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Sound waves and fluctuations in one-dimensional supersolids
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We examine the low-energy excitations of a dilute supersolid state of matter with a one-dimensional crystal
structure. A hydrodynamic description is developed based on a Lagrangian, incorporating generalized elastic
parameters derived from ground state calculations. The predictions of the hydrodynamic theory are validated
against solutions of the Bogoliubov–de Gennes equations, by comparing the speeds of sound, density fluctu-
ations, and phase fluctuations of the two gapless bands. Our results are presented for two distinct supersolid
models: a dipolar Bose-Einstein condensate in an infinite tube and a dilute Bose-Einstein condensate of atoms
with soft-core interactions. Characteristic energy scales are identified, highlighting that these two models
approximately realize the bulk incompressible and rigid lattice supersolid limits.
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I. INTRODUCTION

A supersolid is a state of matter in which superfluid and
crystalline properties coexist as a consequence of the simul-
taneous breaking of phase and translational symmetries. The
properties of supersolids have been discussed in theoreti-
cal works for almost 50 years, prior to their realizations in
ultracold atomic systems [1–5]. Experiments with these super-
solids have investigated their basic phase diagram, excitations,
and dynamics. The excitation spectrum is of great interest,
because the broken translational symmetry results in new gap-
less excitation branches called Nambu-Goldstone modes [6].
For the case of supersolids with one-dimensional (1D) crys-
talline structure, two gapless excitation bands have been
found. These branches can be classified by the character of
fluctuations they cause [5,7,8], with the lower-energy branch
being associated with phase fluctuations and particle tunnel-
ing between lattice sites, and the upper branch being more
strongly associated with density fluctuations arising from the
crystal motion [5,9–13]. Quantitative descriptions of the ex-
citations involve large-scale numerical calculations and do
not yield much insight into the underlying physics. However,
hydrodynamic theories offer the possibility to understand the
low-energy and long-wavelength aspects of the supersolids,
e.g., the speeds of sounds and nature of the fluctuations for
each branch, in terms of fundamental properties of the system.
Work on such theories for supersolids dates back to the semi-
nal 1969 paper by Andreev and Lifshitz [14], and extended by
Saslow [15] and Liu [16]. More recently there has been work
on deriving an effective Lagrangian for supersolids by vari-
ous means. Son [17] has utilized the invariances and broken
symmetries of the supersolid state to provide a universal de-
scription; also see Refs. [18–20]. Josserand et al. [21,22] have
obtained an effective Lagrangian by applying the technique
of homogenization to a nonlocal Gross-Pitaevskii theory that
predicts crystallization (also see Refs. [23] and [24]). In recent
work Šindik et al. [25] have presented a practical proposal for
experiments to investigate the hydrodynamic properties and

the superfluid fraction using a dipolar supersolid in a toroidal
trap by using a long-wavelength density-coupled perturbation.
We also note a recent experiment that has used an optical
lattice to excite a self-induced Josephson effect and quantify
the superfluid fraction in a dipolar supersolid [26].

The main motivation of this work is to provide the first
quantitative test of a hydrodynamic description of a supersolid
by comparing its predictions to the direct numerical calcula-
tion of the excitations for specific models. The hydrodynamic
theory depends on a set of generalized elastic parameters
including the superfluid fraction, compressibility, and lattice
elastic parameters, and we show how to determine these from
ground-state calculations. In order to illustrate our results, we
consider two contrasting systems (see Fig. 1): (1) a dipolar
Bose-Einstein condensate (BEC) in a tube-shaped potential
where transition to a 1D supersolid occurs as the s-wave
scattering length is changed—this system is the thermody-
namic limit corresponding to experiments that have produced
supersolids in cigar-shaped potentials; and (2) a 1D soft-core
Bose gas, which has been studied as a basic model of su-
persolidity [27–29] and its properties contrast those of the
dipolar case. There are proposals for producing a BEC with
soft-core interactions using atoms that are weakly coupled to
a highly excited Rydberg state [30]. Our results for these two
models show that they have markedly different properties. The
dipolar supersolid arises from a mechanical instability, with
the condensate partially collapsing to a higher-density incom-
pressible state. In contrast, the soft-core model has a purely
repulsive interaction and the supersolid state occurs from a
clustering transition and with a relatively rigid lattice. These
two cases are conveniently distinguished by comparing the
energy scales associated with the isothermal compressibility
at constant strain and the longitudinal elastic modulus of the
lattice.

The outline of the paper is as follows. In Sec. II we briefly
introduce the dipolar and soft-core systems we use in this
work. The supersolid Lagrangian is introduced in Sec. III, and
we discuss how to obtain the elastic parameters that appear
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FIG. 1. Schematic of systems we consider: (a) a dipolar BEC
confined in an infinite tube potential with magnetic dipole moments
polarized along z, and (b) a BEC of particles with soft-core in-
teractions. Both systems have unconfined motion along x and in
the supersolid transition translational invariance is broken along
this axis.

in the Lagrangian. In Sec. IV we derive the hydrodynamic
behavior of the excitations from the Lagrangian and use this
to determine the speeds of sound. We then make a detailed
comparison to calculations of the two models, and explore the
limiting behavior of the predictions. The density fluctuations
for the two lowest excitation bands are discussed in Sec. V.
Here, a focus is on the decomposition of the fluctuations into
components related to tunneling of atoms between sites (de-
fect density fluctuations) and movement of the crystal lattice
(lattice strain fluctuations). Finally, in Sec. VI we discuss the
phase fluctuations before concluding in Sec. VII.

II. SYSTEMS

We consider two zero-temperature systems that undergo
a transition to a 1D crystalline state. The models are briefly
introduced in the following two subsections. Additional de-
tails of the models and the numerical solution method are
given in Appendix A. Apart from the microscopic param-
eters particular to each model, we consider both systems
in a thermodynamic limit with a specified density per unit
length ρ.

