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Universal properties of dipolar Bose polarons in two dimensions
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We study the quasiparticle properties of a dipolar impurity immersed in a two-dimensional dipolar bath.
We use the ab initio diffusion Monte Carlo technique to determine the polaron energy, effective mass, and
quasiparticle residue. We find that both the polaron energy and quasiparticle residue follow a universal behavior
with respect to the polarization angle when properly scaled in terms of the scattering length. This trend is
maintained over a wide range of values of the gas parameter, even in the highly correlated regime. Instead,
the effective mass shows growing anisotropy as the tilting angle is increased, which is induced, mainly, by
the anisotropy of the impurity-boson dipole-dipole interaction. Surprisingly, the effective mass is larger in the
direction of minimum interparticle repulsion. Finally, we use our Monte Carlo results to check the accuracy of
perturbative approaches and determine their range of validity in terms of the gas parameter.
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I. INTRODUCTION

Impurities interacting with a complex quantum-many-body
environment have been the subject of intense research in
recent years. In the solid-state realm, impurities interacting
with an ionic crystal disrupt the media and are screened by
lattice phonons, forming quasiparticles known as polarons
[1]. Polarons have been found to play an important role
in semiconductor transport [2], colossal magnetoresistance
[3], as well as nonequilibrium phenomena such as quantum
heat transport [4]. The high tunability and controllability
of ultracold quantum gases offers an excellent platform to
probe polaron physics in a clean environment, which has
motivated a considerable amount of experimental [5—13] and
theoretical [14-35] works. Polarons have been experimentally
realized in bosonic [6—12] as well as fermionic [5,13] environ-
ments, and state-of-the art techniques like rf spectroscopy or
the measurement of driven Rabi oscillations allow to probe
quasiparticle properties like the polaron energy and the quasi-
particle residue, respectively.

However, dipolar systems present rich physics due to the
unique combination of traits of the dipole-dipole interaction
(DDI): its anisotropy and long-range character in three dimen-
sions. This mix gives rise to a wide variety of phenomena,
such as the emergence of ultra-dilute self-bound droplets
[36—41], supersolids [42-58] which may be even self-bound
in the case of a dipolar mixture [59], striped liquids [60]
and the anomalous emergence of supersolidity upon increas-
ing temperature [61-63], among others. In the context of
the polaron problem, an immediate question emerges: how
do the unique properties of the DDI affect the quasiparticle
properties and dynamics of an impurity immersed in a dipo-
lar medium? Several theoretical works have addressed this
question in a variety of different conditions: from nondipolar
[24,27] and dipolar [29] impurities immersed in a dipolar
fermionic medium, to an impurity-medium bilayer config-
uration [25,34] or dipolar [26,31,32] as well as nondipolar
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[28,33] impurities immersed in a dipolar Bose-Einstein con-
densate (BEC). It has also been shown that dipolar impurities
can potentially function as tools to probe the properties of
dipolar bosonic quantum droplets due to their neglectable
back-action on the droplets [31]. In almost all cases, though,
theoretical studies are restricted to an ultra-dilute bath, mean-
ing that the characterization of the polaron properties for large
gas parameters of the background is still a rather unexplored
subject.

Precisely when the density (and thus, the correlations)
of the medium are increased, and the interparticle distances
become of the order of the range of interactions, it becomes
relevant to determine the regime for which a universal descrip-
tion of the problem is quantitatively accurate. In ultra-dilute
conditions where the impurity-medium interaction is short
range, both the ground-state properties and the dynamics of
the impurity are expected to be universal [10,11,14,19,23],
that is, dependent only on the scattering length a and the den-
sity n. However, for impurity-bath interactions in the unitary
limit [17,18] or for a sufficiently dense background [29,30],
universality is expected to be lost at some point, where the
description of the system becomes dependent on the details
(range) of the interactions [30]. For instance, for the case of
an impurity immersed on a Fermi gas in two dimensions, the
universality in the polaron energy is lost for gas parameters
as low as x = 107>, while the quasiparticle residue remains
universal up to x = 1072 [29].

