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Synthetic non-Abelian topological charges in ultracold atomic gases
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Topological phases associated with non-Abelian charges can exhibit a distinguished bulk-edge correspon-
dence compared with Abelian phases, although elucidating this relationship remains challenging in traditional
solid-state systems. In this paper, we propose a theoretical framework for synthesizing non-Abelian quaternion
charges in ultracold atomic gases. By designing artificial spin-orbit coupling patterns, the topological edge
modes demonstrate a clear correspondence with the band topology determined by various quaternion charges.
This paves the way for observing the interface modes whose existence is attributed to the nonconservation
multiplication relation, which is fundamental to non-Abelian charges. This scheme can be readily implemented
using current ultracold atom techniques, offering a promising approach to explore the intriguing non-Abelian
characteristics of the system.
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I. INTRODUCTION

Topological band theory has extracted the nature of non-
trivial phases by the topological charges, which have attracted
tremendous interests of studies. In most previous works, the
topological charges that specify the phases belongs to the Z2

or Z classes [1,2], both represented by the Abelian groups. As
the results, the emergence and degeneracy of the topological
edge modes depend on the bulk topological charges, known
as the bulk-edge correspondence. On the other hand, recent
works report the findings of nontrivial phases described by a
totally different classes such as non-Abelian quaternion group
[3,4]. It leads to a distinguished bulk-edge correspondence
associated with the non-Abelian features, bringing in rich
behaviors of emergent edge modes.

In the previous works, engineering topological phases of
non-Abelian charges requires the deliberate prepare of the
nontrivial intrinsic fields. Although the realization is still
frustrated in conventional solid-state systems, the emulation
using artificial quantum systems shows an alternative rou-
tine for investigating the non-Abelian topological charges
[5–9]. Notably in recent decades, ultracold atomic gases
have been widely applied in studies of quantum simula-
tions [10,11]. This is because it can provide a reliable and
clean platform for investigating a broad range of topological
phases [12,13], by taking advantages of its highly artificial
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controllability and manipulations. Successful achievements
have been obtained in engineering a variety of artificial
fields [14–23], such as atomic spin Hall effect [24–26] and
quantum anomalous Hall effect [27–29], spin-orbit coupling
(SOC) [30–40], artificial magnetic fields [41–50], artificial
non-Abelian gauge fields [51–53], and nontrivial many-body
interactions [54–57]. Therefore, this motivates us to search a
potential scheme for realizing phases characterized by non-
Abelian charges using ultracold atoms, which can also offer a
valid tool for exploring and studying the relative non-Abelian
physics [58–64].

An earlier work reports a scheme for engineering the
quaternion Q8 charges in a Floquet system [7]. By manipu-
lating the temporal sequence of Hamiltonians, the designed
Floquet topological insulator phase demonstrates the presence
of non-Abelian charges, focusing just on the interface between
two quaternion charges within the same conjugate class. In
contrast with Floquet-based approaches [65], in this paper,
we present a proposal based on a stable system of ultracold
atoms. Instead of employing Floquet engineering, we synthe-
size quaternion charges by preparing various patterns of SOC,
enabling the observation of interface modes arising from do-
main walls between quaternion charges, even those belonging
to distinct conjugate classes. This exploration provides clear
evidence of the nonconservation multiplication relation, of-
fering a promising avenue for studying and characterizing
non-Abelian physics.

This paper is organized as follows: In Sec. II, we start with
the model Hamiltonian and the scheme for engineering the
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quaternion charges. Based on the scheme, in Sec. III, we show
that the junction structure that connects the two quaternion
charges can be proposed by introducing external fields with
a spatial offset. Such a setup supports the interface-mode
whose behaviors are determined by the noncommunicative
multiplication relation between different quaternion charges,
which is the core of the non-Abelian charges. In Sec. IV we
discuss the details for the experimental realization in ultracold
atoms. Finally we conclude this paper in Sec. V.