A. Dipolar Bose gas in a tube potential

Our first system is a Bose gas of magnetic atoms confined
in a tube-shaped potential [see Fig. 1(a)]. The single-particle
Hamiltonian is

Hsp = − h̄2∇2

2m
+ 1

2
mω2(y2 + z2), (1)

where ω is the transverse harmonic confinement angular fre-
quency, and the atoms are free to move along the x axis. The
atomic dipole moments are polarized along z by a bias field,
and the interactions are described by the potential

U (r) = 4πash̄
2

m
δ(r) + 3add h̄2

mr3

(
1 − 3

z2

r2

)
, (2)

where as is the s-wave scattering length, add =
mμ0μ

2
m/12π h̄2 is the dipole length, and μm is the atomic

magnetic moment. The ratio εdd = add/as characterizes the
relative strength of the dipole-dipole to s-wave interactions.

When this parameter is sufficiently large the ground state
undergoes a transition to a crystalline state with modulation
along x. Quantum fluctuation effects are necessary to stabilize
this state, and further details about this model are given in
Appendix A 1. The value of εdd where the transition occurs
depends on ω and ρ, and the transition can be continuous
or discontinuous. The results we present here are for 164Dy
atoms with add = 130.8 a0 and ω/2π = 150 Hz.

B. 1D soft-core Bose gas

Our second system is a BEC of atoms free to move in 1D,
but interacting via a soft-core interaction potential Usc(x) =
U0θ (asc − |x|), where asc is the core radius and U0 is the
potential strength [see Fig. 1(b)]. It is conventional to define
the dimensionless interaction parameter

� = 2ma3
scU0ρ

h̄2 . (3)

A continuous transition occurs from a uniform to a modulated
state at the critical value �c = 21.05. A physical realization
of a system with soft-core interacting atoms is considered
in Ref. [30]. Further details about this model are given in
Appendix A 2.

C. General solution properties

By solving the (generalized) Gross-Pitaevskii equations for
these models we determine the energy-minimizing wave func-
tion ψ0. These solutions can be found in a single unit cell
of length a along x. If the state is crystalline, then a is the
lattice constant (for uniform states the energy is independent
of a). Take E to be the energy per unit length of this state for
density ρ and lattice constant a (as defined in Appendix A).
In the thermodynamic limit where the system is free to choose
the microscopic length a to minimize the energy, the ground
state energy is

E0(ρ) = min
a

E (ρ, a), (4)

which can be used to implicitly determine a(ρ) as the value of
a that minimizes E at density ρ.

III. SUPERSOLID LAGRANGIAN

A. Quadratic Lagrangian density

Here, our interest is in a Lagrangian description of the
low-energy, long-wavelength features of a system where 1D
crystalline order can occur along the x direction. We work in
a thermodynamic limit where the ground state is determined
by the average linear number density ρ in addition to the
interaction and relevant transverse confinement parameters.
Long-wavelength perturbations of the ground state can be
characterized by three fields: {δρ(x, t ), u(x, t ), φ(x, t )}. Here,
δρ(x, t ) denotes variations in the average density, u denotes
the deformation field of the crystal lattice along the x direction
(relative to the unstrained ground state), and φ denotes the
superfluid phase field. For treating small departures from equi-
librium the Lagrangian density can be expanded to quadratic
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order in these fields as

L = − h̄ δρ ∂tφ − αρρ

2
(δρ)2 − αuu

2
(∂xu)2 − αρuδρ ∂xu

+ 1

2
mρn

(
∂t u − h̄

m
∂xφ

)2
− ρ

h̄2

2m
(∂xφ)2, (5)

where ρn is the normal density, with ρ = ρs + ρn, and ρs

being the superfluid density. Similar forms of Lagrangian
densities have been obtained by other authors (e.g., see
Refs. [18–22]), although here we follow the approach of Yoo
and Dorsey [18], which uses conservation laws and symmetry.
A discussion about the relationship between these treatments
is given in Refs. [18,19]. The phase gradient relates to the
superfluid velocity as vs = h̄

m ∂xφ and the normal velocity
relates to the time derivative of the lattice deformation field
vn = ∂t u [17,18].

B. Generalized elastic parameters

In addition to the superfluid density, which determines the
rigidity of the state to twists in the phase φ [31], three other
generalized elastic parameters of the system {αρρ, αρu, αuu}
also appear in Eq. (5). Here, we discuss how these can be
obtained from ground-state calculations.

For 1D crystals the superfluid fraction fs = ρs/ρ has

f +
s = a

ρ

[∫
uc

dx∫
dy dz |ψ0|2

]−1

, (6)

f −
s = a

ρ

∫
dy dz

[∫
uc

dx

|ψ0|2
]−1

, (7)

as upper and lower bounds, respectively [32,33]. Hereon, we
neglect the transverse coordinates (y, z) when applying re-
sults to the soft-core case. Both bounds are identical for the
soft-core case, and provide the exact superfluid fraction (e.g.,
see Ref. [27]). For the dipolar case the bounds are close to
each other, and taking fs = 1

2 ( f +
s + f −

s ) provides an accurate
estimate of the superfluid fraction (see Ref. [34]).

The other generalized elastic parameters can be determined
from the energy density E (ρ, a), for the ground state under
the constraint of lattice constant being a and the mean density
being ρ. The first elastic parameter is defined by

αρρ =
(

∂2E
∂ρ2

)
a

, (8)

and relates to the isothermal compressibility at constant strain:

κ̃ = 1

ρ2αρρ

. (9)

The second parameter describes the effects of straining a site
at constant density

αuu = a2

(
∂2E
∂a2

)
ρ

. (10)

Note that lattice strain, given by ∂xu, relates to changes
in the lattice constant according to δa/a = ∂xu. In higher-
dimensional crystals the αuu term generalizes to the elastic
tensor. For the 1D crystal αuu can also be identified as the
layer compressibility used to characterize smectic materi-
als [19,35]. Finally, we define the density-strain coupling

parameter by the mixed partial derivative

αρu = a

(
∂2E
∂ρ∂a

)
. (11)

IV. EXCITATIONS AND SPEEDS OF SOUND

In this section we consider the collective excitations of the
gapless energy bands. We begin by deriving hydrodynamic
results for the collective modes, and the associated speeds of
sound. We then compare these to results for our two models,
and consider the limiting behavior.