In this sense, the two-dimensional dipolar system in the
absence of an impurity shows a universal behavior of its
ground-state properties with respect to the polarization angle
of the dipoles for surprisingly large values of the gas parame-
ter [64]. That is, when dipoles are tilted with respect to the
perpendicular direction of the plane and the DDI changes,
the scaled energy Ema®/NH?, scaled pair-distribution func-
tion g(#/a) and condensate fraction depend only on the gas
parameter x = na’. This is the case even in the ultra-correlated
regime (x ~ 100). In this sense, this is a similar universality to

©2024 American Physical Society
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FIG. 1. Sketch of the system. Blue arrows depict dipolar atoms
from the bath confined to the x-y plane and the red arrow shows the
impurity. An external magnetic field is used to polarize all atoms and
the impurity in the same direction, forming the tilting angle o with
the respect to the direction normal to the plane. The azimuthal angle
0 encodes the anisotropy of the system.

the one presented in Ref. [65] for a Rydberg impurity, where
its absorption spectra for several Rydberg interactions (for
different values of the principal quantum number) is the same
as long as x = na? is kept constant.

In light of this unexpected universal behavior displayed
by the bulk system, we address the question of whether this
anomalous universality translates to the polaron properties
once an impurity is introduced into the system. For that, we
compute the quasiparticle properties (polaron energy, quasi-
particle residue, and effective mass) of the repulsive Bose
polaron as a function of the polarization angle of the dipoles
for different values of the gas parameter of the bulk, reaching
up to the very strongly correlated regime. We do so by means
of the diffusion Monte Carlo (DMC) method. We set all par-
ticles (the impurity and the ones in the bath) polarized along
the same direction in space. The dipolar interaction depends
on the angle « formed by the polarization field and the z axis,
and the dipolar strength C,,. Denoting by / and B the impurity
and a background atom, respectively, the dipolar interaction
reads

r_ )
ij

[ 1 —=3sin? @ cos?6;;
Vaa’(rij) = ng < 3 IJ>’

where 0,0’ € {I, B}. In this expression r;; =r; —r; is
the in-plane relative position vector between any pair of
atoms, while r;; =|r; —r;| and 6;; are the correspond-
ing distance and relative orientation angle, respectively, as
shown in Fig. 1. Furthermore, ng' = 6nh2«/doda//u“',
withd, = m,C37 /(12w 1?) the corresponding dipolar length,
and ,u""' = mymy [(my; + my) the reduced mass between
two atoms. The expression in Eq. (1) shows that the dipolar
interaction is anisotropic and depends on both the polarization
angle o and the interaction strength C,4, both of which deter-
mine the scattering length. The opposite is also true, namely,
that a given a set of particles feel a different dipolar interaction
when either « or the scattering length is changed.

II. SYSTEM AND NUMERICAL METHOD

The system consists of a single impurity interacting with
a background of bosonic dipoles in two dimensions at
fixed density n and at zero temperature, described by the

Hamiltonian

- 2 N
H=—-ox - V- —V? Vi (r;; Vig(ry)).
sz; A +§ BB(r1)+; BTir)
2)

The first two terms in this expression represent the kinetic
energy of the host bath and the impurity, while the last ones
correspond to the dipolar interactions between the background
atoms and with the impurity, respectively.

In the following we consider the impurity and background
bosons to have the same mass, so we set m; = mg = m. This
assumption is well suited, for example, when we consider the
atoms in the bath and the impurity to be different isotopes of
the same highly dipolar, heavy atom as could be '®*Dy and
164Dy, This is also a realistic assumption when the impurity
and the background particles correspond to the same isotopes,
but in different hyperfine states. We also restrict the analysis
to tilting angles « € [0, 0.615] rad, as for larger values one has
that 1 < 3sin” o, and thus the DDI ceases to be repulsive for
all r;;, which induces a collapse into the system in the absence
of additional hard core repulsive forces.

Within this model, the s-wave scattering length for both the
{1, B} and {B, B} interaction pairs become [66]

oo’

o mC 3sin’«
oo (0, Cqf ) = 471‘;;2 exp(2y)(1 " ), 3)

where y is the Euler-Mascheroni constant y = 0.577---.
These values fix another relevant parameter of the system,
B :C;E/Cgf = ag/app, which sets the relative strength
between the impurity-background and the background-
background interactions. In this way, the system properties are
governed by «, B, and the density n.

