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Probing the topological phase transition in the Su-Schrieffer-Heeger Hamiltonian
using Rydberg-atom synthetic dimensions
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We experimentally investigate the Su-Schrieffer-Heeger (SSH) Hamiltonian using Rydberg-atom synthetic
dimensions constructed, in a single atom, from a ladder of six neighboring n 3S1 Rydberg states in which adjacent
states are coupled with two-photon transitions using microwave fields. Alternating strong or weak tunneling
rates, controlled by adjusting the microwave amplitudes, are varied to explore the topological phase transition
inherent in the SSH Hamiltonian as a function of the ratio of the tunneling rates. For each ratio, quench dynamics
experiments, in which the system is initially prepared in one of the bulk Rydberg states and then subjected to
the microwave fields, are performed to measure the population evolution of the system. From the dynamics
measurements, we extract the mean chiral displacement and verify that its long-time average value converges
towards the system winding number. The loss of nontrivial topology is also examined by probing the energy
spectrum of the system in steady state and observing the disappearance of the zero-energy edge states. The
results show that even a system with as few as six levels can demonstrate the essential characteristics of the SSH
Hamiltonian.
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I. INTRODUCTION

Synthetic dimensions have developed into a powerful tool
for analog quantum simulations since their use was first pro-
posed over a decade ago [1–3]. A synthetic dimension is
constructed by encoding the spatial properties of a simulated
system into the internal or external degrees of freedom of a
quantum system with a high degree of experimental control.
Such artificial systems have seen numerous realizations in the
fields of photonic and atomic physics [4–12]. In particular,
ultracold atomic systems, which allow precise control of all
degrees of freedom and provide relatively weak decoherence,
have led to experimental demonstrations of synthetic dimen-
sions in a variety of systems including hyperfine states [4,5],
atomic clock states [6,7], momentum states [8,9], and har-
monic trap states [10,11]. More recently, synthetic dimensions
using Rydberg atomic states were also proposed [2] and sub-
sequently demonstrated [13–15], pointing to their application,
when the strong Rydberg-Rydberg interactions are combined
with closely spaced optical tweezer arrays, in exploring inter-
acting many-body systems [2,14,16].

Much work with synthetic dimensions has centered on
topological systems, including quantum Hall ladders [4,17],
topological Anderson insulators [18], and higher-dimensional
lattices [9,19]. Such exotic topological phases are often char-
acterized by a global topological order, represented by a
symmetry-preserving topological invariant, an example of
which is provided by the Su-Schriffer-Heeger (SSH) Hamil-
tonian. The SSH Hamiltonian, inspired by studies of solitons
in the polyacetylene molecule [20], is a paradigmatic model
in topological physics that describes a particle hopping on a
one-dimensional (1D) lattice. As shown in Fig. 1, hopping
in the standard SSH model is limited to adjacent lattice sites
with two alternating tunneling rates J1, J2. When the system is

divided into sublattices A and B, tunneling only exists between
the two sublattices, i.e., A to B or B to A, but not within
each one, i.e., A to A or B to B. Such a tunneling pattern is
termed “bipartite” and the system is said to possesses chiral
symmetry [21,22].

A signature behavior of the SSH model is the existence
of eigenstates where population is localized on the system
boundaries. This only happens when the outermost sites are
weakly connected (J1/J2 < 1), and these boundary modes
correspond to zero-energy edge states in the energy spectrum.
As the tunneling ratio J1/J2 increases above 1, these edge
states disappear, and the system undergoes a topological phase
transition entering the “trivial” phase. The number of the
edge states is proportional to the system winding number,
which is the topological invariant generally associated with
chiral systems [23,24]. For the 1D SSH model, the winding
number takes quantized values of 1 or 0 in the topological and
trivial phase, respectively. The phase transition can therefore
be characterized by probing the winding number.

The winding number can be measured from the long-time
limit of a bulk observable, known as the mean chiral displace-
ment [25]. This has been experimentally demonstrated using
synthetic dimensions involving momentum states [18,26] and
photonic states [27], as well as with variants of the SSH model
[18,26]. The fact that the number of edge states is related to
the topological invariant, which is a bulk property, is known
as the bulk-edge correspondence.