A. Hydrodynamic equations of motion and collective modes

The Euler-Lagrange equations obtained from Eq. (5) are

h̄∂tφ = −αρρδρ − αρu∂xu, (12)

ρn(m∂2
t u − h̄∂txφ) = αuu∂

2
x u + αρu∂xδρ, (13)

∂tδρ = −ρn∂txu − ρs
h̄

m
∂2

x φ. (14)

These describe the hydrodynamic evolution for small depar-
tures from equilibrium.

We look for normal mode solutions of Eqs. (12)–(14) of the
form X (x, t ) = Xwei(qx−ωt ), where X denotes our three fields
appearing in the Lagrangian and q is a quasimomentum. The
resulting linear system is

M

⎛
⎝δρw

φw

uw

⎞
⎠ = 0, (15)

where

M =

⎛
⎜⎝

αρρ −ih̄ω iqαρu

ih̄ω h̄2q2ρs/m −h̄ωqρn

iqαρu h̄ωqρn ω2ρnm − q2αuu

⎞
⎟⎠. (16)

Nontrivial solutions require the matrix M to be singular, i.e.,
its determinant �M must be zero, where

�M = mh̄ρn(ω2 − c2
+q2)(ω2 − c2

−q2). (17)

Here, we have introduced

mc2
± = 1

2

(
a� ±

√
a2

� − 4b�

)
, (18)

where

a� = ραρρ − 2αρu + αuu

ρn
, (19)

b� = ρs

ρn

(
αρραuu − α2

ρu

)
. (20)

Thus, the hydrodynamic excitation frequencies of the two
solutions are gapless and given by

ω± = c±q, (21)

with c+ being the first (density) speed of sound and c− being
the second (phase) speed of sound.
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FIG. 2. Speeds of sound for a dipolar gas. (a) Density contrast
and superfluid fraction. (b) Speeds of sound across the superfluid
to supersolid transition. BdG results (solid lines) and analytic re-
sult (18) are similarly colored dots. For reference, cκ (thick light
blue line) and cu (thick light red line) are shown. (c) The difference
of Eq. (18) from the BdG speeds of sound (solid lines) using same
colors as in (b). Also shown is this difference setting αρu = 0 (dashed
lines) in Eq. (18). (d) The generalized elastic parameters compared
to mc2

κ and mc2
u. Other parameters: 164Dy atoms with ρ = 2500/µm

and radially symmetric transverse confinement of ω/2π = 150 Hz.

B. Results for the speeds of sound

We compare the speeds of sound determined from direct
calculation of the excitations to the hydrodynamic result of
Eq. (18) in Figs. 2 and 3 for the dipolar and soft-core systems,
respectively. Direct calculation of the excitations involves
solving the Bogoliubov–de Gennes (BdG) equations (e.g.,
see Refs. [7–9,36,37]). We make this comparison across the
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FIG. 3. Speeds of sound for a soft-core gas. (a) Density contrast
and superfluid fraction. (b) Speeds of sound across the superfluid-
to-supersolid transition. BdG results (solid lines) and analytic
result (18) are similarly colored dots. For reference, cκ (thick light
blue line) and cu (thick light red line) are shown. (c) The difference
of Eq. (18) from the BdG speeds of sound (solid lines) using same
colors as in (b). Also shown is this difference setting αρu = 0 (dashed
lines) in Eq. (18). (d) The generalized elastic parameters compared
to mc2

κ and mc2
u.

uniform superfluid-to-supersolid transition. In Figs. 2(a)
and 3(a) we show the density contrast C defined as

C = max �0 − min �0

max �0 + min �0
, (22)

where �0(x) = ∫
dydz|ψ0(x)|2 is the line density along x.

The contrast reveals the appearance of density modulations,
and hence acts as an order parameter for the formation of
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crystalline order. In the dipolar system, at the densities we
consider here [37,38], the crystalline order develops contin-
uously as εdd increases past the critical value of εdd,c. For the
soft-core system the transition is also continuous, and occurs
when the interaction parameter � exceeds �c. In both sys-
tems, the superfluid fraction decreases with increasing density
contrast.

The numerical solution of the BdG equations [37] yields
the energies h̄ωνq and amplitude functions {uνq, vνq}, where ν

is the band index and q is the quasimomentum along x. We
then obtain the speeds of sound cν of gapless branches from
the BdG results by fitting ωνq to cνq, for small values of q. In
the uniform superfluid phase only a single branch is gapless,
and we identify the speed of sound of this branch as ν = +.
In the crystalline state there are two gapless branches, and
we assign the ν of the lower (upper) branches as – (+). Our
results for the speeds of sound are shown in Figs. 2(b) and 3(b)
for the dipolar and soft-core systems, respectively. There are
significant differences in behavior revealed by these results,
particularly in the nature of the discontinuity of the speeds of
sound at the transition point. For the dipolar system c+ jumps
downward as εdd crosses the transition.1 In contrast, for the
soft-core system the c+ speed of sound jumps upward at the
transition. Other aspects of the behavior near the transition
will be discussed further in Sec. IV C.

Since the BdG speeds of sound and the hydrodynamic
results are in good agreement, in Figs. 2(c) and 3(c) we
show the difference between the results. The relative error
is � 1% for the dipolar gas and significantly smaller for the
soft-core model, except very close to the transition. The error
for the dipolar model is close to the accuracy that we can
determine the speeds of sound from the BdG calculations
with our three-dimensional discrete grids. We also show the
difference arising from neglecting the density-strain term (i.e.,
setting αρu = 0, which makes our theory equivalent to that
in Refs. [19,25]), noting that over the parameter range con-
sidered this causes a ∼5% relative upward shift in the c+
speed of sound and a smaller change in c−. Furthermore, the
role of the density-strain term vanishes as we approach the
transition.

The hydrodynamic results presented here are determined
by generalized elastic parameters (i.e., { fs, αρρ, αρu, αuu}),
which are determined from the ground-state calculations as
discussed in Sec. III B. The superfluid fraction results are
shown in Figs. 2(a) and 3(a), and the other elastic parameters
are shown in Figs. 2(d) and 3(d). These results reveal that
the crystal-dependent elastic terms αρu and αuu both vanish
as we approach the transition from the modulated side. For
both systems we find that ραρu is typically smaller than αuu,
suggesting that neglecting this parameter can be a reasonable
first approximation. The parameter αρρ is nonzero in both
phases, but changes discontinuously at the transition (also see
Ref. [37]).