II. MODEL HAMILTONIAN

We consider the quantum gases confined in a one-
dimensional (1D) optical lattice. We choose three internal
states of the atoms as the pseudospins σ = A, B,C. The model
Hamiltonian is composed of two parts

Ĥ = Ĥ0 + ĤSC. (1)

The first part describes the kinetic term in accompany of the
optical lattice,

Ĥ0 =
∫

dx
∑

σ

ψ†
σ (x)

[
−∇2

x

2m
+ �σ + VOL(x)

]
ψσ (x). (2)

Here ψσ is the annihilation operator of atoms with spin σ =
A, B,C. �σ is the on-site potential. VOL(x) = VL sin2(kLx) is
the lattice potential, where the VL characterizes the trap depth,
and kL = π/λL with λL denoting the lattice constant. We
have set h̄ = 1 for simplicity of notation. The second part
of Hamiltonian (1) describes the coupling between different
spins,

ĤSC =
∫

dx
∑
σ �=σ ′

�̂σσ ′ (x)ψ†
σ (x)ψσ ′ (x). (3)

Here �̂σσ ′ (x) denotes coupling field associated with the fol-
lowing standing-wave mode:

�̂σσ ′ (x) = i�σσ ′ sin (kLx), (4)

where �σσ ′ characterizes its amplitude.
We employ the tight-binding approximation to investigate

such a lattice model. Since atoms of all spins are loaded in the
same lattice potential, we expand the atomic operator ψσ (x)
of different spins in terms of the same Wannier wave functions
W (x),

ψσ =
∑
j,σ

W (x − x j )c jσ . (5)

Here c jσ denotes the annihilation operator on the jth site. The
profile of W (x − x j ) is localized and symmetric with respect
to each site center x j = jλL. Hamiltonians (1) and (3) are then
recast as

H0 =
∑
j,σ

[�σ c†
jσ c jσ − Ĵσ (c†

j+1,σ c jσ + H.c.)], (6)

HSC =
∑
j, j′

∑
σ �=σ ′

iÂσσ ′
j j′ c†

jσ c j′σ ′ + H.c., (7)

FIG. 1. Setups of the 1D lattice models for engineering the
quaternion charges (a) ±i, (b) ± j, and (c) ±k.

where Ĵσ denotes the magnitude of the nearest-neighbor (NN)
tunneling,

Âσσ ′
j j′ = �σσ ′

∫
sin(kLx)W ∗(x − x j )W (x − x j′ )dx, (8)

and H.c. stands for the Hermitian conjugate. Due to the
odd parity of the coupling pattern (4), we can obtain
Âσσ ′

j j = 0, i.e., the on-site coupling vanishes. As the conse-

quence, the NN term Âσσ ′
j±1, j is dominant. Therefore, Eq. (7) is

simplified as

HSC =
∑

j,σ �=σ ′
(−1) j iασσ ′ (c†

j+1σ c jσ ′ − c†
j−1σ c jσ ′ ) + H.c., (9)

where we have represented Âσσ ′
j+1, j by Âσσ ′

j+1, j = (−1) jασσ ′ with
ασσ ′ = �σσ ′

∫
sin(kLx)W ∗(x − λL )W (x)dx. At this stage, one

can find Eq. (9) reduces to a field that describes SOC [66].
For simplicity without loss of generality, we consider the

couplings in Eq. (9) are only processed from spin B to spin A
or C. Since the magnitude of SOC exhibits a staggered pattern
in Eq. (9), such a spatial modulation can be eliminated if one
invokes the operator representation

c j,B → (−1) jc j,B (10)

solely for spin B. Under the transformation (10), the onsite
term in Eq. (6) remains unchanged, while the hopping term ĴB

of spin B will inherit a negative sign. To avoid misunderstand-
ing, we denote −ĴB = JB, ĴA = JA and ĴC = JC hereafter. The
model Hamiltonian (1) is then recast as

H = H0 + HSC, (11)

where

H0 =
∑
j,σ

[�σ c†
jσ c jσ − (Jσ c†

j+1,σ c j,σ + H.c.)], (12)

HSC =
∑

j

i(αABc†
j+1,Ac j,B − αABc†

j−1,Ac j,B

+ αCBc†
j+1,Cc j,B − αCBc†

j−1,Cc j,B) + H.c. (13)

The lattice model described by (11) is illustrated by Fig. 1.
Diagonalizing Hamiltonian (11) can give the quasiparticle
spectrum Eν of the system, where ν denotes the index of the
quasiparticle modes.