Recently, the 1D SSH Hamiltonian was modeled using
Rydberg-atom synthetic dimensions consisting of six neigh-
boring n 3S1 states in 84Sr atoms with values of n close to
60 [15]. Adjacent-state tunneling was realized using two-
photon microwave transitions that were configured such that
the system was in the topologically nontrivial phase (specif-
ically J1/J2 = 0.2). Quench-type dynamics measurements
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FIG. 1. A six-site segment of the standard 1D SSH model. The
system can be divided into two sublattices as circled by the dashed
lines, and tunneling only occurs between sites belonging to the dif-
ferent sublattices. The three unit cells making up the segment are
circled by the dotted lines. The intracell and intercell tunneling rates
are J1 and J2, respectively.

were performed in which the atom was initially excited to a
selected Rydberg state following which the microwave fields
were turned on for a variable evolution time. Edge-to-edge
long-range tunneling and bulk-population oscillations, char-
acteristic behaviors of the topological phase, were observed
in the measured population evolution [15].

In the current paper, we examine the topological phase
transition inherent in the SSH Hamiltonian that occurs as
the ratio J1/J2 passes from less than to greater than one
through measurements of the eigenenergies and mean chiral
displacement at several different ratios of the tunneling rates
in the range J1/J2 = 0.2–5. The mean chiral displacement,
extracted from the population dynamics, reveals vanishing of
the winding number as the system loses nontrivial topology.
The eigenenergy spectrum is probed through measurements
of the Rydberg excitation spectrum in the presence of the
microwave fields. Compared to earlier work [13], the spectral
resolution is improved significantly, and all six eigenstates are
well resolved. Finite-size effects are clearly visible, but even
with only six states, evidence of band structure is seen. Its
evolution, as the tunneling ratio passes through the critical
point J1/J2 = 1, shows the disappearance of the zero-energy
edge states, consistent with the loss of topological protection.

II. EXPERIMENTAL METHOD

A cold thermal gas of 84Sr atoms is prepared through
laser cooling and loaded into a crossed-sheet optical dipole
trap (ODT). The trap contains ∼105 strontium atoms with
peak density ∼1011 cm−3 and temperature T =1 µK (see
Refs. [28–30] for a more detailed description of the appa-
ratus and the cooling and trapping techniques). As shown
in Fig. 2(c), the 5sns 3S1 Rydberg states are created using
optical two-photon excitation via the intermediate 5s5p 3P1

state. Adjacent Rydberg levels are coupled through mi-
crowave two-photon excitation using frequencies in the range
of 15–20 GHz. A DC bias magnetic field of about 6 Gauss
is applied to split the 3S1 degeneracy and selectively excite
the m = +1 sublevel. The Rydberg atoms are detected by
selective field ionization (SFI) in which a ramped electric field
is applied in the experimental region such that different n 3S1

states are ionized sequentially, allowing the population in each
state to be detected separately. For the range of quantum
numbers studied here, n ∼ 60, the ionization field reaches a
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FIG. 2. (a) The pulse sequence of an experimental cycle. The
optical dipole trap (ODT) is turned off during optical or microwave
exposure. The ionizing E-field is ramped up after this exposure and
decays to zero by the beginning of next cycle. The upper and lower
branches show the exposure sequence for the quench dynamics and
eigen-energy spectrum measurements, respectively. (b) Experimental
realization of the six-site SSH model. Selected n 3S1 Rydberg states
are excited using two-photon transitions through the intermediate
5s5p 3P1 state. The laser frequency can be tuned near any selected
|ni〉 state with detuning �i. Neighboring states are coupled by two-
photon microwave transitions.

maximum value of 40V cm−1. The liberated electrons are
then directed to a microchannel plate detector where their
arrival times identify the initial Rydberg state.

An experimental cycle involves a series of steps diagramed
in Fig. 2(a). For measurements of the quench dynamics, the
atoms are first excited to a selected n 3S1 Rydberg level. After
that, the microwave fields are turned on for a duration t , allow-
ing the population to evolve under the couplings. Immediately
following application of the microwave fields, the population
in each Rydberg state is measured using SFI. Repeated mea-
surements with varying microwave exposure times t are used
to examine the population dynamics.

For measurements of the eigenenergy spectrum, the mi-
crowave fields are turned on before laser excitation, such
that the lasers excite atoms into the microwave-dressed syn-
thetic space instead of into the bare Rydberg states. The laser
frequency is scanned near a n 3S1 state, and the measured
total excitation rate, i.e., the sum of all states present in
the ionization spectrum, provides a probe of the eigenstates
through their overlap with the selected n 3S1 state [13]. The
laser linewidths, combined with the 20-µs laser pulse widths,
result in an effective laser linewidth of ∼60–70 kHz at n ∼ 60,
sufficient to easily resolve all the eigenstates of interest here.
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The optical dipole trap is turned off during optical or mi-
crowave field exposure to avoid additional light shifts of the
Rydberg levels. Each cold atomic sample can be used for 1000
such experimental cycles with a repetition rate of ∼5 kHz. The
average number of Rydberg atoms detected per cycle, ∼0.3, is
kept low to ensure that typically less than one atom is excited
to the Rydberg manifold each cycle, eliminating the effect of
Rydberg-Rydberg interactions.