We perform the calculations using the diffusion Monte
Carlo method [67]. In DMC, one numerically implements the
imaginary time evolution equation

Yr(R)Y (R, T + A1)

Yr(R)
vr(R")

where t =it/h is the imaginary time, G(R,R’, At) =
(R] exp(—I—? A71)|R’) is the imaginary time Green’s function,
and {7 (R) is the trial wave function, an input to the method.
This trial wave function helps reduce the variance of the es-
timations if chosen appropriately. To numerically implement
Eq. (4), one first obtains a statistical representation of the
density associated to a given trial wave function, pr(R) =
|7 (R)|?. This representation consists of a set of points
in coordinate space named walkers (i.e., (R} = {F1,.... In}i
where i is the walker index). A set of transformations are
then applied to the walkers, such that, at the end of the pro-
cess, they statistically represent the probability distribution
Yo(R)Yr(R), with o(R) the ground-state wave function of
the system. These transformations are obtained by interpreting
the quantity G(R, R’, At) 1‘/’,’:((::,)) as a probability distribution.
Observables are estimated as

0y = LR Ir®R0O%R) )

[ dR Y (R)¥o(R)

=de’G(R, R, A7) yrRHY®R, 1), 4
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Notice that any quantity that commutes with the Hamiltonian,
such as the energy, can be computed exactly (up to statistical
uncertainty) regardless of the choice of the trial wave function.
We use a trial wave function of the Jastrow form

N
YrR) = [ | fisri) | | fon (i), 6)

i=1 i<j

where the two-body correlation factors fig (impurity-
background) and fgp (background-background) are obtained
from the solution of the zero-energy two-body problem, as
done in previous works [64,66]. These functions have been
matched with suitable large-distance phononic tails to recover
the proper behavior of the many-body wave function.

III. RESULTS

In the following, we study how the polaronic properties
(polaron energy, quasiparticle residue, and effective mass)
and the pair-correlation function depend on the density n and
the tilting angle of the dipoles « for a fixed ratio 8. The
dependence on f is reported for the polaron energy.

A. Polaron energy and pair-distribution function

The driving quantity in any DMC calculation is the ground-
state energy, which therefore becomes in a natural way the
first property to analyze. For a dilute system, the mean-field
prediction for the polaron energy [21]

2
EO _ _ 4nh 7
p mln (naIzB)

)

is expected to hold, irrespective of the details of the in-
teraction. In the present case, aip and agg present the
same dependence on the polarization angle, according to
Eq. (3). Consequently, for fixed impurity and bath, the ratio
aig/agp = P remains constant when « changes, and the prod-

uct E [§°>(a)a]233 (o) becomes a function of the gas parameter

x = nagy alone. This means that changing the polarization

angle o leaves the mean-field polaron energy unchanged if
the density is changed accordingly to keep the gas parameter
constant.

Considering this property emerges from Eq. (7), it is, in
principle, expected to hold only at low x. However, and sur-
prisingly, it is still present up to very large values of the
gas parameter x ~ 100, as shown in Fig. 2. We show in the
figure the DMC results for the polaron energy, expressed in
scattering length units, i.e., Ep(oc)/[hz/ma%B ()], as a func-
tion of the tilting angle for three different values of the gas
parameter (x = 0.001, 1, 10) and a fixed ratio 8 = ajg/ags =
10. These parameters place our system away from the per-
turbative regime, meaning that the background gas of bosons
is highly correlated and the impurity-bath interaction cannot
be considered a perturbation. From the results, we see that
the quantity E,(ct)/ [h2 / malz3B («)] is kept constant (except for
small variations of less than 5%) when o changes for a fixed
gas parameter. Thus, in a very good approximation, given a
fixed value of B, the polaron energy is a function of the density
n and the boson-boson agp (or impurity-boson ag) scatter-
ing length alone for different tilting angles, meaning that
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FIG. 2. DMC results for the polaron energy in scattering length
units [i.e., €(a) = hz/mazBB(a), with apg (o) defined in Eq. (3)] for
(a) x =0.001, (b) x = 1, and (c) x = 100.