To analyze the physics governed by Hamiltonian (11),
we transform it into the momentum-k space. By choosing the
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FIG. 2. Band physics of the quaternion charges i (top row), j (center row), and k (bottom row). (a1)–(a3) Evolution of the eigenstates for
Hamiltonian (14) when k swaps over BZ. The coordinates on the sphere stand for the components of spins A, B, and C. (b1)–(b3) Spectrum of
Hamiltonian (14) in the momentum-k space. The lowest, intermediate, and highest bands are respectively marked by the blue-solid, red-dashed,
and yellow-dotted lines. (c1)–(c3) Spectrum of Hamiltonian (11) in the real space. ν stands for the quasiparticle index. Topological edge
modes are marked by red dots. We set JB = −J and use J as the energy unit in the whole work. Other parameters are as follows: In the top
row, we set JA = JC = J; (�A, �B, �C ) = (−4J, 8J, 8J ); and (αAB, αCB ) = (0,−J ). In the center row, we set (JA, JC ) = (J, 0); (�A, �B, �C ) =
(6J, 6J, 6J ); and (αAB, αCB ) = (−J, J ). In the bottom row, we set JA = JC = J; (�A, �B, �C ) = (0, 0, 12J ); and (αAB, αCB ) = (−J, 0).

basis 
k = (ck,A, ck,B, ck,C )T , the Hamiltonian is written as

H (k) =

⎛
⎜⎝

ξA(k) + �A ζAB(k) 0
ζAB(k) ξB(k) + �B ζCB(k)

0 ζCB(k) ξC (k) + �C

⎞
⎟⎠, (14)

where ξσ (k) = −2Jσ cos(k/kL ) and ζτ=AB,CB(k) =
2ατ sin(k/kL ), and kL = π/λL. We can see that the elements
of Eq. (14) are all real and the Hamiltonian preserves
parity-time (PT ) symmetry. The order-parameter space
of Hamiltonian (14) is described by M3 = O(3)/O(1)3,
and thereby the fundamental homotopy group of the
system is expressed by the non-Abelian quaternion group:
π1(M3) = Q8.

Since Hamiltonian (14) consists of three bands, its form in
the parameter space can be recognized as H (k) = RkDRT

k ,
where D is a 3 × 3 diagonal matrix whose elements describe
the flatted band energies, and Rk serves as the orthogo-
nal rotation from the eigenstates of D to those of H (k).
The non-Abelian quaternion charges can be extracted by the
Zak phases of H (k)′s eigenstates |
 (n)

k 〉 (n = 1, 2, 3) when k
swaps over the whole 1D Brillouin zones (BZs) [67–69], and
the Zak phase of the nth band is obtained by [70,71]

φ
(n)
Zak = i

∫
BZ

〈



(n)
k

∣∣∂k

∣∣
 (n)
k

〉
dk. (15)

On one hand, Hamiltonian (14) is specified into two trivial
conjugacy classes if the phases of the H (k)′s eigenstates ac-
quire zero (modulus 2π ) [72]. These two trivial conjugacy
classes correspond to the non-Abelian topological charges
{1,−1}. In physics, they can be depicted by systems with no

coupling between any spins. On the other hand, Hamiltonian
(14) is specified into three nontrivial conjugacy classes when

Rk = e
Lη

2 k describes the rotation along the Lη (η = x, y, z)
axis. Here (Lη )i j = −εηi j and εηi j denotes the antisymmetric
tensor. In these cases, the Zak phases are π (modulus to 2π )
for two bands and 0 for the third one. They correspond to the
charges {±i,± j,±k}, and describe systems with coupling be-
tween particular spins because Lη belong to skew matrices. As
the results, it is accessible to generate nontrivial charges via
manipulating the coupling within different spins. Our focus in
this work is on engineering the nontrivial quaternion charges,
and thus we consider the following cases: (i) For Hamiltonian
of charge ±i (±k), the lower (higher) two bands host nonzero
Zak phases, while the third band is trivial. Hence, it can be
engineered by introducing coupling from spin B to C (or A).
(ii) For Hamiltonian of charge ± j, The lowest and highest
bands host nonzero Zak phases, while the third band is trivial.
Hence, it can be engineered by introducing coupling from
spin B to both C and A. We show the specifications of their
engineering in Fig. 1.