Measurements were undertaken at five different
tunneling ratios J1/J2 = {0.2, 0.5, 1, 2, 5} with tunneling
rates of J1 = {160, 400, 400, 800, 800} kHz and J2 =
{800, 800, 400, 400, 160} kHz, respectively. The tunneling
rates were experimentally determined through measurement
of the Autler-Townes splitting for each individual transition
[31,32]. Due to fluctuations in the microwave field strengths,
the uncertainties in the measured Rabi splittings can be
as large as ∼20 kHz. The Rydberg synthetic dimension
system, as depicted in Fig. 2(b), can be described with the
Hamiltonian

Ĥlattice =
2N−1∑
n=1

−hJn,n+1(ĉ†
nĉn+1 + H.c.) +

2N∑
n=1

ĉ†
nĉnUn, (1)

where 2N is the total number of bare states and N = 3 is
the number of dimerized unit cells, and the tunneling rates
alternate as Jn,n+1 = J1(J2) for n = 1, 3, 5(2, 4). The on-site
potential energy Un is determined by the detuning of the
microwave transitions. Here we assume that Un = 0 for all
n since the microwave frequencies are adjusted to be reso-
nant with their respective transitions. However, application of
any one of the microwave fields causes ac Stark shifts that
influence all other transitions. These shifts were determined
from Autler-Townes spectra measured for each individual
transition within the lattice as each additional field was ap-
plied separately and were found to be as large as ∼400 kHz,
sufficient to introduce significant changes in the microwave
frequencies required to resonantly couple the Stark-shifted
Rydberg levels. The measured ac Stark shifts were used to
adjust the applied microwave frequencies. Even with such
compensation, however, the uncertainties in the ac Stark shifts
can lead to detunings of up to ∼50 kHz from resonance.

III. RESULTS AND DISCUSSION

A. Eigenenergy spectrum

As briefly described in Sec. II, the eigenstates of the
dressed system, i.e., Eq. (1), are probed by monitoring the
Rydberg excitation spectrum in the presence of the microwave
fields. It can be shown that the Rydberg excitation rate using
a laser tuned near resonance with the bare Rydberg states |ni〉,
before convolving with the laser linewidth, is well described
by [13]

�(�i ) ∝
∑

β

|〈β|ni〉|2 δ(�i − εβ/h), (2)

where the overlap with the selected bare state |ni〉 is summed
over all eigenstates |β〉 with eigenenergies εβ . The delta
function, enforcing energy conservation, ensures that the ex-
citation rate peaks when the laser detuning �i matches one of
the eigenenergies εβ of the Hamiltonian, Eq. (1).

FIG. 3. Rydberg excitation spectrum with the laser frequency
scanned across the bare state |n2〉 for tunneling ratio J1/J2 =1. The
squares are the experimental data, and the line shows the result of
fitting the data using six Lorentzian functions. The vertical bars show
values of �(�2) calculated using Eq. (2). Error bars indicate standard
deviations from multiple measured spectra.

Figure 3 shows a typical excitation spectrum recorded as
the laser frequency is scanned across the second state |n2〉
in the synthetic lattice using a tunneling ratio J1/J2 =1. The
vertical bars show the expected peak heights and positions of
the eigenstates calculated by directly diagnolizing the Hamil-
tonian and evaluating �(�2). The microwave frequencies are
finely tuned, after applying the ac Stark shift compensation
described in Sec. II, such that the general shape of the mea-
sured spectrum matches well the calculation. The deviations
between the measured and calculated spectra can be partially
attributed to uncertainties in the tunneling rates and in the mi-
crowave detunings, which are not included in the calculations.

As also shown in Fig. 3, the measured excitation spec-
trum can be fit using six Lorentzian functions, each with the
same width. The height of each peak gives the integrated
line-strength which represents the contribution from each
eigenstate. The eigenenergies are extracted from the fit peak
positions and are plotted as a function of the tunneling ratio
J1/J2 in Fig. 4. The measured eigenenergies agree well with
the calculated results despite the uncertainties in the tunneling
rates and microwave frequencies.

At small values of J1/J2 the middle two eigenstates are
degenerate at zero energy, indicating the existence of topolog-
ically protected edge states. The phase transition that occurs
as J1/J2 increases past one is clearly seen through the disap-
pearance of the edge states and the opening of a band gap.
Note that in the measured results, the critical point (where
the two middle eigenstates meet at zero energy) occurs at a
tunneling ratio J1/J2 ≈ 0.3 as a result of the finite size (six
sites) of the experimental system. As can be seen in Fig. 4,
for an infinitely long lattice, the phase transition occurs at the
expected tunneling ratio J1/J2 =1.