1For the ρ considered the jump is small and hard to see. Refer-
ence [37] shows results at other densities where the discontinuity is
more clearly revealed.

C. Supersolid sound-limiting behavior

From the hydrodynamic results for the speed of sound in
Eq. (18) we derive limiting results to describe their behavior
approaching the transition and deep into the crystal regime. It
is useful to introduce two energy scales as

mc2
κ ≡ ρ

αρραuu − α2
ρu

αuu
= 1

ρκ
, (23)

mc2
u ≡ αuu

ρn
, (24)

being the bulk compressibility and lattice compressibility
energies, respectively, defining the associated characteristic
speeds cκ and cu. Here,

κ = αuu

ρ2(αρραuu − α2
ρu)

(25)

is the isothermal compressibility. Because αρu is relatively
small in both our models, κ ≈ κ̃ [see Eq. (9), Figs. 2(d)
and 3(d)]. The lattice compressibility is only nonzero in the
modulated state. While both αuu and ρn go to zero as we
approach the transition from the modulated side, mc2

u has a
nonzero value [see Figs. 2(d) and 3(d)].

1. Uniform superfluid

In the uniform superfluid fs = 1, αuu = αρu = 0 and κ →
1/ρ2αρρ = κ̃ . In this case Eq. (18) yields the single nontrivial
speed of sound c+ = cκ . This situation is well known for
BECs, with the speed of sound being directly related to the
isothermal compressibility [39].

2. Approaching the transition

Approaching the transition from the modulated side, the
density contrast vanishes and the superfluid fraction ap-
proaches unity. Here, the speeds of sound (18) behavior has
two cases:

c+ → cκ ,

c− → cu,

}
for cκ > cu, (26)

c+ → cu,

c− → cκ ,

}
for cκ < cu. (27)

For the dipolar case cκ > cu, while the soft-core case instead
has cκ < cu [see Figs. 2(d) and 3(d)].

These results emphasize an important difference between
the two models we consider. The crystalline phase of the
dipolar system is dominated by the bulk compressive energy
(i.e., mc2

κ > mc2
u), while the soft-core system is dominated by

the lattice compressive energy.

3. Deep in the modulated regime

Deep in the modulated phase the density contrast ap-
proaches unity and the superfluid fraction vanishes. This is
known as the isolated droplet or classical crystal regime,
because the ability for atoms to tunnel between unit cells
vanishes. In this limit we have that

c+ → csp, (28)

c− → 0, (29)
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FIG. 4. Comparison of limiting results for the speeds of sound
for the (a) dipolar and (b) soft-core gases. BdG results (solid lines)
are compared to the limiting results (labeled). Other parameters are
as in Figs. 2 and 3.

where we have introduced the characteristic speed of sound

mc2
sp = ραρρ − 2αρu + αuu

ρ
, (30)

which we discuss further in Sec. IV D. The results in Figs. 4(a)
and 4(b) show that this estimate works well as the superfluid
fraction vanishes, although it provides a reasonable estimate
of c+ even close to the transition for the dipolar case.

4. Rigid lattice limit

When the lattice compressibility is much larger than the
bulk modulus, i.e., mc2

u � mc2
κ , the lattice dynamics are heav-

ily suppressed. Neglecting the αρu term, we have

c− →
√

fscκ , (31)

c+ →
√

c2
u + fnc2

κ , (32)

where fn = 1 − fs. This limit is approximately applicable to
the soft-core gas, and the results for c± are shown in Fig. 4(b).
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FIG. 5. Comparison of the linear-chain dispersion relation
(dashed line) to the BdG results (solid lines) for (a) the dipolar model
with as = 86 a0 and (b) the soft-core model with � = 80. The insets
show the linear density of the ground states for reference. Other
parameters are as in Figs. 2 and 3.

5. Bulk incompressible limit

On the other hand, for mc2
u � mc2

κ , we have

c− →
√

fscu, (33)

c+ →
√

c2
κ + fnc2

u. (34)

This limit is approximately applicable to the dipolar gas, and
the results for c± are shown in Fig. 4(a).

D. Relationship to linear-chain model

For a system deep in the modulated regime the ground state
consists of atoms relatively localized in each unit cell (see
insets to Fig. 5). This regime should be well approximated by
the linear-chain model, in which a 1D solid is approximated
by a set of masses joined by springs, yielding a simple theory
for the phonons [40]. This idea was recently explored and
found to be a good description of the dynamics of a few
droplets of a dipolar BEC confined by a three-dimensional
cigar-shaped harmonic trap [41].

To apply this model to the systems we consider here, we
denote the center-of-mass position of the droplet at the jth
site by the coordinate x j , with the equilibrium position being
x0

j = ja. In the linear-chain model the equation of motion for
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the droplet positions is

mNucẍ j = −ksp(2x j − x j−1 − x j+1), (35)

where Nuc = ρa is the number of atoms in each unit cell
(localized droplet) and ksp is the spring constant. We identify
the spring constant from how the energy of the droplet2 E
varies with the inter droplet distance a:

ksp =
(

∂2E

∂a2

)
Nuc

, (36)

notably, with Nuc held constant. This linear-chain model has a
well-known phonon dispersion relation of the form

ωsp(q) = 2csp

a

∣∣∣sin
(qa

2

)∣∣∣, (37)

where csp = a
√

ksp/mNuc is the speed of sound and q is the
wave vector. Evaluating this result in terms of the generalized
elastic parameters yields Eq. (30) for csp.

In Fig. 5 we compare the dispersion relations for the low-
est two gapless bands obtained from the BdG calculations
to the linear-chain dispersion relation (37), noting that the
latter only depends on the elastic parameter ksp obtained from
ground-state solutions. The cases considered for these results
are chosen to be deep in the crystal regime with fs ≈ 8%
(3%) for the dipolar (soft-core) case. The results show that the
low-q behavior of the upper gapless band is reasonably well
predicted by ωsp(q) [also see cs and c+ in Figs. 2(b) and 3(b)].
At higher q values, approaching the band edge, the linear
chain dispersion slightly overestimates (underestimates) the
frequency of the upper excitation band for the dipolar (soft-
core) model. We emphasize that the behavior at the band edge
is related to the properties of the models and is not strongly
dependent on fs. These results confirm that the excitations in
this band are closely related to the classical crystal phonon
modes.