different dipolar interactions with different tilting angles dis-
play universality. The deviations from a constant of the
rescaled polaron energy Ep(a)/[hz/mazBB(a)] grow with «
for the highest tilting angles considered, which indicates that
universality starts to slightly break down in the limit ¢ —
0.615 rad, whence the DDI acquires a negative contribution
that induces a collapse into the system. This can be understood
as follows: increasing « while keeping the gas parameter
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constant implies progressively reducing the s-wave scattering
length while increasing the density, which, in turn, decreases
the interparticle distance and thus enhances finite range ef-
fects. These results align with the previous findings for the
bulk system, where a similar universal behavior is observed
[64]. In this sense, the universality present in this work is
very much akin to the one discussed in Ref. [65], where it
is shown that the absorption spectra of a Rydberg atom is
a function solely of the parameter na’, despite the Rydberg
potential depending on the principal quantum number, which
controls its depth and its range. This means that all Rydberg
interactions show the same universal response which only
depends on n and a, in much the same way that different
dipole-dipole interactions with different tilting angles display
results that only depend on n and agg, given that 8 is kept
fixed.

Given this trend displayed by the polaron energy and the
analytic expression of the scattering length in Eq. (3), the
dipolar polaron energy can be considered to be a function of
B, n, and agg alone that can be obtained from a fit to the corre-
sponding Monte Carlo data. We obtained these fits for « = 0
and two relevant values of the coupling strength: g = 1.42,
corresponding to the case of a Dy impurity immersed in an Er
bath, and the extreme case of a strongly interacting impurity
B = 10. We checked that the polaron energy follows a law of
the form

E,(a = 0) = expla[ln(x) + c]? + b} €, (8)

with a =0.94(8), b= —-16.30(1) for B =1.42 and a=
0.97(4), b= —15.79(4) for B =10. In both cases, ¢ =
11.99(3) and d = 1.09(3). Also, x = nagy and €4 = "2 /md?,
where dg = mgCEP /(127 7?) is the dipolar length of the
atoms of the bath. The energy for any other tilting angle can
approximately be obtained by the relation

7% /mads (@)

Ep(Ol) ~ EP(C( = O)W

©)
The functional form of Eq. (8) is phenomenological, in the
sense that it has not been derived from any first principles, but
rather has been chosen such that the DMC results for « = 0
can be reproduced with a small error. In all cases this error is
slightly less than 10%.

A relevant question related to the previous results is the
extent to which a perturbative approximation accurately de-
scribes the ground-state energy of the system for the dipolar
polaron. In a perturbative scheme, the bath is usually de-
scribed by a Bogoliubov Hamiltonian in the absence of the
impurity, while the impurity-bath interaction is considered to
be the (weak) perturbation. For the two-dimensional dipo-
lar system considered in this work, the boson-boson and
impurity-boson interactions in momentum space are taken to
be described by the pseudopotentials [54]

4 i C59'krr sin® o cos 26,

V(P? k — ,
o0’ (K) mln (nafm,) 2

(10)

with 6; the polar angle of the momentum vector. This pseu-
dopotential is built such that its s-wave and d-wave scattering
properties computed under the first-order Born approximation
match those of the full dipole-dipole interaction, i.e., Eq. (1).
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FIG. 3. (a) Ratio between the DMC (E,,) and the first-order per-
turbation theory [E(”, see Eq. (7)] polaron energies for g = 1.42
and $ = 10. (b) Polaron energy as a function of the impurity-boson
coupling B = C!B /CBP (dimensionless) for different values of the gas
parameter. Energies are rescaled with respect to its corresponding
value at 8 = 1.

Note also that this pseudopotential incorporates finite-range
effects via the anisotropic contribution in the second term.
Within perturbation theory and using the Frohlich Hamilto-
nian, one considers only processes where the impurity couples
to a single excitation of the medium at once. To quantify the
accuracy of the perturbative approach, we show in Fig. 3(a)
the ratio of the DMC energies to the lowest-order perturbation
prediction E 1(70) of Eq. (7). As it can be seen from the figure and
as expected, the perturbative approximation holds only in the
dilute limit, corresponding to gas parameter values x < 0.01
for B = 1.42 and x < 0.001 for 8 = 10. For larger values of
x, higher-order effects, neglected in the lowest-order perturba-
tive scheme, start to become important.