The sets of microwave frequencies and amplitudes used for
each tunneling ratio J1/J2 in the spectral measurements are
also used in the following studies of quench dynamics.
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FIG. 4. The eigenenergies (in units of the tunneling rate J1)
measured from the peak positions (�E ) in the Lorentzian fits of
the Rydberg excitation spectra at different tunneling ratios J1/J2.
The triangles and squares denote the edge (at small J1/J2) and bulk
states, respectively, and the solid lines show the calculated results.
Uncertainties in measured eigen-energies are small compared to size
of the markers. At J1/J2 = 0.2, the two edge states become nearly
degenerate (with 6 kHz energy spacing), and only one peak is re-
solved in the spectrum. The shaded region indicates the calculated
energy bands for an infinitely long lattice, the dashed lines the two
innermost eigenstates.

B. Chiral displacement

The results of a typical quench dynamics measurement
are shown in Fig. 5(a) for a tunneling ratio of J1/J2 = 5. As
the microwave couplings are turned on, the population that
is initially localized on the |n4〉 site quickly diffuses into all
other sites. The significant amount of population that tunnels
into the two outermost sites demonstrates that the system is in
the topologically trivial phase for which there are no protected
edge states. This is to be expected given that the SSH Hamil-
tonian only transitions to the topologically nontrivial phase
when J1/J2 < 1.

Assessment of which topological phase a chiral system is
in, however, does not necessarily involve direct observation of
topological behaviors such as the presence of protected edge
states. For a 1D chiral system such as that described by the
SSH Hamiltonian, the chiral operator �̂ can be defined in the
block-diagonal form

�̂ =
(

1 0
0 −1

)
, (3)

where the two identity matrices run through the sublattices A
and B, respectively. One can also define the position operator
m̂ with m labeling the unit cells shown in Fig. 1. It has been
shown [25] that the expectation value of the composite “chiral
position” operator 〈�̂m〉 reveals the system winding number
W via the bulk dynamics. Specifically, with the initial popu-
lation localized on a single site in the standard SSH model,
we have 〈�̂m(t )〉 = W/2 + · · · , where . . . denotes oscillating
terms that are averaged out in the long-time limit. For con-
venience, here we define the mean chiral displacement value
as C(t ) = 2〈�̂m̂(t )〉 such that C(t ) ∼= W at late times, and it
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FIG. 5. (a) Evolution of the fractional populations in each n 3S1

bare Rydberg state for J1/J2 = 800 kHz/160 kHz = 5 with initial
excitation to the fourth state |n4〉. The solid lines show the values
predicted by diagonalizing the six-level Hamiltonian. Uncertainties
in measured population fractions are smaller than the size of the data
markers. (b) Single representative SFI arrival time spectra recorded
at evolution time t1 = 3.05 µs and t2 = 8.75 µs, which are the times
indicated by the dashed lines in Fig. 5(a). The arrows indicate the
Rydberg states that correspond to each feature in the arrival time
spectrum. Error bars indicate Poisson square root standard devia-
tions. Final fractional populations are obtained by averaging over
several such spectra.

takes the form, for our six-state SSH system

C(t ) = 2〈�̂m̂(t )〉 = 2 [P1 − P2 + 2 P3 − 2 P4 + 3 P5 − 3 P6],

(4)

where Pi is the probability of being in the ith bare Rydberg
state. This can be directly evaluated from the measured popu-
lation dynamics.
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FIG. 6. (a), (b) Mean chiral displacement C(t ) as a func-
tion of the evolution time t , comparing theoretical calcula-
tions (solid orange curves) and experimental results (connected
blue dots) for (a) J1/J2 = 800 kHz/160 kHz = 5 and (b) J1/J2 =
160 kHz/800 kHz = 0.2. (c) The cumulative average C(t ) for the
two tunneling ratios. Vertical dashed lines mark the characteristic
periods τw , τs corresponding to the tunneling rates (see text.) Mea-
surement uncertainties of the chiral displacement shown here are
small compared to the size of data markers.