As for such a 1D system, topological edge modes, whose
density distribution is located on lattice boundaries, are ex-
pected to emerge by connecting two bands with nontrivial Zak
phases. Therefore, the system of different quaternion charges
exhibits distinguished behaviors on its boundaries, due to the
Zak phases of its three bands. Since the three elements of
the eigenstates are real, we can parametrize and illustrate
them on a unit sphere. In Fig. 2, we plot the evolution of the
eigenstates in the pseudospin space when k swaps over the
BZ. For a Hamiltonian of charge ±i (or ±k), the eigenstates
for the lowest (or highest) two bands acquire a π phase when
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FIG. 3. (a) Setups of the 1D lattice model with two quaternion
charges. Two external optical fields are applied to generate the cou-
pling between different spins, but are spatially offset. The model
consists of three sectors labeled as I, II, and III. In I (II), only one cou-
pling is present, engineering the quaternion charge k (i). In III as the
overlapping area of the external optical fields, both two couplings are
present. (b) The spectrum of the system composed of three sectors
modeled in panel (a). The topological interface modes are marked
by the red dots. The inner panel shows the evolution of eigenstates
extracted from the subsystem described by III. (c) The density distri-
bution of the interface modes on the domain wall between the sectors
I and III. We set L = 100; L0 = 40; (�(I)

A , �
(I)
B , �

(I)
C ) = (0, 0, 12J );

and (�(II)
A , �

(II)
B , �

(II)
C ) = (�(III)

A , �
(III)
B , �

(III)
C ) = (−4J, 8J, 8J ). Other

parameters in sectors I and II are the same as Figs. 1(c) and 1(a),
respectively.

evolving in BZ, while it remains unchanged for the third
band. Consequently, the topological edge modes reside in
the gap of the lowest (or highest) two bands, as shown in
Figs. 2(c1) and 2(c3). For a Hamiltonian of charge ± j, the
eigenstates for both the lowest and highest bands acquire the
π phase, while it returns to the initial state for the third band.
Hence for a Hamiltonian of charge ± j, the topological edge
modes exist between the lowest and highest bands. They are
either separately present in different gaps or totally merge
into the third band, as shown in Fig. 2(c2). This motivates
us to investigate the interface physics of a junction connecting
different quaternion charges, which can extract the interesting
non-Abelian features.

III. NON-ABELIAN FEATURES

Since the Hamiltonians of charges ±i and ±k are en-
gineered by only one coupling in Fig. 1, we focus on
preparing the junction structure that connects the two quater-
nion charges. The setups are illustrated in Fig. 3(a). We

simultaneously introduce two external fields with spatial mod-
ulations as shown in Eq. (4) to generate Eq. (13), but with
a spatial offset. Then, the 1D system can be regarded as a
combination of three sectors as shown in Fig. 3(a).

In sector I (II), only one external field is applied, and
thereby atoms of spin B are solely coupled with those of spin
A (C), i.e., exhibiting a box-shaped SOC. In contrast, in the
connecting area between I and II, atoms of spin B are coupled
to both spins A and C, and we denote this area as sector III.
For simplicity without loss of generality, we assume the length
of the three sectors {I, II, III} along the chain is respectively
set as {L0, L0, L − 2L0}, where L stands for the lattice length.
From Sec. II, we know that the Hamiltonian for such a 1D
system is written as

Hjunc =
∑

η=I,II,III

H(η)
0 + H(η)

SC , (16)

where the form of H(η)
0 has been given in Eq. (12) but with

various parameter setups as �(η)
σ . HSC in different sectors are

given as

H(I)
SC =

∑
j

iα(c†
j+1,Ac j,B − c†

j−1,Ac j,B) + H.c.,

H(II)
SC =

∑
j

iα(c†
j+1,Cc j,B − c†

j−1,Cc j,B) + H.c.,

and H(III)
SC = H(I)

SC + H(II)
SC , where we have denoted αAB =

αCB = α. The subsystems described by Hamiltonian of sec-
tors I and II host the quaternion charge k and i, respectively.
As a result, topological interface modes are expected to exist
on the domain walls of the sector III. In Fig. 3(b), we plot the
spectrum of Hamiltonian (16). Although in the overlapping
area III, all the three spins are coupled, we find the subsystem
described by Hamiltonian of III indeed exhibits the behaviors
of the charge i. This can be seen in the inset of Fig. 3(b), by
extracting the evolution of eigenstates over BZ, Therefore, as
shown in Fig. 3(c), the sought interface modes are located on
the domain wall between I and III due to the different quater-
nion charges, while are absent on the domain wall between III
and II due to the same one. We remark that since the spatial
offset of SOC is tunable, it reveals the method for artificially
manipulating and adjusting location of the interface modes.