Finally, Fig. 3(b) shows the dependence of the polaron
energy on the coupling ratio 8 for @ = 0 and several values of
the gas parameter. Energies have been rescaled with respect to
their values at 8 = 1 for the sake of comparison, which cor-
respond to E,(x = 107°) = 1.25 x 107 7¢4, E,(x = 107%) =
3.92 x 107*¢; and E,(x = 10%) = 58.18¢,. We find that the
relative variation of the polaron energy grows with increasing
gas parameter. This is a consequence of the fully repulsive
character of the dipole-dipole interaction and the fact that,
for a fixed polarization angle, increasing the value of the gas
parameter is equivalent to increasing the density of atoms of
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FIG. 4. s and d partial wave modes of the impurity-boson pair-distribution function (dimensionless) for three characteristic values of the
gas parameter: x = 0.001 (top row), x = 1 (middle row), x = 100 (bottom row). The impurity strength ratio is fixed to § = 10. The tilting « is

expressed in radians.

the bath. We show only the variation of the polaron energy
with respect to B at zero tilting angle because the energy for
any other value of o can be obtained through Eq. (9) due to
the universality of the results with respect to the tilting angle.

Additional insight into the dipolar polaron universality can
be drawn from the relation between the polaron energy and the
boson-boson and impurity-boson pair distribution functions.
These quantities are defined as

N(N — 1) [ drs---drendrg [ W(R)|?

gep(r1 —rz) = " TaRWR)P . D
N [dry--dey| VR
gis(ry —rp) = P [dRW®RP (12)

with R representing the set of all particle coordinates, n =
N/V and n; = 1/V being the average bath and impurity
density, respectively. Actually, these two functions can be
expanded in partial waves and, due to the anisotropy of the
dipolar interaction, they present nonzero contributions beyond
the s-wave. We show in Fig. 4 the first two modes of

(o]
g(ri—r1) =Y gy (r)cos 210, (13)

=0

for B = 10 and different gas parameters and tilting angles.
Results for ggp(ry —rz) are very similar to those obtained
for the dipolar bulk case in Ref. [64]. As it can be seen from
the figure, the isotropic mode is universal with respect to
the tilting angle up to o >~ 0.4 since all curves collapse to
a single one when plotted in terms of the rescaled distance
r/agg. This happens even for abnormally large values of the
gas parameter. However, the first anisotropic mode does not
show any universality in « at all. However, we also see that,
up to @ =~ 0.4, the isotropic mode clearly dominates over
the anisotropic contribution unless both « and x are large,
leading to an essentially universal behavior, similarly to what
it was reported in Ref. [64] for the bulk. The pair distribution
functions is related to the potential energy of the system by
the relation

N
V) =n / drvis (D) + - / drVis(F)gas(r), (14)

where the first term comes from the interaction between the
impurity and the rest of the particles in the medium, while the
second term accounts for the contribution of the bath. From
this expression, one can recover the total energy of the system
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through the Hellmann-Feynman theorem [64,68]
1
E= / du{n / drVig (0)gis (r, 1)
0

nN
+ T/dI‘VBB(I')gBB(I" u)}, (15)

where g (r, u) and gpg(r, u) stand the pair distribution func-
tions corresponding to the Hamiltonian H = By, + Hpmu,
with Hg, and ﬁpot the kinetic and potential terms of the
Hamiltonian in Eq. (2), respectively. The polaron energy can
then be recovered from the energy difference

E,=E(N,1)— EN,0)

!
:/ du{n/dl‘VlB(l‘)ng(l‘, u)
0

nN
+ 7/a’rVBB(I‘)gBB.(I', M)}

nN

5 drVgp(r)ges(r, u), (16)

where E (Np, Ny) denotes the ground-state energy of a system
with Np bosons and N; impurities, and ggg(r, u) is the boson-
boson pair distribution function of the bulk system (i.e., for
absent impurity). In this way, the universality in the polaron
energy can be understood as being inherited from the corre-
sponding behavior of the pair distribution functions.