V. DENSITY FLUCTUATIONS

We are interested in the density fluctuations caused by the
quasiparticles of the gapless bands. To do this we examine
the effect of adding an excitation with band index ν and
quasimomentum q to the condensate with a small3 coherent
amplitude cνq, i.e.,

ψ (x) = ψ0(x) + cνquνq(x) − c∗
νqv∗

νq(x). (38)

In particular, we will consider the changes in the linear density

�(x) =
∫

dy dz |ψ (x)|2 (39)

relative to the unperturbed case �0(x). Below we introduce
the various density fluctuation measures and then consider the
hydrodynamic limit of these results.

2Taking the droplet energy to be the energy in the unit cell, i.e.,
E = Ea.

3Small here means that the quasiparticle number is small compared
to the condensate number, i.e., |cνq|2 � ρL, where L is the system
length.

A. Total density fluctuation

The total density fluctuation

δ�(x) = 2Re

{
cνq

∫
dy dz ψ0(x)[uνq(x) − vνq(x)]

}
, (40)

is the leading-order expression in cνq for �(x) − �0(x), and we
have taken ψ0 to be real. In the modulated phase the density
varies rapidly with x, with a dominant periodicity set by the
lattice constant a. Here, we will focus on the density fluctu-
ations arising on length scales much larger than the lattice
constant, i.e., with wave vectors in the first Brillouin zone. For
a single quasiparticle (cνq = 1) the only nonzero fluctuation is
at wave vector q and −q, with amplitude

δρ̃νq =
∫

dx e−iqxψ0(x)[uνq(x) − vνq(x)]. (41)

We show an example of the density change to a modulated
ground state with the addition of a quasiparticle in Fig. 6(a),
and the associated long-wavelength total density fluctuation is
visualized in Fig. 6(c) (also see Appendix B).

B. Lattice strain and associated density fluctuation

With crystalline order we can also consider the effect of
the excitation (38) on the crystal structure. This is charac-
terized by the displacement field u(x), which describes the
distance a point originally at x displaces. We identify the
lattice site locations as the local maxima of the linear density,
with the unperturbed locations being x0

j = ja (i.e., maxima
of �0), and the locations for the perturbed case being x j =
x0

j + u(x0
j ) (i.e., maxima of �). The displacement field can be

expressed as

u(x) = 2Re{cνquνqeiqx}, (42)

where the amplitude uνq is a measure of how the quasiparticle
displaces the site at the origin.4 In Fig. 6(b) we show (42) for
the perturbed density of Fig. 6(a), and give an example of its
relationship to the site displacements [inset of Fig. 6(b)].

To understand the effect of lattice deformation on the den-
sity, we consider a weak displacement field of the form (42)
on a supersolid state with equilibrium density profile �0(x).
Assuming that the atom number in each cell remains constant,
the purely deformed density profile is given by

�u(x) = �0[x − u(x)][1 − ∂xu(x)], (43)

where the first factor describes the displaced density profile
and the second factor adjusts the envelope of the density
profile to keep the atom number per cell constant. The change
in cell width, i.e., strain, leads to a change in density across
the system, giving rise to the lattice strain density fluctua-
tion. Fourier transforming δ�u(x) ≡ �u(x) − �0(x) for a single
quasiparticle yields [cf. Eq. (41)]

δρ̃u,νq = −iqρuνqL, (44)

4In calculations we evaluate uνq = −δρ ′
νq(0)/�′′

0 (0), where
δρνq(x) = ∫

dy dz ψ0[uνq − vνq] and the prime indicates differenti-
ation with respect to x.
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FIG. 6. Effect of excitation on the density fluctuations of a dipolar supersolid with εdd = 1.43. (a) The ground-state density �0(x) (black)
and density �(x) (red) when perturbed by a ν = 1 excitation with q = 2π/9a and cνq = 5 (for visibility). The purely deformed density profile
�u(x) (blue) using the deformation field determined from the quasiparticle. Vertical lines indicate the lattice locations for the ground state
(x0

j , gray lines) and the perturbed state (x j , light red lines). (b) The deformation field u(x) associated with the perturbed state from (a). Small
circle markers indicate the deformation of the density maxima of �(x). Inset: close-up of a density peak showing the identification of u(x).
(c) A comparison of the total, lattice deformation, and defect density fluctuations projected to the first Brillouin zone (see Appendix B).
(d) Excitations frequencies for the lowest two bands comparing BdG (solid) and hydrodynamic [i.e., ωνq = cνq] (dashed) results. Marker
identifies the excitation used in subplots (a)–(c). (e)–(g) The density fluctuations comparing the BdG (solid) and hydrodynamic (dashed)
results.

and δρ̃u,ν−q = δρ̃∗
u,νq as the nonzero contributions in the first

Brillouin zone. In Eq. (44) L is the length of the x region
integrated over.

We illustrate the lattice strain density fluctuation construc-
tion in Fig. 6. Using the identified deformation field u(x)
[Fig. 6(b)], in Fig. 6(a) we show the purely deformed density
profile �u(x), with associated density fluctuation shown in
Fig. 6(c).

C. Defect density fluctuations

In Fig. 6(a) we observe that while the maxima and minima
of the density �(x) (i.e., lattice distortion) coincide with those
of �u(x), these functions are not identical. The difference
arises from the tunneling of particles between sites, leading

to a change in the atom number per site. This is generally
referred to as the defect density [14,17,18], and can be defined
as ��(x) = �(x) − �u(x), or equivalently,

δρ̃�,νq = δ�̃νq − δ�̃u,νq. (45)

We illustrate the defect density fluctuation in Fig. 6(c).