Figures 6(a) and 6(b) show the mean chiral displacement
C(t ) evaluated from the dynamics data for J1/J2 = 5 and
J1/J2 = 0.2, respectively. The measured values of C(t ) agree
reasonably well with theoretical predictions obtained from
direct diagnolization of the SSH Hamiltonian [Eq. (1)]. The
dynamics of C(t ) show oscillatory behavior as expected.
To average out the oscillating terms in C(t ), the cumula-
tive time average, i.e., the average over all past time C(t ) =
1/t

∫ t ′

0 C(t ′) dt ′, is taken and shown in Fig. 6(c).
The oscillations present in C(t ), and in the original

population dynamics, have characteristic periods naturally
determined by the tunneling rates J1, J2, each of which has
an associated timescale τw = 1/Jw and τs = 1/Js, with Jw,
Js being the weaker and stronger of J1, J2, respectively.
The measurements of C(t ) for the two different tunneling
ratios J1/J2 = 0.2 and 5 share exactly opposite strong/weak
Rabi frequencies. As indicated by the vertical dashed lines
in Fig. 6(c), the initial transient, which is determined by the
initially localized state, is quickly averaged out within t � τs.
Beyond the weak-tunneling time scale t � τw, most of the

0 1 2 3 4 5
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calc. (long)
exp. (160)
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FIG. 7. The long-time average of the mean chiral displacement
C(t → ∞) ≈ C(t = 15 µs) as a function of the tunneling ratio J1/J2.
The symbols show the measured results obtained using the values
of J1 indicated in parentheses. Measurement uncertainties are small
compared to the symbols. The solid curves show the corresponding
calculated values. The black solid line shows the limiting case of a
very long-time average, and the dashed line is the behavior expected
for an infinitely long lattice.

oscillations in C(t ) have died out, and C(t ) converges to 0
or 1, which is consistent with the expected values of winding
number for the trivial (J1/J2 =5) and topological (J1/J2 =0.2)
phases, respectively.

Measurements of C(t ) and the time average C(t ) are re-
peated for five different tunneling ratios J1/J2 with the same
range of evolution times t = 0–15 µs . At each ratio, we take
the final (t = 15 µs) value of C(t ) as the long-time average
of C(t ), i.e., we approximate C(t → ∞) ≈ C(t =15 µs). The
15 µs averaging time is longer than the characteristic times
τw, τs for any of the tunneling rates used here.

The measured values of C(t ) are plotted in Fig. 7 as a
function of the tunneling ratio. The long-time limit of the
chiral displacement C(t ), which provides a measure of the
system winding number W , exhibits a clear transition from 0
to 1 as the tunneling ratio J1/J2 decreases through one, further
demonstrating the trivial-to-topological phase transition seen
in the eigenenergy spectrum. As a result of the finite size (six
sites) of our experimental system, the data points exhibit a
smooth crossover near the critical point J1/J2 = 1 rather than
the step function expected in the case of an infinitely long
chain (see Fig. 7).

The data points and calculations are further categorized
in Fig. 7 into groups with different J1 (160 kHz, 400 kHz,
800 kHz). In particular, the theoretical calculations at the
three values of J1 share a common general trend with which
the measured data points agree reasonably well. The value
of C(t ), as obtained from time averaging C(t ), generally de-
pends on both the characteristic periods τw, τs (equivalently
Jw, Js) and the averaging time. Since the latter is fixed at
15 µs, changes in τw, τs lead to variations in the number
of periodic oscillations that are being averaged over. This
is reflected in the smaller oscillation amplitudes in the cal-
culated curves in Fig. 7 as the tunneling rates increase. At
J1 =800 kHz, the calculated curve is already relatively smooth
with only small oscillations as the long-time limit is ap-
proached, demonstrating that cumulative averaging efficiently
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extracts the winding number from the chiral displacement
measurements.

IV. CONCLUSION

The topological phase transition present in the SSH
Hamiltonian has been explored by measuring the eigenenergy
spectrum and, through the mean chiral displacement, the
winding number using a six-state finite 1D SSH model
based on Rydberg atom synthetic dimensions. The measured
results agree well with theoretical predictions and capture
the essential characteristics of the SSH Hamiltonian near
its phase transition. In particular, it is shown that long-time
averaging of the mean chiral displacement can provide a
reliable measure of the winding number even for limited
system size and sampling time, both of which can be limited
in experimental settings due to technical challenges and
decoherence.

The present experimental scheme can be extended to
larger-size systems using eight to ten Rydberg states or more.
It is also possible, by directly coupling nonadjacent states, to
form closed loops and plaquettes, which can create complex
lattice geometries and realize artificial gauge fields [14,33,34].
Rydberg synthetic dimensions can also be combined with
arrays of single Rydberg atoms in closely spaced optical
tweezers [35] to exploit Rydberg-Rydberg interactions and
realize multi-dimensional systems such as quantum strings
and membranes [16,36].
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