B. Quasiparticle residue

Another experimentally relevant quantity in the study of
the polaron physics is the quasiparticle residue Z, which quan-
tifies the overlap between the full wave function of the system
and a state conformed by a noninteracting impurity and a
vacuum of excitations. A mixed estimator for this quantity can
be obtained in DMC from the long-range asymptotic behavior
of the one-body density matrix associated to the impurity
[21,69]

Z = lim p(r) = lim

r—0o0 r—00

<1/fT(l'1+l‘, Iy, e, Iy)
Yr(ry, ry,---,ry)

>, a7

where {7 is the many-body trial wave function guiding the
simulation. We report in Fig. 6(a) the dependence of Z on the
polarization angle « for different values of the gas parameter
and B = 10. As can be seen, Z is also independent of o and
seems to depend on the gas parameter exclusively, even for
the largest values of x where interatomic correlations play an
important role. In other words, the quasiparticle residue shows
a clear universal behavior with respect to the tilting angle. This
surprising property can be hinted already at the perturbative
level using the simple model described above. To second order
and using the interaction in Eq. (10) one finds

Z(2)=<1+ -

g [ i 00)

1 -1
EK) (¢ — E(k))2> ’
(18)

0.9

0.85 |

0.8 |

22

0.75 1

0.7

logo(x)

FIG. 5. Second-order perturbation theory results for the quasi-
particle residue Z (dimensionless) for a bath with (orange dots) and
without (green solid line) the finite range, anisotropic contribution
of the boson-boson interactions [see Eq. (10)]. In both cases, o =
0.6 rad for the impurity-boson interaction.

with e, = X and E (k) = Vex(ex + 2nV P (k) the excita-
tion spectrum of the bulk. Interestingly, getting rid of the
anisotropic contribution to the bath-bath pseudopotential [sec-
ond term on the rhs of Eq. (10)] that enters Z through the
excitation spectrum of the medium leaves the quasiparticle
residue essentially unchanged. This is shown in Fig. 5, where
we compare the values of Z obtained with and without this
contribution for different values of the gas parameter and
o = 0.6. In this way, the only relevant anisotropic contribu-
tion to Z comes from the impurity-bath interaction. However,
the lowest-order anisotropic contribution is proportional to
sin* @ « 1 since the term proportional to sin® & cos 26, com-
ing from [Vlg’) (k)]? yields zero contribution when the angular
integration is evaluated. This means that, at the perturbative
level, the dependence of Z on the density and the impurity-
bath scattering length is the same as that of an isotropic system
with zero range interactions, and thus Z is a function of the gas
parameter alone [21].

At this point, one can also compare the DMC prediction of
the quasiparticle residue to the results obtained with perturba-
tion theory, as a way to benchmark the perturbative approach.
We show in Fig. 6(b) the DMC estimation of Z together with
the perturbative result obtained from Eq. (17) for the two cases
B =142 and B =10 and o = 0. Because of universality
with respect to the polarization angle, the same results hold
for any other value of «. As it can be seen, the predictive
power of the perturbative approach worsens with increasing
x and/or B, as happens with the polaron energy. In this case,
though, the situation is worse as the perturbative prediction
ceases to reproduce the DMC data at lower gas parameter
values, at least for 8 = 10. Remarkably, for the lowest cou-
pling casze, the regime where Z is close to unity extends up to
x <1072,

C. Effective mass

The last quantity we address in this work is the po-
laron’s effective mass. To obtain the effective mass in
DMC, one can track the diffusion movement of the po-
laron in imaginary time. This is done by calculating
its mean-square displacement according to the expression
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FIG. 6. (a) DMC results for the quasiparticle residue (dimensionless) as a function of the tilting angle for several values of the gas parameter
for B = 10. (b) DMC results (dots) and perturbative results (solid lines) for Z obtained for & = 0 rad as a function of the gas parameter.

n uAr.(r_)' [21,29]; with D = h%/(2m) the diffu-

sion constant of a free particle, and (|Ary(7)[?) = (|ri(r) —
ri(0)|?), T = it /hi being the imaginary time of the simulation.
Due to the anisotropic character of the dipolar interaction,
the effective mass turns out to depend on the impurity’s mo-
mentum direction for o # 0. To quantify this effect, one can
define an anisotropic effective mass by tracking the position of
the impurity in each direction separately, according to = =
1Ax@P) 4
2Dt

P hmr—>oo

lim;_ o with x = x ory. Notice that the previous
expression contain a factor of 2 instead of 4 in the denomina-
tor, as in this case the diffusion is treated as one-dimensional.