Moreover, we find the interface modes are separately
present in different gaps, yielding the interface modes are
ascribed to a j charge. This result is the direct demonstra-
tion to the non-Abelian features of the quaternion charges,
because the behaviors of the interface modes correspond to
the charge quotient �q = qIII/qI of the two bulk sectors. The
non-Abelian bulk-edge correspondence is dominated by the
noncommunicative multiplication relation of i j = k for this
case. The demonstration to the other multiplication relations
of quaternion charges is given in Appendixes A and B.

The aforementioned results are derived within an idealized
framework of the box-shaped SOC associated with discontin-
uous boundaries. In practical experiments, the SOC typically
manifests as a Gaussian profile at the boundaries of the box.
We note that this variation in the SOC profile does not alter
the system’s topological properties, provided that the band
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FIG. 4. Experimental setups. (a) Sketch of the atomic transition
for the SOC. The pseudospins are simultaneously coupled via two
fields, denoted by M1 (orange solid lines) and M2 (purple dashed
lines). The detuning of the spin-σ state is represented by δσ . (b) Se-
tups for the junction structure that connects different quaternion
charges. The atoms are loaded in the 1D optical lattice oriented along
the x axis. The field M1 are produced by two counterpropagating
lasers positioned in the x-y plane, resulting in a sinusoidal mode of
sin(kLx) (orange solid curve) when projecting onto the lattice. The
field M2 is aligned along the z direction, perpendicular to the lattice.
The detuning δA (δC) in panel (a) can be individually adjusted in the
sector I (II) in panel (b).

gaps remains open when SOC changes in the vicinity of the
boundaries. The detailed results are presented in Appendix D.

IV. EXPERIMENTAL IMPLEMENTS

Our proposal can be realized using current technology in
ultracold atoms. Here we use 40K atoms [73] as a concrete
example. The pseudospin states A, B, and C are represented
by the hyperfine levels of |F, mF 〉 = |9/2, 1/2〉, |9/2,−1/2〉,
and |9/2,−3/2〉, respectively. The atoms are loaded in a
1D optical lattice formed by counterpropagating lasers with
wavelength λLaser = 1064 nm along the x direction, while are
tightly bounded in the y and z directions. Thus the lattice con-
stant is given by λL = λLaser/2. The recoil energy of such an
optical lattice is the recoil energy ER = h2/(8mλ2

L ) ≈ 2π h̄ ×
4.41 kHz, which we choose as the energy unit below. We set
the lattice trap depth as VL = 5.0ER ≈ 22.1 kHz. The corre-
sponding hopping magnitude is J = 0.0658ER [74]. Since the
on-site potential � is spin dependent, it can be generated by
the ac-Stark shift introduced via imposing the additional field.
To obtain the SOC strength α ≈ 0.0644ER ≈ 0.98J used in
Figs. 2 and 3, we tune the amplitude of the coupling fields in
Eq. (4) as �̂σσ ′ = 5.5ER ≈ 24.3 kHz. Since the topological
modes in the band gaps exist as long as SOC is present, �̂σσ ′

can be further adjusted over a broad range without breaking
the validity of the tight-binding approximation.

Generally, SOC are produced by two-photon Raman pro-
cess that couples two pseudospins via an intermediate excited
state [15], as sketched in Fig. 4(a). In practice, we load the
atoms into the optical lattice oriented along the x axis, while
the two optical fields that generate SOC are placed off the x
axis. After adiabatically eliminating the excited states, it gives
rise to a spatial modulation of Eq. (4) when projecting onto
the 1D lattice. Based on this scenario, the spatial dependence
of SOC can be introduced by manipulating the detunings δA,
δB, δC among three atomic states. In particular, when one state
is far detuned, the SOC is only present between the other two
states. For example as shown in Fig. 4(b), we prepare that δA

is far detuned in sector I (resulting in charge k), while δC is
far detuned in sector II (resulting in charge i). This approach
makes it attainable to create a junction structure that connects
regions with different charges