D. Density fluctuations of lowest bands

The decomposition of the total density fluctuation into
strain and defect contributions is compared for an example
case in Fig. 6(c). Here, we see that the strain and defect den-
sities have a relatively large amplitude and are out of phase,
such that the total density fluctuation is small. This behavior
of the lattice straining in the opposite sense to the flow of
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atoms in the lowest gapless band reveals a general property
of the lowest-energy band we have used as an example in
Figs. 6(a)–6(c). Similar out-of-phase behavior has been ob-
served in experiments with dipolar supersolids measuring the
low-frequency Nambu-Goldstone excitation [5,10,11].

It is useful to define the quantities

Sρ,ν (q) = |δρ̃νq|2
N

, (46)

Su,ν (q) = |δρ̃u,νq|2
N

, (47)

S�,ν (q) = |δρ̃�,νq|2
N

, (48)

to characterize the strength of the total density, strain density,
and defect density fluctuations arising from the excitation
with quantum numbers ν and q, where N = Lρ. We note that
Sρ (q) = ∑

ν Sρ,ν (q) is the usual static structure factor, and
that aspects of the static and dynamical structure factors for
the dipolar supersolid have been discussed in Refs. [5,12,37].

In Fig. 6(c) we show the dispersion relations, and in
Figs. 6(e)–6(g) we show the related fluctuation strengths intro-
duced in Eqs. (46)–(48), for the lowest two gapless bands of a
dipolar supersolid. The lowest band (ν = −, blue) has strong
strain and defect density fluctuations as q → 0, but these are
out of phase, leading to a small total density fluctuation. The
second band (ν = +, red) has weak defect density fluctua-
tions, and the strain density fluctuation makes the dominant
contribution to the total density fluctuation. Hence, the second
band can be considered a crystal-like excitation, consistent
with the conclusions from the linear-chain model presented
in Sec. IV D.

The hydrodynamic description (5) also allows the calcu-
lation of the density correlation functions (see Ref. [18]). In
particular, our interest is in the imaginary part of the density
response function, which has the form

χ ′′
o (q, ω) = 1

2
Nqπ

∑
ν

ξ ν
o [δ(ω − cνq) − δ(ω + cνq)], (49)

where the subscript o can take the values {ρ, u,�} to represent
the total density, strain density, and defect density, respec-
tively. This result is limited to the lowest two bands (i.e., ν =
{−,+}) in the modulated regime and to a single band (i.e.,
ν = {+}) in the uniform regime. The hydrodynamic results
for the speeds of sound cν have already been introduced, and
ξν

o is a correlations length that represents the contribution of
band ν to the response function. For the modulated case these
are given by

ξ±
ρ = h̄

mρ

ρmc2
± − ρs

ρn
αuu

mc±(c2± − c2∓)
, (50)

ξ±
u = h̄ρ

mρn

mc2
± − ρsαρρ

mc±(c2± − c2∓)
, (51)

ξ±
� = h̄ρs

mρρn

ρmc2
± − (αuu − 2ραρu + ρ2αρρ )

mc±(c2± − c2∓)
. (52)

In the uniform case the only nonzero quantity is ξ+
ρ → ξκ ,

with ξκ = h̄/mcκ being the usual expression for the healing
length of a Bose-Einstein condensate.

10-3

10-2

10-1

100

101

1.38 1.4 1.42 1.44 1.46 1.48 1.5
10-3

10-2

10-1

100

101

FIG. 7. Strengths of the hydrodynamic regime density fluctua-
tions for a dipolar supersolid. (a) ξ−

o results (solid lines) compared
to limq→0 2So,−(q)/q (markers) for the various density fluctuations.
(b) ξ+

o results (solid lines) compared against limq→0 2So,+(q)/q
(markers). In both subplots we show ξκ for reference. In (b) the
results from (a) are repeated as light dash-dot lines. Other parameters
are as in Fig. 2.

At zero temperature and for ω > 0, the response func-
tion relates to the dynamic structure factor as χ ′′

o (q, ω) =
πSo(q, ω) (e.g., see Ref. [39]), and from this we can obtain
the static structure factors NSo(q) = ∫

dωSo(q, ω). The static
structure factors can be decomposed as So(q) = ∑

ν So,ν (q),
where So,ν (q) is the contribution from band ν, which were
defined in Eqs. (46)–(48). From hydrodynamic result (49) we
obtain

lim
q→0

So,ν (q) = 1

πN

∫ ∞

0
dω χ ′′

o (q, ω) = 1

2
qξν

o . (53)

In Figs. 6(e)–6(g) we compare the So,ν (q) functions ob-
tained from the BdG calculations using Eqs. (46)–(48) to the
hydrodynamic results for a dipolar supersolid. All the density
fluctuations vanish proportional to q in the q → 0 limit, and
the hydrodynamic result is seen to agree with the BdG results
in this limit. A survey over a broader parameter regime is
shown in Figs. 7 and 8 for the dipolar and soft-core systems,
respectively. In these plots we only consider the hydrody-
namic character of the fluctuations and compare ξν

o to the
q → 0 limit of 2So,ν (q)/q calculated from the excitations.5

5We use a BdG excitation with q ∼ 10−2/a to extract the limiting
behavior.
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FIG. 8. Strengths of the hydrodynamic regime density fluctua-
tions for a soft-core supersolid. (a) ξ−

o results (solid lines) compared
against limq→0 2So,−(q)/q (markers) for the various density fluctua-
tions. (b) ξ+

o results (solid lines) compared against limq→0 2So,+(q)/q
(markers). In both subplots we show ξκ for reference. In (b) the
results from (a) are repeated as light dash-dot lines. Other parameters
are as in Fig. 3.

Our results show that strain and defect density fluctuations
are reasonably strong in the ν = − band of the dipolar super-
solid, but these contributions cancel out to suppress the total
density fluctuations [Fig. 7(a)]. In contrast, for the same band
of the soft-core supersolid the lattice strain density fluctua-
tions are heavily suppressed [Fig. 8(a)]. As noted in Sec. IV,
these two systems differ in the relative size of their char-
acteristic energies mc2

κ and mc2
u. For the dipolar system the

bulk compressibility dominates and is favorable to reduce the
total density fluctuations. In contrast, for the soft-core system
the lattice compressibility dominates and is favorable to re-
duce lattice motion. Interestingly, the ν = + band dominates
the lower band for total density fluctuations in the dipolar
supersolid, whereas for the soft-core case the ν = − band
dominates close to the transition.