In any case and as done before, it is interesting to discuss
first the predictions of perturbation theory. To second order,
the effective mass is obtained from the second-order polaron
energy [32]

) — (P, 0|HIB|\I'1> (19)

b (W) -
where (P, O] denotes a state with a non-interacting impurity
with momentum P and a zero-momentum medium. In much
the same way, |¥) = |P, 0) + A|\W¥;) with A a perturbative pa-
rameter proportional to the strength of the impurity-medium
interaction and |W;) the first-order contribution to the total
wave function accounting for the perturbation.

Evaluating Eq. (19) and performing a Taylor expansion in
terms of the impurity momentum, the P? contribution results
in the following momentum-dependent correction to the po-
laron energy

Pr 1 /
AE = —— —
2m (27 )2

where 0 is the angle between the impurity momentum P
and the integration momentum 7k, which forms an angle ¢
with the x axis. The effective mass is then obtained from the
momentum-dependent part of the polaron energy, which is
given by the sum of impurity kinetic energy and the correction

26k

V(P) k
(Vi) 7 Ex (ex +

in Eq. (20), i.e.,

= — AE =
2m* + P2

2m

P? P? P2 < ZmAE)
1+
2m

P? 1 2

- E(l - Gy /dk n(V (k)
212
W KK 2a). Q1)
Ex (e + Ex)’®

This result indicates that the inclusion of the second term
in the pseudopotential of Eq. (10) leads to an anisotropic
effective mass, induced by the angular dependence on the
impurity’s momentum vector. In particular, for an impurity
moving along the x axis, m* is replaced by m} in Eq. (21),
and this results into the substitution cos’># — cos® ¢ while
for a impurity moving along the y axis, computing m implies
setting cos> 6 — sin” ¢. Furthermore and as happens with the
quasiparticle residue, the anisotropy of the boson-boson inter-
actions that enters Eq. (21) through the excitation spectrum
of the background has little impact on m* compared to the
impurity-boson potential. Since, as usual, the second-order
correction to the polaron energy is negative, m* > m, and the
impurity acts as a heavier quasiparticle in the medium.

Figure 7 shows the ratios m/m and m/m’ obtained with
second-order perturbation theory for 8 = 1.42 and @ = 0.6 as
a function of the gas parameter. As one can see, the effective
mass is larger when the polaron moves along the x axis. This is
because the anisotropy in the effective mass is determined by
the anisotropy of the impurity-bath interaction in momentum
space, which is maximally repulsive along this direction. The
corresponding DMC predictions for the effective mass in the x
(or y) axis are also shown in the plot. Because the noise in the
estimation in the effective mass is large, it prevents a clear ob-
servation of its anisotropic character but at large-enough gas
parameters and impurity-bath coupling strengths. This implies
that, in this regime, the DMC results for the effective mass
along the x and y axes are indistinguishable up to statistical
noise, which is why only a set of points is shown. This is an
issue even when long simulations, which accumulate a large
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FIG. 7. DMC (dots) and second-order perturbation theory (solid
line) results for the inverse effective mass (dimensionless) as a func-
tion of the gas parameter for @ = 0.6 rad, 8 = 1.42. DMC results
correspond to m/m}; = m/mj since, in this regime, the DMC estima-
tions of m} and m are indistinguishable within statistical noise.

quantity of statistical data, are performed. Regardless, we see
agreement between the perturbative and DMC results in the
regime where m} >~ m;.

The anisotropic character of the effective mass is more
clearly seen when correlations are strong. To showcase that,
we show in Fig. 8 the DMC results for m/my and m/mj as a
function of the polarization angle for § = 10 and two values
of the gas parameter x = 1 and x = 100. We can see that,
even away from the regime of validity of perturbation theory
(B > 1), anisotropic effects in the effective mass follow the
qualitative trends predicted by the perturbative calculation,

showing indeed that my > mj.