Since the quaternion charges are determined by the
Zak phases of the band structure, the 1D atomic systems
characterized by distinct charges can be identified through
measurements of the Bloch oscillations, as reported in
Ref. [67]. On the other hand, the evolution of the eigenstates
for each band, from which the Zak phases are extracted as
depicted in Figs. 2(a1)–2(a3), can also be elucidated by an-
alyzing the spin texture [32]. The interface modes, as the
eigenstate of the junction Hamiltonian, are then demonstrated
in a similar way of the quantum state preparation in Ref. [75].

V. CONCLUSION

In summary, we have presented a scheme for synthesiz-
ing the non-Abelian charges in ultracold atoms. The model
Hamiltonian for quaternion charges is established by imple-
menting different spin-orbit couplings between two of the
three pseudospin states. By adjusting the spatial misalignment
of the spin-orbit coupling fields, a junction structure connect-
ing various charges can be formed. This setup leads to the
emergence of interface modes, exhibiting characteristics of
non-Abelian bulk-edge correspondence. We believe that this
approach offers a practical and versatile strategy for observing
and manipulating the intriguing non-Abelian properties of the
system.
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APPENDIX A: CASE OF THE JUNCTION
BETWEEN j AND k

In Sec. III, we discuss the junction system connecting the
charges k and i. To further illustrate the noncommunicative
multiplication relation of the other charges, hereafter we fol-
low the setups of SOC presented in Fig. 3(a) and demonstrate
the case between j and k Since two external fields are applied
for engineering the charge j, the sector III can practically
reduce to the interface site between the sectors I and II in
this system, as shown in Fig. 5(a). The forms of the junction
Hamiltonian Hjunc and H(η)

0 have been given by Eqs. (16) and
(12), while H(η)

SC are instead given as

H(I)
SC =

∑
j

iα(I)(c†
j+1,Ac j,B − c†

j−1,Ac j,B

− c†
j+1,Cc j,B + c†

j−1,Cc j,B) + H.c.,

H(II)
SC =

∑
j

iα(II)(c†
j+1,Ac j,B − c†

j−1,Ac j,B) + H.c.,
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FIG. 5. (a) Setups of the 1D Lattice model with two quaternion
charges. The model consists of two sectors labeled I and II. In II,
only one coupling is present, engineering the quaternion charge k. In
I, both two couplings are present, engineering the charge j. (b) The
spectrum of the system composed of two sectors modeled in panel
(a). The topological interface modes are marked by the red dots. (c)–
(f) The density distribution of the edge states. We set L = 99, L0 =
50, L1 = 49. Other parameters are as follows: (�(I)

A , �
(I)
B , �

(I)
C ) =

(2.8J, 2.8J, 2.8J ); (�(II)
A , �

(II)
B , �

(II)
C ) = (0, 0, 12J ); (J (I)

A , J (I)
B , J (I)

C ) =
(J, J, 0); (J (II)

A , J (II)
B , J (II)

C ) = (2J, 2J, 2J ); α(I) = 4J; and α(II) =
−1.2J .

where we have set α
(I)
AB = −α

(I)
CB = α(I), α(II)

AB = α(II), α(II)
CB = 0.

The Hamiltonians of sectors I and II correspond to subsystems
that host the charges j and k, respectively. As the results,
topological interface modes exist on the domain wall between
I and II (i.e., at the interface site), as illustrated in Fig. 5(b). In
the spectrum of this model, we find the interface mode exists
between the highest two bands. Hence it can be ascribed to the
charge i, and reveals the multiplication relation of ki = j.