For the ν = + band the role of defect fluctuations in the
modulated state is more important for the soft-core system
close to the transition. However, for both models deep into the
crystalline regime, the defect contribution is negligible and
we find ξ+

u ≈ ξ+
ρ . This is consistent with this band becoming

a purely crystal excitation.
Finally, we note that the response functions relate to im-

portant sum rules. Notably, the compressibility sum rule∫ ∞

−∞

dω

π

χ ′′
ρ (q, ω)

ω
= Nαuu

ρ
(
αρραuu − α2

ρu

) = Nh̄ρκ, (54)

[cf. Eq. (25)] and the f -sum rule∫ ∞

−∞

dω

π
ωχ ′′

ρ (q, ω) = N
h̄q2

m
. (55)

VI. PHASE FLUCTUATIONS

We can also consider the effect of a quasiparticle exci-
tation on the phase fluctuations. The phase is undefined as
the density vanishes, so we avoid integrating over transverse
coordinates and only consider the phase on the x axis (i.e.,
hereon we take y = z = 0 in the dipolar model). For a quasi-
particle perturbation of the form (38), the phase fluctuation is
φ(x) = arg{ψ (x)} (since ψ0 is taken to be real). To leading
order in cνq, this is

φ(x) = Im{cνq[uνq(x) + vνq(x)]}
ψ0(x)

. (56)

For a single quasiparticle, the only nonzero fluctuations are at
wave vectors q and −q, with [cf. Eq. (41)]

φ̃νq =
∫

dx e−iqx uνq(x) + vνq(x)

2iψ0(x)
. (57)

The strengths of the phase fluctuations are given by the di-
mensionless quantity

Sφ,ν (q) = ρ

L
|φ̃νq|2. (58)

Similar to the treatment of density functions, from
the quadratic Lagrangian we obtain the phase response
function

χ ′′
φ (q, ω) = 1

2
Nπ

∑
ν

1

ξν
φ q

[δ(ω − cνq) − δ(ω + cνq)], (59)

where we have introduced the phase correlation length

ξ±
φ = h̄

ρ

mc±(c2
± − c2

∓)

αρρmc2± − 1
ρn

(
αρραuu − α2

ρu

) . (60)

This shows that the phase response diverges as q → 0. From
this result we can derive the hydrodynamic result for the phase
fluctuations

lim
q→0

Sφ,ν (q) = 1

2ξ±
φ q

. (61)

In Figs. 9(a) and 9(b) we show examples of Sφ,ν (q) com-
puted from the BdG results for the dipolar and soft-core
supersolid states, respectively. We also confirm that the hy-
drodynamic results agree in the q → 0 limit. In Figs. 9(c)–9(f)
we examine the hydrodynamic limiting behavior of the fluc-
tuations [i.e., comparing ξν

φ to limq→0 q/2Sφ,ν (q)] crossing
the transition for both models. In the uniform superfluid state
ξ+
φ → ξκ , being identical to the length scale for the total den-

sity fluctuations in the same regime. In the dipolar supersolid
the ν = − band exhibits stronger phase fluctuations close
to the transition, but as εdd increases the phase fluctuations
of the ν = + band eventually dominate. For the soft-core
supersolid the ν = + band dominates the phase fluctuations
everywhere.

We note that the Fourier component of the superfluid
velocity field is revealed from the phase fluctuations as
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FIG. 9. Phase fluctuations. (a) and (b) Comparison of the phase fluctuations as a function of q obtained from the BdG calculations (solid) to
the hydrodynamic limit ξ±

φ (dashed) for the lowest two bands: (a) dipolar and (b) soft-core supersolids. (c)–(f) Strengths of the hydrodynamic
regime total density ξ±

ρ (black line) and phase ξ±
φ (green line) correlation lengths for a dipolar supersolid, compared to the relevant limits

limq→0 1/[2qSφ,ν (q)] (markers). Results for the (c) ν = −1 and (e) ν = +1 bands of a dipolar supersolid, with other parameters as in Fig. 2.
In both subplots we show ξκ for reference. Results for (d) ν = −1 and (f) ν = +1 bands of a soft-core supersolid, with other parameters as in
Fig. 3. In (e) and (f) the ξ+

φ and ξ+
ρ are identical for the uniform phase, and are indicated by dashed lines. The modulated results from (c) and

(d) are repeated as light dash-dot lines.

vνq = ih̄qφq/m, and thus our results are trivially extendible
to describe the superfluid velocity fluctuations (also see
Ref. [39]). The effect of a quasiparticle on the phase or ve-
locity has been employed to characterize the excitation of
dipolar supersolids (e.g., see Refs. [5,42]). However, these
characterizations involve quantifying the phase variations,
distinguishing between the high- and low-density regions of
the supersolid within the unit cell, and are thus beyond the
hydrodynamic description.

VII. OUTLOOK AND CONCLUSIONS

In this study, we have demonstrated the effectiveness of the
supersolid Lagrangian formalism in providing a quantitative
description of the hydrodynamic characteristics of dipolar and
soft-core supersolids. The Lagrangian description depends on
a number of elastic parameters, and we have discussed how
these can be extracted from ground-state calculations. Our
findings include a comparative analysis of the Lagrangian
theory to the BdG excitations for the speeds of sound,
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density, and phase fluctuations. The excellent agreement
shows that the hydrodynamic behavior is well described by
the Lagrangian. Also, these results underscore the distinct
behaviors exhibited by dipolar and soft-core models.

To unravel these distinctions, we have considered various
limiting properties of the Lagrangian theory and how these
apply to the two models. This has brought to light the signif-
icance of two energy scales, mc2

κ and mc2
u, which delineate

the relative impacts of bulk and lattice compressibility, re-
spectively. The incompressible limit (mc2

κ � mc2
u) applies to

the dipolar supersolid, while the rigid lattice limit (mc2
κ �

mc2
u) applies to the soft-core supersolid. We can understand

this contrasting behavior as follows: The dipolar supersolid
emerges from a mechanical instability causing the condensate
to collapse to a higher-density incompressible state stabilized
by quantum fluctuations. The soft-core model has purely
repulsive interactions, and the crystalline structure emerges
from a clustering transition with a relatively rigid lattice. Our
results illuminate how these distinct limits manifest in the
excitation spectrum, density, and phase fluctuations. For the
dipolar model, in addition to ρ = 2500/µm used in this paper,
we have investigated cases with densities of ρ = 1500/µm
and 4000/µm with qualitatively similar results.

