ε)

×
[

A(k, ε + 	)
n f (ε) − n f (ε + 	)

(ε − δ)(ε − δ + 	)

+ A(k, δ + 	)
n f (δ + 	) − n f (δ)

	(ε − δ)

+ A(k, δ − 	)
n f (δ − 	) − n f (δ)

	(ε − δ)

]
. (27)

Next, dividing 	 and letting 	 → 0, one has

L0 = lim
	→0

1

	
lim
q→0

Im L = nb(εb) + n f (ε f )

4πZ2
(I1 + 2I2 + 2I3),

(28)
with three principal value integrals

I1 = lim
	→0

∫ ∞

−∞
dε

A
(
k, ε − 1

2	
)
A
(
k, ε + 1

2	
)

(
ε − δ − 1

2	
)(

ε − δ + 1
2	

) −∂n f (ε)

∂ε

= lim
	→0

1

	

∫ ∞

−∞
dε

(
−∂n f (ε)

∂ε

)
A

(
k, ε − 1

2
	

)

× A

(
k, ε + 1

2
	

)(
1

ε − δ − 1
2	

− 1

ε − δ + 1
2	

)
,

(29)

I2 =
∫ ∞

−∞
dεA(k, δ)

A(k, ε)

ε − δ

∂2n f (δ)

∂δ2
, (30)

I3 =
∫ ∞

−∞
dε

A(k, ε)

ε − δ

∂A(k, δ)

∂δ

∂n f (δ)

∂δ
. (31)

We observe that for a small enough but fixed value 	, the
integrals in the above equations are finite through the prin-
cipal value integrals. As 	 approaches zero, the integrals
I1, I2, and I3 converge. Comparing L0 with Eqs. (4) and (26),
we derive the specific expression for the response coefficients
as follows,

LInt
i j = δi j

∫
dp

(2π )3

∫
dk

(2π )3

k2 cos2 θξ
i+ j−2
k

gm2
L0. (32)

In the above equation, θ represents the angle between p
and k. This expression involves a sixfold integral, and we
employ the Monte Carlo algorithm Vegas, developed based
on the adaptive stratified sampling method, to perform the
computation [42]. Substituting Li j = L(0)

i j + LInt
i j into Eq. (1),

one finally obtains the complete expression of the thermal
conductivity after including the interaction term in the heat
current as

κ = 1

T 2

[
L(0)

22 + LInt
22 − L(0)

12 L(0)
21

L(0)
11 + LInt

11

]
. (33)

Using the above expression combined with the critical scal-
ing laws, Fig. 2 displays the thermal conductivity calculated
at a strong interaction strength of y = 0.01. The red data
points correspond to the experimental data for the thermal
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FIG. 2. Thermal conductivity κ in units of nh̄kB/m vs dimen-
sionless reduced temperature T/Tc. The solid black line represents
our theoretical results, and the red circles denote the experimental
data [5]. The blue solid line represents the calculation results without
accounting interactions in heat current [21]. The green solid line
represents the calculation results contributed from the Cooper pairs.

conductivity at the unitary limit [5]. Our numerical results
show that κ � L22/T 2 = [L(0)

22 + LInt
22 ]/T 2, and that the normal

spectral function A(k, ε) = −2 Im G(k, ε) is the main contri-
bution to κ . Since the pseudogap order (fluctuations) modifies
G(k, ε), its �pg both in L(0)

22 and primarily in LInt
22 is the core

contribution to κ for the fixed value of α′ = 0.48.

IV. REMARKS AND CONCLUSION

It is worthy to remark the following: (1) The physics
picture of the fluctuations in the t-matrix paradigm is
characterized by the pseudogap order. The interaction-

induced pseudogap order combined with the critical scaling
laws leads to κ increasing sharply. (2) Our results align well
with the recent experiment [5] near Tc with the experimental
value of Tc ≈ 0.167TF [5,43]. (3) The contribution of the
correction term to the thermal conductivity reaches its max-
imum at Tc, and as the temperature decreases, the contribution
of the correction term continuously diminishes. (4) At Tc,
critical fluctuations are expected to lead to a divergence of
κ [44], obeying the critical universal scaling laws. (5) Around
0.9Tc, κ displays behavior approaching the quantum limit
value; below approximately 0.8Tc, the result yields very small
values as reported in Ref. [24], above Tc, the contribution
of the correction term gradually decreases with increasing
temperature, reducing to zero at around 1.4Tc. (6) Starting
from a microscopic theory, the computed thermal conductivity
exhibits a rapid decrease below Tc. The significant difference
in κ on both sides of the phase transition temperature is
also mentioned in Ref. [11]. Below approximately 0.8Tc, both
Ref. [21] without the interaction and this work with the inter-
action yields very small values for a small enough pseudogap
order.

In summary, we derive the Kubo-based expression for
the thermal conductivity of a unitary Fermi gas by taking
into account the interactions in the heat current. Our results
demonstrate that the interaction-induced pseudogap order
combined with the critical universal scaling laws lead to the
thermal conductivity increasing sharply near the phase tran-
sition temperature (although the thermal conductivity is also
sensitive to the damping ratio, it is not an adjusted parameter).
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