APPENDIX B: CASE OF THE JUNCTION
BETWEEN +k AND −k

Here we investigate the junction between +k and −k as the
example to show the results for charges of the same conjugate
class. In practice, such a junction structure can be constructed
if one imposes a relative π phase to the field [see Eq. (4)] that
generates SOC. The forms of the junction Hamiltonian Hjunc

FIG. 6. (a) The spectrum of the system composed of three sec-
tors. The lattice setups are the same to Fig. 3(a) but the junction
structure connects charges +k and −k instead. The topological
interface modes are marked by the red dots. (b)–(e) The density
distribution of the edge states. We set L = 100, L0 = 40, and set
(�A, �B, �C ) = (0, 0, 12J ) and (JA, JB, JC ) = (J, J, J ) for all three
sectors. The SOC strengths are α(I) = −J and α(II) = 3.2J .

and H(η)
0 have been given by Eqs. (16) and (12), while H(η)

SC
are instead given as

H(η=I,II)
SC =

∑
j

iα(η)(c†
j+1,Ac j,B − c†

j−1,Ac j,B) + H.c.,

and H(III)
SC = H(I)

SC + H(II)
SC . We have denoted α

(I)
AB = α(I),

α
(II)
AB = α(II), α

(I)
CB = α

(II)
CB = 0. Hamiltonian of the sector III

belongs to the same charge as II if α(I) + α(II) has the same
sign as α(II). Topological interface modes likewise exist on
the domain wall between I and III as shown in Fig. 6. It is not
difficult to observe that there are three edge states located at
the interface, which can be ascribed to the −1 charge (see
Appendix C). Therefore, this case further demonstrates the
multiplication relation k(−1) = −k.

APPENDIX C: CASE OF CHARGE −1

After discussing the nontrivial charges {i, j, k}, we finally
study the Hamiltonian of the −1 charge. We note that since
the charge −1 corresponds to the system in which two of the
three bands host a Zak phase of 2π , engineering such a system
requires the next-NN hopping as well as SOC, which are still
challenging for current techniques in ultracold atoms.

The Hamiltonian that belongs to the charge −1 can be
given as

H−1 = H′
0 + H′

SC, (C1)
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FIG. 7. Band physics of the charge −1. Topological edge modes
are marked by red dots. We set J ′

A = −J ′
B = J ′

C = J; (�A, �B, �C ) =
(0, 0, 12J ); and (α′

AB, α′
CB ) = (−J, 0).

where

H′
0 =

∑
j,σ

�σ c†
jσ c jσ − (J ′

σ c†
j+2,σ c j,σ + H.c.) (C2)

and

H′
SC =

∑
j

i(α′
ABc†

j+2,Ac j,B − α′
ABc†

j−2,Ac j,B,

+ α′
CBc†

j+2,Cc j,B − α′
CBc†

j−2,Cc j,B) + H.c. (C3)

We transform it into the momentum space, and the Hamilto-
nian is written as

H−1(k) =

⎛
⎜⎝

ξ ′
A(k) + �A ζ ′

AB(k) 0
ζ ′

AB(k) ξ ′
B(k) + �B ζ ′

CB(k)
0 ζ ′

CB(k) ξ ′
C (k) + �C

⎞
⎟⎠,

(C4)
where ξ ′

σ (k) = −2J ′
σ cos(2k/kL ) and ζ ′

τ=AB,CB(k) =
2α′

τ sin(2k/kL ). The band physics of the charge −1 are shown
in Fig. 7. For Hamiltonian of charge −1, the eigenstates for
the lowest two bands acquire a 2π phase when evolving in
BZ, with the third band unchanged. Hence the edge states
are located in the gap of the lowest two bands, as shown in
Fig. 7(c). Unlike the charge ±k, Hamiltonian (C1) of the

FIG. 8. (a) Spatial dependence of SOC for the lattice model.
(b) The spectrum of the system in Fig. 3 with the spatially dependent
SOC of panel (a). The topological interface modes are marked by
the red dots. (c) The density distribution of the interface states. The
parameters are the same as in Fig. 3.

charge −1 hosts the fickle edge states with beyond-two-fold
degeneracy, which depend on the details of the system
setups [5].

APPENDIX D: CASE OF THE BOX-SHAPED SOC
WITH GAUSSIAN BOUNDARIES

In practical experiments involving the box-shaped optical
fields [76–78], the boundaries of the box usually render to a
Gaussian-like profile. Here we reperform the calculation of
Fig. 3 by assuming the SOC changes spatially as shown in
Fig. 8(a). We find the topological interface modes are robust
under the induced Gaussian profile, as seen in Figs. 8(b) and
8(c). It indicates that the quaternion charges are topologically
invariant under the adiabatic deformation of SOC without
closing the band gaps.
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