It is interesting to consider how our predictions can be ver-
ified in experiments. Recently, the work of Šindik et al. [25]
proposed a scheme for measuring the excitations and den-
sity response of a dipolar supersolid with minimal finite size
effects. Their scheme involves the use of a toroidal poten-
tial for confinement with a well-defined mean density, and
an azimuthally varying perturbing potential to excite q → 0
excitations. Observing the density oscillations following the
sudden removal of the potential can be used to determine the
speeds of sound and the amplitude of the density response.
Determining the lattice strain and defect density fluctuations
may be possible with high-resolution in situ imaging, which
has already been used in experiments to characterize excita-
tions [11] (also see Refs. [43,44]).

Our results describe the zero temperature fluctuations,
and an important extension of this work is to include finite
temperature effects (see Refs. [18,19]). Another area of inter-
est is higher-dimensional supersolids where an elastic tensor
describes the crystal, and the shear modulus will become
relevant. Of interest is the two-dimensional supersolid that
has recently been produced in experiments with a dipolar
BEC [45]. In the thermodynamic limit the ground-state phase
diagram for this case has been determined [46,47], yet the ex-
citations remain largely unexplored. This system is expected
to have three gapless branches [6] (cf. Ref. [7]) with the
emergence of a transverse crystal mode.

Note added. As we were about to submit, the preprint
Ref. [48] appeared, which also considers the elastic properties
of soft-core supersolids.
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APPENDIX A: ADDITIONAL DETAILS
ON SUPERSOLID MODELS

Here, we outline some additional details about the two
models we consider and how we solve for the energy-
minimizing states.

1. Dipolar eGPE theory

The extended Gross-Pitaevskii equation (eGPE) energy
functional for this system is

E [ψ, a] =
∫

uc
dx ψ∗

[
Hsp + 1

2
�(x) + 2

5
γQF|ψ |3

]
ψ, (A1)

where

�(x) =
∫

dx′ U (x − x′)|ψ (x′)|2, (A2)

and the effects of quantum fluctuations are described by
the term with coefficient γQF = 32

3 gs

√
a3

s /πQ5(εdd ), with

Q5(x) = {∫ 1
0 du[1 + x(3u2 − 1)]5/2} [49]. The energy func-

tional is evaluated in a single unit cell of length a along x
(and integrated over all space in the transverse directions). The
effective potential arising from interactions, �(x), is evaluated
using a truncated interaction kernel (see Ref. [34] for details).
The energy-minimizing wave function for (A1) is determined
using the gradient flow (or imaginary time) evolution [50,51],
noting that the average density condition enforces the follow-
ing normalization constrain on the wave function:∫

uc
dx |ψ (x)|2 = ρa. (A3)

As a result, we obtain E (ρ, a), i.e., the minimizing energy
as a function of density and cell size. We discuss the energy
density function and identify the ground state in Sec. A 3.

2. 1D soft-core formalism

The stationary states are determining by minimizing the
mean-field functional of the state

E [ψ, a] =
∫

uc
dx ψ∗

[
− h̄2

2m

d2

dx2
+ 1

2
�sc(x)

]
ψ, (A4)

where the integration is over a unit cell along x of length a,
and

�sc(x) =
∫

dx′ Usc(x − x′)|ψ (x′)|2. (A5)

To implement the average density constraint on the stationary
states, ψ has the normalization condition∫

uc
dx |ψ (x)|2 = ρa. (A6)

Identical to the dipolar case, we obtain the minimum energy
per unit cell E (ρ, a) by applying the gradient flow algorithm
to optimize the energy functional Eq. (A4) against the wave
function.

3. Energy density and ground state

Both models are hence able to solve for energy-minimizing
states with specified average linear density ρ and lattice

023320-12



SOUND WAVES AND FLUCTUATIONS IN … PHYSICAL REVIEW A 110, 023320 (2024)

constant a. The ground state ψ0 for density ρ is then de-
termined by minimizing this against a [i.e., Eq. (4)]. For
determining the generalized elastic parameters we used the
energy density (per unit length), given by

E (ρ, a) = E (ρ, a)

a
. (A7)

We only need to obtain E (ρ, a) for values of a close to the
ground-state value at each density, since the elastic param-
eters involve derivatives evaluated at the ground-state value.
We also note that in situations where the stationary state is
uniform, E is independent of a.

APPENDIX B: PROJECTED DENSITY FLUCTUATIONS

We reveal the long-wavelength character of the density
fluctuations by projecting them to the first Brillouin zone with
the operation

PBZ f (x) =
∑
k∈BZ

1

L

∫
dx′eik(x−x′ ) f (x′), (B1)

where BZ denotes wave vectors in the range [−π/a, π/a]. For
the unperturbed linear density only the constant (k = 0) term
survives projection ρ = PBZ�0(x), i.e., the projected density
is the (constant) mean linear density. We also define the pro-
jected total density fluctuation [shown in Fig. 6(c)],

δ�̄(x) = PBZδ�(x), (B2)

where for an excitation of quasimomentum q only the ±q
wave vectors contribute following projection, i.e.,

δ�̄(x) = 2Re{cνqδρ̃νqeiqx/L}, (B3)

with δρ̃νq as defined in Eq. (41). We can similarly project the
density fluctuations δ�u(x) and δ��(x) to obtain δ�̄u(x) and
δ�̄�(x), respectively [also shown in Fig. 6(c)]. These satisfy
similar relations to (B3) but in terms of δρ̃u,νq and δρ̃�,νq,
respectively. For lattice strain density fluctuation this is

δ�̄u(x) = 2Re{−iqρcνquνqeiqx}, (B4)

where we have used (44). From this we see that δ�̄u(x) =
−ρ ∂xu, with u given by Eq. (42) [52].
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