IV. EXPERIMENTAL VIABILITY

Even though some of the gas parameters considered in this
work are too high to be experimentally viable, the universality
with respect to the tilting angle in the polaronic properties
takes place also at moderately high gas parameters x ~ 0.01,
which lay within the reach of potential experiments and are
above, for instance, of the threshold for which universality
is lost for the polaron energy of the two-dimensional Fermi
polaron, x ~ 107> [29]. As an example, let us consider a
system of Dy atoms of two-dimensional (2D) density nyp in
the x-y plane. In a realistic experiment, atoms which lie within
a three-dimensional (3D) setup lay the 2D regime if L, < asp

'r'n/m’;( —e
m/my A 1
0.4
¥§ l
e 03 It
A [ ]
0.2
0.2 0.4 0.6
o (rad)

[70], with L, the size of the system along the z axis and asp the
3D scattering length. In experiments, asp is of the order of the
dipolar length ayq, defined as agg = mCqyq/(127 h2). Consider
a 2D gas parameter of x = 0.01 with a 2D scattering length
of ayp = 962.6ay (which corresponds to o = 0.4 for 164Dy
atoms) with ag the Bohr radius. Taking L, = 0.5a44, Which
guarantees that the 3D system is in the 2D regime since a3p
should be of the order of ayq or larger, yields a 3D density
of n3p = 1.1 x 10 cm™3. This density is not far from those
present in experiments of dipolar gases [38], meaning that this
regime where universality is not expected but is reported in
our study could be experimentally probed. Moreover, for this
particular case, the presence of three-body losses would not be
an issue for the formation of the polaron and the subsequent
probing of polaronic properties. According to Ref. [71], the
characteristic three-body lifetime can be estimated as t3 ~
1/(Lsn?), with L the three-body loss coefficient, which for
Dy atoms is measured to be L3 = 1.33 x 10~# m6/s [41].
For the 3D density considered, this yields #3 >~ 69.3 ms. This
lifetime is significantly higher than the time it takes for the
polaron to be formed, which is of the order of us in experi-
ments for nondipolar atoms [11] and of the order of 0.1 ms
for dipolar ones [26].

V. CONCLUSION AND FUTURE PERSPECTIVES

To summarize, we studied the quasiparticle properties of
a dipolar impurity immersed in a dipolar bath in two dimen-
sions, both being subject to an external polarization field that
makes all dipole moments point in the same direction. To
do that, we used the diffusion Monte Carlo (DMC) method,
comparing the results to second-order perturbation theory.
We showed that, to a large extent, and for a fixed ratio of
the boson-boson and impurity-boson scattering lengths, the
polaron energy displays universal behavior with respect to
the tilting angle since it is only a function of the density n
and the boson-boson agg (or impurity-boson ajg) scattering
length. This is directly induced by the same universal behavior
of the pair-distribution function, where the isotropic mode
dominates. We also showed that the quasiparticle residue
shows also universality with respect to the tilting angle, a
result that is recovered through perturbation theory even when
anisotropic finite range effects are considered. Finally, we
showed that the anisotropy of the dipole-dipole interaction

04 | ‘m/my e
) m/my 4
03}
g A
E 027} 1 s
o t :
0.1} °
0.2 0.4 0.6
o (rad)

FIG. 8. DMC Results for the inverse effective mass (dimensionless) for (a) x = 1 and (b) x = 100 as a function of the tilting angle. In both

cases, f = 10.
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leads to an anisotropic effective mass which, surprisingly, is
larger in the direction of minimum repulsion of the dipole-
dipole interaction in position space, which is a consequence of
its angular dependence in momentum space. For all the afore-
mentioned properties, we established the regime of validity
of perturbation theory in terms of the gas parameter by direct
comparison to the DMC results.

Interesting directions for future research include the explo-
ration of the attractive polaron branch and the formation of
many-body Efimov states. This is not possible with the in-
terparticle potential employed in the simulations of this work
since it lacks any attractive component, but could be done
by modeling the interparticle interaction by a dipole-dipole
potential plus a short-range repulsive core, and allowing
for tilting angles « > 0.615 rad. On top of that, the inter-
play between supersolidity and the polaron could be studied

following this same route since this interparticle interaction
leads to the formation of a striped dilute liquid [60].
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